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Abstract
The next generation sequencing technology, RNA-sequencing 
(RNA-seq), has got growing acceptance in transcriptome analyses. 
Statistical methods used for gene expression analyses with RNA-
seq provide meaningful inferences of gene expression using counts 
of reads. There are various statistical models with its pros and cons 
available for RNA-seq data analysis. There is a need for consistent 
statistical methods to explore the information from the developing 
sequencing technologies. The current article gives a review of the 
statistical methods with their limitations that can be useful for the 
RNA-seq analysis. The main emphasis is given to the parametric, 
nonparametric and hybrid models for identifying the genes with 
differential expression.

Keywords

RNA-seq; Statistical models; R packages; edgeR; DEseq

*Corresponding authors: Mohammad Samir Farooqi, Centre for Agricultural
Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library
Avenue, Pusa, New Delhi 110012, India, Tel: +91-11-25841721; E-mail:
samirfarooqi8@gmail.com

Received: January 07, 2019 Accepted: March 11, 2019 Published: March 29,
2019

statistically valid algorithms. In a standard RNA-seq experiment, 
a sample of RNA is converted to a library of complementary DNA 
fragments and then sequenced on a high-throughput sequencing 
platform [4]. From this sequencing, millions of short sequences 
(reads) are obtained which are then mapped to a reference genome 
to measure the abundance of each transcript/gene. The count of reads 
mapped to a given gene or transcript, measures the expression level of 
this gene/transcript. De novo method has been used to assemble the 
transcripts in case of non-availability of reference genome.

One of the primary goals for most RNA-seq experiments is to 
compare the gene expression levels across various experimental 
conditions, treatments, tissues, or time points. In most of the 
studies, researchers are particularly interested in detecting gene 
with differential expressions (DE). The study of determining which 
genes have changed significantly in terms of their expression across 
biological samples is referred to as DE analysis. Identifying which 
genes are differentially expressed between samples helps researchers 
to understand the functions of genes in response to a given condition. 
To conduct DE analysis, large number of statistical models and 
tools are devised [2,5,6]. This review discusses some of the recently 
developed statistical models applied for DE analysis.

Statistical models applied for DE analysis

In a RNA-seq study two types of variations are involved in 
the data, the technical variation, induced due to machines and the 
biological variation caused because of different biological samples. 
Because of these two kinds of variations, as well as biases that exist 
within and between treatments, it is difficult to precisely distinguish 
real biological differences between groups. The read counts obtained 
under case vs. control conditions are found to be consistently different 
which can be attributed to true biological differences between case 
vs. control conditions or experimental error.   Statistical tests are 
required to distinguish between the two possibilities. For evaluating 
this expression change in RNA-seq data, different statistical models 
have been developed. The patterns of differential gene expression are 
approximated using appropriate statistical distributions. Initially, 
Bullard, et al. [7], obtained normalized expression counts for RNA-
seq data using Fisher’s exact test. All these statistical methods for DE 
analysis are categorized in parametric, nonparametric and hybrid 
(combination of both parametric and nonparametric) approach.

Parametric models

In a parametric model, ‘shape’ of the data is assumed and 
coefficients are estimated for the model. Thus a parametric model 
is based on the estimation of parameters and all the information 
about the data is obtained within its parameters and a future data 
value from the current state of the model is predicted based on the 
estimated parameters. These models help in predicting the value of 
unknown data. A parametric model has a fixed number of parameters 
and is computationally faster, but makes stronger assumptions about 
the data; the model may perform well if the assumptions are correct, 
but it may give misleading results if the assumptions are wrong. 
Differential gene expression analysis is performed under assumption 
that the expression values are normalized and mapped to a particular 
distribution [8].

Introduction
Complete set of all the RNA molecules in a cell, makes up a 

transcriptome. Both the noncoding RNAs and protein coding 
mRNAs are included in the set. Understanding the transcriptome 
helps in deciphering the functional elements of the genome which 
can be further used to know the molecular constituents present 
in a cell and tissues [1]. Study of transcriptome, provides the basis 
for understanding the growth of an organism and also threats to its 
development from diseases and environment. The transcriptomic 
analysis is extensively used in deciphering the genomic function, and 
thereby quantifies the changes in genomic abundance, adaptation 
and helps in correlating these changes in different tissues at different 
time intervals [2]. High-throughput mRNA sequencing technique 
(also known as RNA-seq) has gained immense popularity among 
researchers and scientists for transcriptome analysis. This technique 
provides the ability to develop precise methodologies for a variety 
of RNA-seq applications, including gene expression quantification, 
novel transcript and exon discovery, differential expression (DE) 
analysis and splice variant detection [3].

