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Abstract
Background: Ultraviolet-A (UV-A) light induce DNA damage by 
creating pyrimidine dimers, or indirectly affects DNA by the formation 
of reactive oxygen species. The objective was to determine DNA 
damage by micronucleus test in neonatal rats exposed to UV-A 
light.

Methods: Rat neonates were exposed to light from a LED 
lamp (control group), to UV-C light 254 nm (control group to 
desquamation skin) or UV-A light 365 nm and in one group the 
dams were supplemented with folic acid (FA), to determine micro 
nucleated erythrocytes (MNE) and micro nucleated polychromatic 
erythrocytes (MNPCE) in peripheral blood of offspring.

Results: All the rat neonates exposed to UV-C lamp showed 
desquamation skin, while for UV-A lamp no desquamation was 
observed, and there was MNE differences in all sampling times 
(P<0.02) and for MNPCE in 9 min group (P=0.001). No differences 
between the groups with and without FA were observed.

Conclusion: Increased MNE frequencies without apparent damage 
to the skin could be induced with UV-A light exposure. Under these 
conditions, FA no protected against UV-A light exposure. This study 
shows a manner to quantify the genotoxic effects of UV-A light in 
peripheral blood erythrocytes of rat neonates.
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response [9]. UV-A, UV-B and UV-C light can damage the DNA of 
cells [4,7,10,11] through the formation of pyrimidine dimers between 
adjacent bases [1,6,12-14]. These dimers distort the conformation of 
the double helix and interfere with normal DNA replication, which 
can produce mutations [4,12,15,16] and chromosomal fragmentation 
[5]. UV-A light also indirectly affects DNA by promoting the 
formation of reactive species, mainly reactive oxygen species (ROS) 
[1,4,12,17]. These entities oxidize the bases within DNA, which can 
lead to the fragmentation of DNA strands [1,17,18] and may lead to 
the formation of micronuclei [5,10,19,20]. The UV-B in sunlight is 
a causative agent of skin cancer [21]. In addition, UV-B and UV-C 
stimulates melanogenesis and produces erythema [4,7,8,22,23] more 
rapidly than UV-A light [24]. Skin cancer can also start as a result 
of exposure to UV-A light. The DNA lesions resulting from UV-A 
exposure can be mistakenly repaired and may consequently lead 
to the formation of mutations [25]. However, as mentioned, UV-B 
and UV-C light produces erythema [4,23], but UV-A light may 
require much longer exposure to induce pigmentation. Accordingly, 
levels of UV-A radiation exposure cannot be adequately quantified. 
Accidental UV-A exposures can occur, and this exposure may 
be one reason for the increased incidence of melanoma in people 
who use sunscreens [1,22]. It is clear that DNA damage occurs 
independently of erythema, and the protection against erythema 
does not a guarantee that DNA is protected from UV-A light damage 
[26]. Recently, increases in micronucleated erythrocytes (MNE) and 
micronucleated polychromatic erythrocytes (MNPCE) were observed 
in the rat neonates born to mothers exposed to UV-A [27]. Since the 
damage caused by the exposure to UV light is DNA fragmentation, 
in this study, we used MNE formation to quantify the DNA damage 
in the peripheral blood of rat neonates. MNE formation in newborn 
rats was chosen for these examinations because micronucleation 
can be easily observed in erythrocytes [28,29], and neonatal skin is 
thinner and due to UV-A penetrates more deeply, neonates show 
greater sensitivity to genotoxic damage [29]. Furthermore, part of the 
damage from UV light is believed to be caused by ROS generation, 
and it has been proposed that antioxidants be added to sunscreens or 
be administered separately for damage protection [4,27,30-36]. In the 
present study, folic acid (FA) was administered as an antioxidant to 
protect against DNA damage and to scavenge ROS [29,37-39].

Materials and Methods
This report presents an experimental study performed in 

accordance with institutional and governmental regulations for 
ethical use and handling of experiment animals [40,41].

All procedures were completed in accordance with the 
institutional guidelines of the Centro de Investigación Biomédica 
de Occidente (Instituto Mexicano del Seguro Social), Guadalajara 
Jalisco, México, which are consistent with those approved by the 
national and international institutes of health, based on the NOM-
062-ZOO-2001 and on the American Psychological Association 
guidelines for the humane treatment of research animals [40,41]. 
This project was approved by the Local and National Committee on 
Health Research and by the Institutional Committee for the Care and 
Use of Laboratory Animals (registry number: R-2010-1305-10 and 
R-2012-785-035).

