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Abstract

In the present work we give a short review on the recent
development of applications of Finsler, Finsler-like and Finsler-
Lagrange geometries. We interpret the role of Finsler geometry
in physical considerations in which the local anisotropy is
included in the structure of gravitation and cosmology.
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Introduction
The geometry which has constituted the base for descriptions of

space-time that manifest curvature is Riemann geometry. Its
application in the structure and description of gravity is connected
with local isotropy of space-time. The metric properties of this
geometry verify the observational descriptions developed in general
theory of relativity, e.g. geodesics and deviations of geodesics.

In the framework of physical geometry i.e. the geometry which
studies the principles of analysis of space in relation to the objects
moving in it and interacting, the geometrical properties of space-time
are studied. In the study of such a theory, gravity can be represented in
terms of geometrical objects such as the curvature, which constitutes
an important tool for studying the nature of the universe. In this
approach, a point may be replaced by an event.

An interesting generalization of the Riemannian metric is presented
when one additionally considers the direction or velocity of a point-
particle in geometrical objects. In this case we get a metrical extension
of Riemann geometry which is called Finsler geometry, also known as
geometry of variational calculus. Such a geometry can be used when
space-time is locally anisotropic. In this form of space-time Riemann
geometry is incapable of describing many physical events in space-
time.

The last decade a growth of interest from the scientific community
in applications of Finsler and Finsler-like and Lagrange-Finsler
geometries has significantly contributed in the development of this
topic mainly in gravitation, general relativity and cosmology. We
mention some of the works that played a role in this direction [1-26].

The study of Finsler geometry can be traced back to a famous
lecture by Bernhardt Riemann in 1868: “On the hypotheses which lie at
the bases of geometry” [27]. In this lecture, Riemann discusses the
ways in which an n-dimensional manifold can be equipped with a
metric structure. His attention was focused on the case in which the
line-element (distance between two neighboring points) may be
expressed by the square root of a quadratic differential expression,
which later lead to the development of Riemann geometry. He also
mentioned a case where the line-element can be expressed as the
fourth root of a quartic expression, however he reasoned that the
investigation of this form would take considerable time and throw little
new light on the theory of space, so he restricted himself to the
simplest form.

Both forms proposed by Riemann were positively homogeneous of
first degree in the differentials and convex in them. A natural
generalization of these forms would be the definition of line-element as

ds=F(xμ, dxμ)

with the aforementioned properties. The first study of a space
equipped with this form was made in the thesis of Paul Finsler,
supervised by the Greek mathematician Constantin Carathéodory and
inspired by the work of the latter on the geometrization of the calculus
of variation, hence the name “geometry of the variational calculus”. In
the following years many important mathematicians such as Elie
Cartan, L. Berwald, Makoto Matsumoto, Akitsugu Kawagutsi, Veblen,
Bliss, Landsberg, John Lighten Synge, James Henry Taylor, Hanno
Rund studied the geometry extensively, generalized several results
from Riemann geometry and created a richer framework with various
types of connections, curvatures etc [28]. A very important result of
the study of these spaces is that a function F(x,y), yμ=dxμ/dλ with the
above-mentioned properties can be reduced to the form

F2 (x,y)=fμν (x,y) yμ yν

where��� �,� = 12 ∂2�2 �,�∂��∂��
So, the notion of a locally anisotropic metric is introduced.

Considering the above, we can express the line element in a
Euclidean, Minkowski, Riemann or Finsler space as:

ds2=∆µvdxµdxv

Where ∆µv=δμν,ημν,gμν(x),fμν(x,y).

The symbol δμν is the Kronecker delta, ημν=diag(-1,1,1,1) is the
Minkowski flat space-time metric tensor, gμν(x) is the Riemann metric
tensor and fμν(x,y) is the Finsler metric tensor. In the above expression,
the metric tensor ∆µv is acting like a “machine” that determines the
distance in a space and the norm of tangent vectors on it. In physical
applications, the metric tensors gμν(x) and fμν(x,y) of Riemann and
Finsler geometry respectively play the role of gravitational potentials.
We remark that in the tangent space over a fixed point x0 on a Finsler
manifold the norm of the tangent vector y is expressed as

|y|=fμν (x0,y)yμ yν

From this relation it becomes apparent that a tangent space on a
Finsler manifold is actually a Riemann space.
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The consideration of Finsler geometry in the base n-dimensional
manifold is a first step for experimental study of an anisotropic
structure of spacetime. For a well-defined Finslerian geometric
structure it is required that this geometry is considered in the
framework of a 2n-dimensional tangent bundle, a structure which
consists of the union of the tangent spaces at all the points of a base n-
dimensional differential manifold. The 2n-dimensional tangent space
of a tangent bundle is split in a non-unique way into an n-dimensional
“horizontal” and an n-dimensional “vertical” part 17, the first is usually
interpreted as an extension of the base manifold’s tangent space while
the latter is a result of the additional degrees of freedom of this
framework. The splitting is completely defined by the introduction of
Ehresmann’s nonlinear connection, a geometrical structure that
connects the space of the “external” x and the “internal” y variables.
Significant studies of the nonlinear connection were made by Synge,
Taylor and A. Kawaguchi [29,30].