The main concern related to transcriptome data analysis is in 
selecting informative genes from the transcriptome data and to 
develop a high-performance model with the selected genes, thus 
RNA-seq experiments must be analysed with robust, efficient and 
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distribution models fail to counter this variability. To tackle this over 
dispersion problem, negative binomial models have been proposed 
by different authors to take care of mean – variance relationship 
[17-19]. The negative binomial distribution provides the exact 
test for comparison of two groups [17]. To analyse RNA-seq data 
using negative binomial distribution, DEseq [18], baySeq [19], 
DEGSeq [20], edgeR [21], PoissonSeq [22] and gfold [23] have been 
proposed. Further, negative binomial power test was developed to 
control the false discovery rate in DE analysis [24]. RNASeqPower in 
Bioconductor package was implemented as power analysis method 
based on ranking of DE genes [25].  

Since number of genes in RNA-seq data is very large, identification 
of DE genes requires simultaneous testing of null hypothesis of all 
these genes that involves multiple hypothesis testing problems. In 
this case, false discoveries are inevitable and the error rate of this 
needs to be controlled. Several methods have been proposed to 
solve the problem of multiple gene comparison and a power analysis 
method has been developed to control the false discovery rate [26]. 
Calculation of sample size using minimum average read counts 
in control conditions, the minimum fold change and maximum 
dispersion was proposed [27] which was further implemented as 
an algorithm in Bioconductor package RnaSeqSampleSize [28]. 
Further, a Bioconductor package, PROPER has been developed and 
implemented for simulation based power analysis [29]. All these 
negative binomial based methods are developed to measure the DE 
between two conditions. A generalized linear model framework was 
given to perform power analysis for multiple group comparisons [30], 
giving due considerations to other packages DEseq [18], edgeR [21], 
DSS [31], DESeq2 [32], EBSeq [33] and SSeq [34]. In order to avoid 
complex mathematical approximations, Bioconductor packages 
edgeR, DESeq and DEseq2 used LRT for DE analysis. This was further 
modified using LRT under the generalized linear model approach to 
develop power analysis method [35]. This method was implemented 
through online user interface available at (http://140.116.152.140/
shiny/App/GLM/).

Poisson-lognormal distribution model

Gene expression can be modeled using log normal distribution 
because truncated normal distribution is found to approximate the 
distribution of log read counts [36]. Busby et al. [36] assumed that 
read counts follows Poisson distribution and gene expression follows 
log normal distribution. Thus, Poisson-log normal distribution 
was more appropriate to model gene expression data and further 
developed Scotty-Power analysis method for DE analysis. 

Limma model

Limma is a linear model method designed for analysing complex 
experiments with variety of experimental conditions and predictors 
for gene expression analysis. It uses empirical Bayes method. 
Comparisons between many RNA targets can be simultaneously 
analysed using Limma. It uses empirical Bayes method to obtain 
information across genes and provide stability to the analysis 
with the smaller number of arrays [37]. This was implemented in 
Bioconductor package for RNA-seq data [38]. Further [39] applied 
precision weights to counter the mean – variance relationship of log 
count data and developed voom method based on Limma approach. 
This was implemented in the R package as ssizeRNA [40,41] which is 
a simulation based power analysis method to measure the differential 
expression between two conditions and was extended for paired-
sample or multiple treatment comparisons procedures. Performance 

Significant issues involved in RNA-seq data are represented as below: 

1. RNA-seq data includes biases occurred during library
preparation, the varying length of genes or transcripts and the
effect of nucleotide composition causes biases of abundance
measures and there is also variation due to the effects of difference 
in total number of mapped reads for different samples.

2. The effect of sequencing depth and the number of replicates
are uncertain.

3. The data used, is count data because it is the number of counts 
aligned to a gene. Hence it is not continuous and therefore
cannot be modeled as say a normal distribution.

4. Since Poisson distribution is designed for modeling count data,
it assumes the first and second moments (mean and variance) as 
equal. This is not true for RNA-seq data. Lowly expressed genes
have much higher variance than highly expressed genes.

5. To account for the variability, the negative-binomial (NB)
model is used which is an extension of Poisson model. The
NB model has an extra parameter to model for the variance.
It has been proved as the variance approach the mean, the NB 
model becomes the Poisson model.