Introduction
Solar radiation may cause undesirable health effects primarily in 

the skin, due to the action of ultraviolet light (UV) [1]. UV is divided 
into three types, UV-A (400-315 nm), UV-B (315-280 nm) [2,3], and 
UV-C (280-100 nm); UV-C light is largely blocked by the atmosphere 
[4-6], but accidental exposure could occur from germicidal lamps, 
with symptoms such as erythema, skin irritation, burning, and skin 
desquamation [7,8]. UV-C light induced skin erythema faster, and 
oxygen radicals may be important in initiating the erythematic 
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Animals

Thirty-two 3-month-old female Sprague Dawley (hairless) rats 
were used [42,43], four rats per group. The rats were mated with a 
male adult (4:1) and allowed to deliver normally. Upon confirmation 
of pregnancy by determining sperm presence in a smear of a 
vaginal wash with sterile water, the pregnant rats were housed in 
individual polycarbonate cages in windowless rooms with automatic 
temperature control (22 ± 2°C), light control (lights on at 07:00 and 
off at 19:00 h) and relative humidity maintenance (50 ± 10%). The 
animals received standard laboratory pelleted food (Purina, St. Louis, 
MO, USA) and tap water ad libitum.

For MNE and desquamation skin induction, immediately after 
birth the neonates were exposed to UV light daily. The UV lamps 
used were UVP models (UVP-Ultraviolet Products, Upland, CA, 
USA): UVS-26 (Mineralight® lamp, 115 V, 60 Hz, 0.32 W) at 254 nm 
(UV-C radiation, to induce skin desquamation) using a lamp with 2 
tubes of 6 W, or UVL-24 (EL Series UV lamp, 115 V, 60 Hz, 0.32 W) 
at 365 nm (UV-A radiation) using a lamp with 2 tubes of 4 W.

Hairless rats were used as they provide a suitable experimental 
model for photo dermatology studies [44,45]. The whole litter was 
exposed daily; we randomly sampled only 4 newborns at each time. 
All of the rats were supplied by the laboratory animal facility at the 
Centro de Investigación Biomédica de Occidente (Instituto Mexicano 
del Seguro Social), Guadalajara, Jalisco, México.

Study groups

The pups were exposed daily for five consecutive days using the 
following scheme. Group 1, the negative control group, was exposed 
to a conventional light lamp with 60 LED (SE-EM-60L, 125 V, 60 Hz, 
2.8 W, Sanelec, Estado de México, México) for 3 min per day (every 
24 h). Groups 2, 3 and 4 were exposed to UV-C light from a 254 nm 
lamp for 3, 6 and 9 min, respectively to demonstrate skin damage. 
Groups 5, 6 and 7 were exposed to UV-A light from a 365 nm lamp 
for 3, 6 and 9 min, respectively. Group 8 were exposed to UV light 
from a 365 nm lamp day for 9 min and were also supplemented daily 
with FA (0.25 mg/kg).

Sample preparation and micronuclei analysis

All neonates from each litter were exposed daily to UV light and 
4 randomly chosen neonates from each litter were sampled each time. 
For the group supplemented with FA (5 mg tablets, Lab. Valdecasas, 
S.A., Reg. No. 82231, S.S.A., México), the compound was dissolved 
in the drinking water. The FA-water solution was placed in amber 
bottles and changed daily. FA supplementation started two days 
before the birth of the newborns (day 20 of gestation) and continued 
until the end of the experiment; the dosage of FA to the neonates was 
always administered through the mother’s milk [46,47].

Lamps were placed 7cm from the newborns. Intensity of the UV 
light emitted was measured with a digital radiometer UVX [Sensor 
UVX-36 long-waves (335-380 nm) and sensor UVX-25 short-wave 
(250-290 nm), UVP-Ultraviolet Products, Upland, CA, USA). For 
the conventional light, an Extech photometer was used (Lightmeter, 
EIC401025, Extech Instruments Corporation, Nashua, NH, USA). 
Intensity of the led lamp light was 1647 lux, while the intensity 
emitted by the UV-C light (254 nm) was 2.26 mW/cm2 and 1891 µW/
cm2 for the UV-A light (365 nm).