Nonlinear connection plays a fundamental role in the theory of
tangent Lorentz bundles, as the splitting of their 8-dimensional tangent
space is something desirable from a physical point of view [31]. The
horizontal 4-dimensional subspace is used to describe the Finslerian
extensions of the usual spacetime tensors, while the vertical 4-
dimensional subspace can give rise to new physical quantities. The
geometrical concepts of a Finsler manifold such as the metric
structure, connections, curvatures etc. are extended to the additional
degrees of freedom offered by the vertical space, see [32,17] for a full
treatise. These extensions can offer new perspectives in physical
applications, as we will see later. The geometrical structures that
preserve the splitting induced by the nonlinear connection (i.e. only
have pure horizontal or vertical terms) are called distinguished. The
total tangent space of the tangent bundle is associated with a Whitney
sum of the horizontal and vertical space.

In physical applications, Finsler and Finsler-like geometries can be
used. By the term Finsler-like we refer to a geometry with a locally
anisotropic metric tensor that does not come from a generating
function F(x,y)with the aforementioned properties. To construct a
Finsler or Finsler-like geometry for a locally anisotropic gravity theory
we need a triplet of fundamental geometric objects: The total metric
structure G, the non-linear connection N and a distinguished linear d-
connection D adapted to N. A d-connection preserves by parallelism
the horizontal and vertical structure of space.

In applications of Finsler and Finsler-like geometries to gravitation
and cosmology or spinor structures, a compatible (metric, canonical)
linear connection is necessary in order to ensure the norm
conservation of a vector or a wave vector. It was E. Cartan who first
developed a metric linear connection in the framework of a Finsler
manifold [33]. His method treated x and y as independent variables of
the geometry, although his formalism remained on the base manifold.
His connection for x displacements essentially constitutes a direct
generalization of the Riemannian Christoffel connection with the
partial derivatives replaced by a non-commutative δ -derivative
operator. The connection for the y displacements is encoded by the
Cartan torsion tensor, a structure which gives a measure for the
deviation from Riemann geometry.

Later, a more general linear canonical d-connection was developed
on the tangent bundle geometry [31]. The frame of the horizontal
space associated with a nonlinear connection is non-commutative
(non-holonomic) in general, in contrast to the commutative
coordinate frame of a manifold, and this inevitably gives rise to torsion
terms. With this connection, general relativity is extended in a

metrically compatible way in the framework of the tangent bundle
(although with nonzero torsion). For a metrical structure which has
the same horizontal (gμν (x,y)) and vertical (vμν (x,y)=gμν (x,y))
coefficients and a Cartan-type nonlinear connection, the canonical d-
connection reduces to Cartan’s connection on the tangent bundle.

Another fundamental form of connection in Finsler geometry is the
Berwald connection. This was the first linear connection that was
introduced in a Finsler space and is characterized by simplicity of
formalism and torsion freeness. To achieve this, Berwald connection
sacrifices metric compatibility [34]. Another non-metrical connection
similar but somewhat simpler than Berwald’s is the Chern connection
[35]. The non-compatibility of these connections in all the tangent
bundle constitutes a weak point regarding their applications to
gravitation and cosmology.

Applications in Various Topics of Science
Finsler geometry has been applied in many branches of science

aside from gravitation [36]. It has been applied in mathematical
biology (Peter Antonelli) with studies in ecology, social interactions,
predator-prey dynamics and evolution theory. In information
thermodynamics (Roman Ingarden, R. Mrugala) the concept of
relative information (entropy) is used to define a Riemannian structure
on the spaces of thermodynamic parameters. For nonequilibrium
systems the structure becomes Finslerian [37]. There have also been
applications of Finsler geometry in (crystal, physiological, electron)
optics. In the topic of seismology, the seismic wavefront in anisotropic
media has been described using Finsler geometry [19]. The shape of
the wavefront is not a circle in this case but a convex curve called
superellipse.