Hence models applied for rarely occurring events such as Poisson 
distribution, negative binomial distribution etc. is widely applied in 
this scenario [9,10]. The researchers have to judiciously select, which 
model to apply, looking into the advantages and limitations of these 
models. 

Poisson model

Poisson distribution is widely used in modeling counting 
processes. When something is sampled and counted, then the 
inherent uncertainty that is present in that measurement is Poisson 
variance. Since this variance is based on the value of the count itself, 
it is not experiment-specific. A two-parameter generalized Poisson 
(GP) model based on likelihood ratio test (LRT) for identification 
of DE genes was given by Srivastava and Chen [11] and proved that 
this model showed the significant improvement over the traditional 
Poisson model. A two stage Poisson model (TSPM) was given by 
Auer and Doerge [12] here at first stage genes with small cumulative 
counts are filtered and classified as not over-dispersed and then at the 
second stage these genes are tested using a LRT from a Poisson model. 
Through simulation study they showed that TSPM has improved 
performance over negative binomial model and quasi likelihood 
approach in situations where both over-dispersed and non over-
dispersed are present. Further, Poisson distribution based on a Wald 
test or a LRT for sample size calculation to model RNA-seq count data 
for single-gene differential expression analysis was proposed by Fang 
and Cui [13]. Since DE analysis involves examination and testing of 
large amount of genes simultaneously, therefore, this method has 
the limitation of hypothesis correction. This problem was further 
tackled by Li et al. [14] who gave formula for sample size calculation 
using the Wald test, Rao’s score test and log transformation of these 
tests. Further, they also extended their method by using numerical 
approach [14] which was implemented as Web based calculator for 
sample size calculation, i.e., RNAseqPS [15]. 

Negative binomial model

RNA-seq data has been shown to have the problem of over 
dispersion as it exhibit greater variability [16]. Hence, Poisson 

http://140.116.152.140/shiny/App/GLM/
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of ssizeRNA was compared with RnaSeqSampleSize and PROPER. 
The ssizeRNA has shown the improved performance based on 
computational time and accuracy [42]. 

Selection of appropriate parametric model

Selection of appropriate model under different situations 
is a difficult task as the parametric models are based on certain 
assumptions, which must be fulfilled so that the data fits the 
distribution and the results are appropriate. However, for applying 
specific models under different situations, models proposed are 
enlisted in Table 1 below. 

Non parametric model

Parametric approaches are based on the distributional 
assumption and are effective when these assumptions are satisfied. 
Violation of these distributional assumptions or a poor estimate of 
parameters gives results which are inappropriate. Both Poisson and 
Negative binomial models are heavily influenced by the presence of 
outliers in the data [43]. This may be due to presence of an expressed 
gene in one condition but not expressed in other conditions. Errors 
introduced during mapping also produce outliers. In order to tackle 
these issues, models based on nonparametric methods have also 
been developed. A nonparametric model uses a flexible number of 
parameters, and the number of parameters often grows as it learns 
from more data. A nonparametric model is computationally slower, 
but makes fewer assumptions about the data. A nonparametric 
model can capture more subtle aspects of the data distribution. A 
nonparametric model that predicts future data is dependent on not 
just the parameters alone but also on the present data characteristic 
that has been observed. Numerous nonparametric models have 
been proposed for this purpose. Fold Change based methods for the 

selection of genes have been developed and shown that these methods 
give more reproducible results [44-46]. 

Log fold changes and absolute expression difference, test statistic 
has been used in NOISeq nonparametric approach [47]. SamSeq, a 
resampling based method was developed to consider the difference in 
sequencing depths [27]. This method can be applied with quantitative, 
survival, two-class  or multiple class outcomes and was found to be 
more robust than parametric methods, edgeR, PoissonSeq, DESeq, 
when compared with real and simulated data. MRFSeq, Markov 
random field (MRF) approach was introduced which used gene co-
expression data for improvement of prediction power [48]. LFCseq, 
a new data-driven non parametric model was proposed by Lin et al. 
[42]. Shi et al. [49], developed rSeqNP that uses a nonparametric 
approach to test for differential expression and splicing from 
RNA-seq data. rSeqNP uses estimated expression value as input to 
obtain the statistical significance of DE genes and isoforms. Since 
information across isoforms is combined in rSeqNP, it is able to 
detect more differentially expressed or spliced genes from RNA-seq 
data. BNPSeq, a stochastic process based approach, which does not 
require pre-processing of data and works in Bayesian nonparametric 
framework and models the gene count data using gamma-negative 
binomial process (GNBP) [50] but it cannot be extended to complex 
experimental design.  Widely used software based on nonparametric 
methods are listed in Table 2.  