The newborns were sampled using one drop of blood obtained 
from the tip of the tail of each one of the offspring after zero hours 

(basal sample), after 48 hours and after 120 hours. Blood smears were 
made in duplicate on pre-cleaned microscope slides. The smears 
were air-dried, fixed in absolute ethanol for 10 min, and stained 
with acridine orange (Sigma; CAS No. 10127023). The MNE in each 
sample were scored manually using a microscope equipped with 
epifluorescence (Olympus BX51) and a 100×objective. The MNE 
frequency was established from the number of micronuclei in 10,000 
total erythrocytes (TEs) (TEs: normochromic and polychromatic 
erythrocytes). The number of MNPCE in 1,000 polychromatic 
erythrocytes (PCE) was also determined. Both parameters were used 
for determining genotoxicity. In addition, the proportion of PCE in 
1,000 TEs was evaluated to determine cytotoxicity and as internal 
technique control. All slides were coded before microscopic analysis 
and were evaluated by the same reader, who was blinded to the 
animals’ group assignments.

Statistical analysis

Results (‰) are expressed as mean ± standard deviation of MNE, 
MNPCE, and PCE number. All statistical tests were performed using 
the Statistical Package for Social Sciences (SPSS v.11.0, Chicago, IL) 
for Windows medical pack. All of the data were tested for normality 
using the Kolmogorov-Smirnov test and the micronuclei frequencies 
were analysed to determine the differences among groups behaviour 
during the treatments by means of a one-way ANOVA followed by 
a Dunnett t-test for multiple post hoc pairwise comparisons versus 
the appropriate control to correct the significance values for inter-
group analysis. Intra-group comparisons were made between each 
treatment group and their respective basal value (0 h) by means 
of repeated measures ANOVA followed by a Bonferroni test for 
multiple post hoc pairwise comparisons. A P-value of less than 0.05 
was considered statistically significant.

Results
The sixth day after start of UV light exposure, newborns exposed 

to UV-C lamp presented desquamation of the skin on the back of 
the body at the three different exposure times. This effect was not 
observed in any of the groups exposed to the UV-A lamp.

As shown in Tables 1 and 2, the UV-A lamp showed significant 
differences in MNE at 48 and 120 h (P=0.015 and, P<0.001) for the 
group exposed for 3 min; at 120 h, for the group exposed 6 min 
(P=0.001); for the group exposed 9 min (P=0.03, P<0.001) at 48 
and 120 h, whereas in MNPCE differences were observed at 120 h 
(P<0.001); and 9 min with FA group showed significant differences in 
MNE at 48 and 120 h (P<0.001). In PCE frequencies differences were 
observed in the FA group at 0 h vs. control group (P=0.005).

Comparison between groups of the 365 nm/9 min with vs. 
without FA showed no significant differences for MNE or MNPCE 
parameters. The effect of FA on the basal values of MNE, MNPCE, 
and PCE is shown in Tables 1 and 2. In the case, of PCE an increment 
in the 365 nm/9min with FA was observed (P<0.001) compared to the 
group without FA.

Discussion
Induction of DNA damage by UV light

The UV-A light is capable of producing pyrimidine dimers [4], 
this meaning that the DNA molecule in these conditions are more 
susceptible to strand breakage [20] and can give rise to micronuclei. 
The UV-A lamp can also cause damage by induction of ROS 
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[1,4,12,17,27,48], which may also produce chromosome breaks 
[10,19] and micronuclei, as was observed in the present.

The exposure time for this work was determined based on 
a previous study in skin cultures of hairless mice, where it was 
considered that the time chosen was not so large that could cause 
heating in their cultures [48]. So in the present study, even with an 
exposure time of 9 min, heating was not observed in neonates for the 
effect of the lamps.

In a previous study, increases in MNE and MNPCE were observed 
in the rat neonates born to mothers exposed to UV-A [27], possibly 
due to the production of long-lived protein radicals and protein hydro 
peroxides [49-53] which might pass through the placenta [49,54]. In 
the present, no measurements of any type of ROS were performed, 
so to try to explain MNE increase, we hypothesize that DNA damage 
in newborns could be done in these two ways: In a direct way, this 
is that the UV-A light could reach the erythropoietin organs of the 
newborn rat, induce the formation of ROS and pyrimidine dimers 
between adjacent bases locally, and thus, cause damage to the 
progenitor cells, this is feasible because newborn rats have very thin 
skin, which enables the light to penetrate. In an indirect way, by 
forming of long-lived radicals, which might form in the skin cells or 
blood proteins [49-51,54] and it is known that they can be formed 
by the effect of UV-A [55,56]. This can be possible because UV-A 
reaches the hypodermis, which is highly vascularized, so that this 
can give. So, long-lived reactive protein species [49] or extracellular 
genomic DNA fragments [57], they can reach erythropoietin organs 
and produce ROS for extended periods of time that react with DNA 
progenitor cells and, can produce breaks and thus the formation of 
micronuclei [51].