Applications in Gravitation
Deviations of geodesics have been studied in the framework of the

tangent bundle in [38,39]. A fundamental work in the subject of
Raychaudhuri equations for congruences on the Finsler tangent bundle
particularly for F-R spacetimes has been studied in [13,16,23], A
different approach is given in [10,3]

There has been some progress regarding the formulation of classical
physical fields in Finsler spacetimes. Various efforts to produce field
equations for the generalized metric tensor can be found in the
literature. A tangent Lorentz bundle is itself a differentiable 8-
dimensional manifold which can be equipped with a generalized
metrical compatible connection and a corresponding curvature tensor,
so it has been a common practice over the years to consider an 8-
dimensional version of Einstein field Equations on it using these
quantities in the place of the classic ones [17,32]. The osculating
Riemannian space approach can give another solution to this matter.
With this method one can reduce the Finslerian spacetime to a
“Riemannian” one [28,40]. The known structures and equations from
general relativity can be used on this space, however the geometrical
structures will generally come with extra terms due to their Finslerian
origin, see for example [22]. An approach using generalized Bianchi
identities on a Berwald space with Chern connection to produce field
equations is presented in [25]. The first time a variational principle was
used to produce field equations from an action on a Finsler space was
in 2007 [5]. An application of this principle on the tangent bundle
using a Chern connection and curvature to calculate the horizontal
metric can be found in [20]. An alternative method can be found in
where the variational principle is applied on the unit tangent bundle
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with F(x,y) playing the role of the dynamic variable [12]. In the
variational principle for a Hilbert-like action is applied on the tangent
bundle equipped with a canonical d-connection and field equations for
the horizontal and vertical parts of the metric tensor are obtained [18].

There have also been some efforts to incorporate the
electromagnetic field in the framework of the tangent bundle. It is
proved that for a Cartan connection the electromagnetic field tensor
produced by an isotropic vector potential obeys the same Bianchi
identities as in general relativity [41]. A treatment for a locally
anisotropic vector potential is presented by Voicu [21]. An approach
using the differential form of Maxwell equations for an isotropic vector
potential can be found [18].

Geometrical flows for spaces characterized by nonlocality of higher
degree can be found in study by Alexiou and Stavrinos [1,14].

Non-commutative and non-holonomic structures on the
(Lorentzian) tangent bundles and applications in general relativity and
cosmology have been established in a series of papers by S. Vacaru and
his collaborators [16,17,24].

The Finsler-Randers Cosmological Model
In the present section we discuss the physical and cosmological

advances in the field of Finsler and Finsler-like geometries. Particular
attention over the last decade has been paid to the so-called Finsler-
Randers (F-R) cosmological model [22]. The main idea is to use a
Randers point-particle Lagrangian as a generating function:� �,� = ��� � ����+ �� � ��
The first term on the right-hand side is just the general relativistic

point-particle Lagrangian for the Riemannian metric aμν(x) and the
second encodes the deviation from isotropy via the one form field
bν(x). We can say that the resulting Finsler-Randers metric space
connects the Riemannian structure with the Finslerian one.

In a study by Basilakos [2] it is shown that F-R cosmology shares
the same Hubble expansion with the DGP braneworld model, although
the geometrical background of the two theories is different. The matter
perturbation dynamics for these models is found to be slightly
different.

A complete analysis of matter perturbation dynamics for the model
is made in a study by Papagiannopoulos [11]. The asymptotic
perturbation growth index for cold dark matter is calculated to be
lower than the one from cosmology.

The postulate of local anisotropy and its relation with
Finsler-like geometries

Finsler geometry incorporates the postulate that spacetime is locally
anisotropic, in the sense that physical quantities depend on the
direction of the observer. This automatically requires that every part of
matter inside spacetime must be associated with a motion. In general
relativity this is postulated ad hoc (everything has nonzero 4-velocity)
but in Finsler theory it is a prerequisite of the geometry itself. That
means Finsler geometry ensures that matter dynamics take place.

In a study by Cohen [4] Einstein’s principle of Special Relativity is
generalized so that spacetime symmetries are certain subgroups of the
Poincaré group, resulting in the so-called Very Special Relativity
(VSR). A characteristic of VSR is that it respects CPT symmetry. It was

proved in a study by Gibbons [6] that only a certain subgroup of the
Poincaré group is physically acceptable, and that the construction of a
point-particle Lagrangian that is invariant under this subgroup is of
Finsler form. Incidentally, this form was first proposed by Yu.
Bogoslovsky in 1977 [42].