Hybrid models

Efforts have also been made to combine the parametric and 
nonparametric approach and develop statistical models that are 
more robust and improve accuracy in terms of DE genes detection. 
Xiao et al. [51], developed a new ranking method for genes based on 
combination of biologically relevant expression change value (f value) 

Selection of model Analysis method/Criteria Source

Limma Power analysis method for appropriate sample size [40]

Poisson lognormal model Power Scott Analysis [36]

Poisson model single-gene comparison [13]

Poisson model multiple-gene comparison [27]

Negative binomial model two-group comparison [41,27]

Negative binomial model multiple-group comparison [30,35]

edgeR superior combination of true positive and false positive performances [21]

DESeq number of replicates is higher, then minimizing false positives is more important [42]

Table 1: Appropriate parametric models for specific condition.

RNAseq software Test statistic employed Source

NOISeq Log fold changes and absolute expression [47]

SAMSeq Wilcoxon test with a resampling scheme to compensate for sequencing depth [27]

NPEBseq Nonparametric empirical Bayesian-based procedure [51]

MRFSeq Markov random field (MRF) approach for improvement of prediction power by using log fold 
changes and co-expression data [48]

LFCseq Log fold changes [43]

rSeqNP

Wilcoxin rank sum (two condition), wilcoxin singled rank (paired two condition comparison), 
Kruskal-Wallis statistic (Multiple comparison), Spearman’s rank correlation coefficient 
(Quantitative outcomes), Score statistic of the Cox proportional hazard model (Survival 
outcomes)

[49]

BNP-Seq Gamma-negative binomial process (GNBP) or beta-negative binomial process (BNBP) [50]

Table 2: Software based on nonparametric methods for RNA-seq.
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and statistical significance (p value), for identification of DE genes 
from high-throughput gene expression measurements and showed 
that their combined method is more robust in selecting DE genes. 
For explicitly modelling both over-dispersed count data and genetic 
structure in RNAseq data, Sun et al. [16], gave Poisson mixed model 
(PMM). Further, to make this model applicable to large data sets, they 
combined the statistical method and the computational algorithm 
and gave a computationally efficient inference method MACAU 
(Mixed model Association for Count data via data Augmentation). 
It uses two random effects terms and controls for both independent 
over-dispersion and sample non-independence. Benefits of MACAU 
are that it achieves higher power than several other methods for DE 
analysis and can also accommodate continuous predictor variables 
and biological or technical covariates. Compound Poisson–gamma 
distribution model has been developed by Anjum et al. [52]. The 
joint likelihood density function and estimate of the parameters 
were obtained and it was shown that this compound model helps 
in identifying DE genes more effectively as it captures the extra 
variation. Farooqi et al. [53], combined models from parametric and 
nonparametric statistic and developed a hybrid model NBPFCROS 
for identification and ranking of DE genes. The combined model was 
developed using the negative binomial power (NBP) model given 
by Di et al. [24] as parametric statistic and nonparametric statistic 
given by Dembele et al. [54]. This model was compared with few 
existing models such as Fold change rank order statistic (FCROS), 
NBP, edgeR and DESeq2.  Linear kernalized Support Vector Machine 
(SVM) was used to evaluate the accuracy of the model and showed 
that the hybrid models are more robust in identifying true DE genes. 

Conclusion
Recent parametric, nonparametric and hybrid methods for DE 

genes have been reviewed. We have also discussed the pros and cons 
including features of these models. These methods are widely used in 
finding highly expressed DE genes from RNA-seq data. Parametric 
methods produce p values on the basis of approximate/asymptotic 
null distribution assumptions. When the genes are highly expressed, 
the performance of these models is found to be good. However, 
for lowly expressed genes, it is otherwise. Thus there is a bias in 
selection of DE genes. Use of parametric approach has preference 
over nonparametric approach as it provide the increase in power of 
detection but when the assumptions of these models are violated, 
there is significant increase in false positive rate. So, models based on 
nonparametric, as well as hybrid approaches have been developed to 
take care of such issues. However, still there is lack of consensus on 
the appropriateness of particular methodology in terms of robustness, 
accuracy and reproducibility of the results. This research topic is still 
developing and newer models and methodologies are being developed 
and explored for their robustness and accuracy.
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