Skin damage (desquamation)
Lamps were selected for the type of damage caused by UV 

light on DNA and skin. Lamp of 254 nm (UV-C) produces evident 
desquamation skin as expected, whereas, with UV-A this does not 
happen. The UV-C light damaged the superficial layer of the skin of 
newborns [6]; this effect was observed on the sixth day of treatment. 
While all of the offspring of the three groups exhibited desquamation, 
this phenomenon was not observed with the 365 nm lamp [6,58]. In 
previous studies it was observed that with overexposure to UV-C 
radiation can cause skin erythema followed by skin exfoliation 
[7,8,59]. This information confirms how difficult it is to identify 
the skin damage produced by UV-A light (365 nm) in short exposure 
times, because it takes more time the appearance of the damage or skin 
darkening in response to UV-A. Thus, UV-A induced melanogenesis 
less efficient than UV-B [24]. So while all rats exposed to UV-C lamp 
exhibited desquamation on the sixth day, rats exposed to UV-A lamp, 
increased their MNE and MNPCE, with no apparent damage to the skin.

For proper analysis, we took into consideration the gradual 
increase in MNE values that arose in the days after birth. These 
changes were the outcome of physiological changes that naturally 
occurs in the neonate [60]. The resulting differences can sometimes 
reach a statistically significant level, and the statistical analysis should 
consider this naturally occurring increase.

365 nm UV light lamps

The harmful effects of UV light on genetic material are well-
known [1,4,6,10,12,14,17], and the present studies demonstrated the 
induction of increased MNE frequencies by UV-A light. The 365 nm 
lamp (UV-A) 9 min exposure showed the highest increase of MNE 
and MNPCE.

MNE MNPCE
GROUP n 0 h 48 h 120 h 0 h 48 h 120 h
Negative control 16 3.47 ± 0.58 4.04 ± 0.93 3.80 ± 0.66 4.43 ± 0.89 6.56 ± 1.99 5.56 ± 1.71

365 nm/3 min 16 3.38 ± 0.61
*NS

5.24 ± 0.77
*P=0.015

5.95 ± 0.52
*P<0.001

3.93 ± 1.84
*NS

7.62 ± 2.06
*NS

8.18 ± 3.18
*NS

365 nm/6 min 16 3.55 ± 0.81
*NS

4.93 ± 0.68
*NS

4.94 ± 0.68
*P=0.001

4.00 ± 1.82
*NS

6.75 ± 2.20
*NS

6.75 ± 2.17
*NS

365 nm/9 min 16 3.26 ± 0.77
*NS

5.50 ± 1.26
*P=0.03

6.36 ±1.39
*P<0.001

4.12 ± 1.74
NS

9.25 ± 3.41
*NS

10.12 ± 2.24
*P<0.001

365 nm/9 min + FA 16
3.81  0.85
*NS
**NS

5.80 ±1.04
*P=0.001
**NS

5.91 ± 0.98
*P<0.001
**NS

5.00 ± 1.03
*NS
**NS

9.31 ± 3.07
*NS
**NS

8.25 ± 2.32
*NS
**NS

Data (‰) are shown as mean ± standard deviation. MNE: Micro nucleated erythrocytes, MNPCE: Micro nucleated polychromatic erythrocytes, n: sample size, h: 
hours. min: minutes, nm: nanometres, FA: folic acid. NS: not significant. Shown significant differences in the groups exposed to UV light. The comparison was from 
each group versus the negative control (*), and comparisons between groups with and without FA (**).

Table 1: MNE and MNPCE frequencies (‰) at different sampling times of each study group.

GROUP n 0 h 48 h 120 h
Negative control 16 585.37  77.85 274.31 ± 52.77 368.37 ± 54.45

365 nm/3 min 16 638.43 ± 89.41
*NS

273.50 ± 32.53
*NS

386.12 ± 62.36
*NS

365 nm/6 min 16 606.75 ± 89.90
*NS

261.62 ± 47.25
*NS

414.00 ± 54.73
*NS

365 nm/9 min 16 618.50 ± 67.57
*NS

270.56 ± 32.38
*NS

387.56 ± 80.97
*NS

365 nm/9 min + FA 16
702.87  93.23
*P=0.005
**P<0.001

299.12 ± 43.94
*NS
**NS

425.87 ± 41.62
*NS
**NS

Data (‰) are shown as mean ± standard deviation. PCE: Polychromatic erythrocytes, n: sample size, h: hours. min: minutes, nm: nanometres, FA: folic acid. NS: not 
significant. Shown significant differences in the groups exposed to UV light. The comparison was from each group versus the negative control (*), and comparisons 
between groups with and without FA (**).