In a study by Kouretsis [9] the Bogoslovsky metric form is
generalized to incorporate curved spacetime. It is argued that
anisotropy in Finsler spaces may come from local Lorentz violation.
An extension of pp-wave spacetime solution for a Finsler-Berwald
space using a generalized Bogoslovsky line-element is given in a study
by Fuster [26].

The subject of Lorentz symmetry breaking in particle physics has
been central in the work of A. Kostelecký and collaborators. In 1989 A.
Kostelecký and S. Samuel proved that an unstable perturbative string
vacuum can naturally cause a spontaneous Lorentz symmetry
breakdown [43]. Other cases of spontaneous Lorentz symmetry
breaking were later discovered in grand unified theory candidates. It
was found that a spontaneous CPT breaking in string theory can leave
a signature in certain particle systems, and an appropriate extension of
the minimal standard model of particle physics was proposed
(Standard Model Extension – SME) [44]. The familiar standard model
can be viewed as a low-energy limit of a theory that is Lorentz
covariant for the observer but not for the particle dynamics [45].
Various experiments for the detection of Lorentz and CPT
spontaneous breaking have been proposed and experimental bounds
have been set on the theory, see Kostelecky [7] and references therein.
Classical Lorentz violating point-particle Lagrangians have been
constructed from SME counterparts [8].

Lorentz and CPT violations can be associated with local anisotropy
of spacetime. It is expected that Finsler-like theories and SME will be
compatible as they both share the same geometrical principles.

The Dark Energy Problem
In the last 30 years, observations have shown that the universe is

expanding at an accelerated rate and standard FRW cosmology with
ordinary matter fields (cold dark matter, radiation) is unable to explain
this. It has been considered that the introduction of a cosmological
constant Λ in the classical Hilbert action of general relativity (GR) can
explain this accelerated expansion, however its value cannot be
calculated from the theory and must be set by hand to agree with
observations. There have been efforts to associate the cosmological
constant with the vacuum energy of quantum fields but the calculated
value deviates from the one suggested by observations. The cause of
the accelerated expansion is called “dark energy”, though we really
know very little about it.

Several modified gravity theories have been proposed as candidates
to explain theoretically the observations, usually by modifying the
Hilbert action in a Riemannian framework. Finsler and Finsler-like
theories have a different approach, as they modify the geometry itself
rather than the action. In general, metrical extensions of Riemann
geometry can be provided with a Finslerian geometrical structure in a
manifold which leads to generalized gravitational field theories.
During these years there has been a rapid development of applications
of Finsler geometry particularly of the F-R model mainly in the topics
of general relativity, astrophysics and cosmology. It has been found by
Stavrinos et al. [22] that the F-R field equations provide a Hubble
parameter that contains an extra geometrical term which can be used
as a possible candidate for dark energy.
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In a study by Kouretsis [9] the Bogoslovsky Finslerian metric
function is generalized for curved spacetime specifically for a spatially
flat cosmology. The resulting generalization of FRW cosmology can
account for cosmological acceleration.

On the other hand, it has been shown that the equations of
cosmological evolution for a flat FRW cosmology extended on the
tangent bundle provide extra terms compared to classical cosmology of
GR that can incorporate an accelerated expansion [18]. Those terms
come directly from the geometry and can be associated with the extra
degrees of freedom provided by the internal variables y. Specifically,
the vertical part of the metric may act as a potential in y-space from
which the scalar function S(x,y) that provides accelerating expansion is
derived. The equations of cosmological evolution actually take the
same form with the classical Friedmann Equations of GR if one sets
S=-2Λ=const. Although S acts as an effective cosmological constant, it
is generally an anisotropically polarized dynamical variable and can be
used to elaborate on much more general cosmological dynamics where
anisotropy is inherently considered [15,16]. One may say that a
portion of the universe’s anisotropy is transformed to dark energy as
the universe becomes more isotropic.

It is interesting to remark here that an analogous statement has been
made for general relativistic cosmology with a Bianchi type-I metric.
Particularly, in the very early universe the particle-antiparticle creation
process can account for the creation of real massless particles in the
condition that the expansion is non-adiabatic and anisotropic at this
time [46]. Thus, the energy of anisotropy is dissipated and transformed
into radiation as the universe cools down and becomes isotropic.

On a similar note, it is argued that for certain toy models, the
generalized energy-momentum tensor can be approximated by a
cosmological constant with possible locally anisotropic polarizations
depending on (x, y) [15].

Conclusion
In the next years, it is expected that there will be a development of

applications of Finsler and Finsler-like geometries, mainly in the topics
of general relativity, gravitation and cosmology which can contribute
in solving problems for a universe with a weak anisotropic field in the
corresponding sectors.
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