Table 2: PCE frequencies (‰) at different sampling times of each study group.
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Comparing the group exposed to 365 nm light and supplemented 
with FA against its corresponding group without FA supplementation 
showed no significant decrease in MNE and MNPCE as expected by 
being the FA an antioxidant, decrement previously observed with 
vitamin-C [27]. Since FA was given to the offspring via the mother 
milk, possibly the concentration of compound that was ingested by 
the pups was not enough to show any effect. Another possibility is 
that the observed increase in MNE, it is not produced by ROS, but 
rather as a direct effect of UV-A, in erythropoietin organs in neonates.

One point to note is the slight increase in PCE frequencies 
associated with FA ingestion and observed in the baseline sample. 
This increase may be due to the mitogenic effect of FA [61]. Previous 
studies have used erythropoiesis inductors with the intention of 
making the micronucleus test more sensitive due to increased cell 
division in bone marrow [62]. Moreover, in the present work, a similar 
effect can be attributed to FA. This finding raises a possible restriction 
on the use of FA, as this compound increased cell division in bone 
marrow of the newborn rats. However, this effect was not observed 
in adult organisms because they have less active erythropoiesis. 
Erythropoiesis in human newborns is different from that observed in 
rats, and the proportion of circulating PCE is much lower in human 
neonates than was observed in the rat neonates (a human neonate 
presents one-tenth or less PCE values than a newborn rat) [60,63].

The different values of PCE at different sampling times that were 
observed in all groups, are due to physiological changes experienced by 
the newborn during birth when they are changing to an environment 
with more oxygen, and are not due to exposure to UV-A lamps, as it 
was previously described [43].

UV-A light source was used at three different exposure times, 
and no dose-response effects were observed. This finding may be 
because the exposure times intervals (3,6 or 9 min) were very close 
to one another. Therefore, possibly a longer and separate exposure 
times are needed to observe dose-response effects. A similar result 
was observed in an earlier study conducted with caimans [5], which 
showed no dose-response effect. So in future studies of this type, it 
should extend the ranges between the different exposure times.

UV-A light measurement

The association between the occurrence of melanoma and 
exposure to tanning beds demonstrates a risk process in daily life 
[64]. The use of UV-A lamps is common (for example, counterfeit 
detectors, insecticides devices, equipment for artificial nails resins 
harden). In addition, UV-A light therapy is commonly used in 
dermatology treatments [65,66] and other clinical disciplines [67]. 
UV-A light exposure sources are found in many places.

This study shows a simple way to test UV-A exposure and to 
assess damage to genetic material induced by UV-A light. This study 
may be useful in assessing the effectiveness of in vivo sunscreens 
and may avoid testing in human volunteers [1,23]. The assessing the 
sun protection factors are easily performed when tested the effect of 
UV-B light [36] or UV-C because both produce erythema. However, 
erythema is not seen with UV-A light exposure [64].

The study of UV-A light is important, because it has a potential 
role in the increase in melanoma incidence in people using sunscreens 
and exposed to the sun [4]. It is difficult to determine UV-A light 
exposure, and some researchers are interested in this topic. It has 
been proposed that the effects of UV-A light be assessed based on 
their ability to induce pigmentation, as also occurs with UV-B light 

[68]. Another study, an in vivo micronuclei assay using rat skin for 
photogenotoxicity study (target organ for photo carcinogenicity) has 
recently been presented; this method is a promising alternative tool 
for photoclastogenicity studies [69], however, our procedure provides 
an easy alternative. UV-A light damage is observed in peripheral 
blood erythrocytes, and it requires only a drop of blood. Thus, it 
is also possible to take samples at different time points. Another 
advantage for this method is that newborn rats have very thin skin, 
which enables the light to penetrate and in addition, our methodology 
has greater sensitivity due to the use of immature organisms [28,29].

The exposure of newborn rats to 365 nm light increases MNE 
and MNPCE, and the results are quantitative. Eventually, degrees of 
damage induced by this exposure could be assessed by the number of 
MNE or MNPCE. Newborn rats could also be useful in verifying the 
effects of UV-B or UV-C, as their damage at the skin’s surface leads to 
desquamation in a few days.

In conclusion, increased MNE frequencies without apparent 
damage to the skin could be induced with UV-A light exposure. 
Under these conditions, FA was not able to decrease MNE and 
MNPCE formation induced by UV-A light exposure. This study 
shows an alternative manner to quantify the genotoxic effects of 
UV-A light in peripheral blood erythrocytes of rat neonates, although 
more studies are needed to demonstrate the mechanism by which the 
damage occurs.
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