
A SCITECHNOL JOURNAL

 Choi JS. J Mar Biol Oceanogr 2023, 12:4

Journal of Marine 
Biology & Oceanography

All articles published in International Journal of Liver: Diagnosis and Treatment are the property of SciTechnol, and is protected 
by copyright laws. Copyright © 2023, SciTechnol, All Rights Reserved.

Research Article

International Publisher of Science, 
Technology and Medicine

Abstract

Snow crab (Chionoecetes opilio) is cold-water stenotherms in the northern 
hemisphere. As they are long-lived and have a complex life history, 
developing an operational model of population dynamics has been a 
challenge, especially in the context of an ever increasing and varied 
human footprint upon nature. Here we review past efforts at understanding 
the population dynamics of snow crab in an environmentally and 
spatiotemporally heterogeneous area, the Scotian Shelf of the northwest 
Atlantic of Canada. We address these difficulties with a moderately 
complex multi-stage, delay differential model and parameterize it 
leveraging Bayesian techniques. Operational solutions were stable and 
reasonable and permitted inference upon the intra-annual dynamics of 
snow crab. Further, a concept of a Fisheries footprint, akin to instantaneous 
fishing mortality rate, can be elucidated that directly addresses the 
conceptual impact of a fishery upon a non-stationary population. The 
approach is promising. The model suggests additional processes need 
to be accounted. We hypothesize that seasonal, interannual movement 
and spatiotemporally structured predation are key processes that require 
further attention. However, as computational costs are significant, these 
additional processes will need to be parameterized carefully.
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electrolyte [5]. In North America, including in the area of this study, 
the Scotian Shelf of the northwest Atlantic of Canada, the largest of 
males (>95 mm carapace width) are preferentially captured due to 
their higher meat-yield and consumer preferences of larger claws, 
a trait that occurs only at the terminal molt to maturity (Figure 1). 
This market-driven protection for the female reproductive crab which 
never reaches such sizes and the smaller immature crab represents a 
form of built-in protection for the population which spans 10 years 
of age or more, from larval release; it helps to offset otherwise heavy 
exploitation pressures of mature males by fishers with advanced 
technological and historical knowledge of their environment and the 
species’ aggregation patterns. Currently, every known population 
of snow crab is exploited by humans. As such, it is imperative that 
exploitation occurs in a responsible and sustainable manner.

Unfortunately, characterizing snow crab population dynamics 
is remarkably difficult because they are long lived, have a complex 
life history, and large vertical and horizontal shifts in spatial 
distributions as they grow older (ontogenetic shift in habitat) (Figure 
2). Functionally, they participate in the pelagic and subsequently 
benthic ecosystems and associated nutrient and carbon cycles. Some 
of the notable life history features of snow crab that make them so 
interesting but difficult to model, include: sexual dimorphism with 
mature males being much larger than mature females; pelagic larval 
stages and benthic pre-adolescent and adult stages; semi-annual 
and annual molts depending upon size, age and environmental 
conditions; skipping moults if conditions are poor; terminal molt 
to maturity; and longevity up to 15 years. They also have a narrow 
range of temperature preferences [6-8]. They are thought to avoid 
temperatures above 7°C, as metabolic costs have been shown to 
exceed metabolic gains above this temperature in laboratory studies. 
Smaller crab and females also have differences in thermal preferenda 
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Introduction
Snow crab (Chionoecetes opilio) is large Crustaceans, exploited 

primarily as a food source. They are also used as fertilizer, bait in other 
fisheries and for the glucosamine polysaccharide derived from chitin, 
known as chitosan. Chitosan is widely used in medicine as an agent to 
slow bleeding from wounds [1,2], agriculturally as natural fungicides 
and bactericides [3], plastic replacement [4] and even as a battery 

Figure 1: The area of interest in the Scotian Shelf of the northwest Atlantic 
Ocean, Canada. This area is at the confluence of the Gulf Stream from 
the south and south east along the shelf edge, Labrador Current and St. 
Lawrence outflow from the north and north east, as well as a nearshore Nova 
Scotia current, running from the northeast. It is hydro-dynamically complex 
due to mixing of cold, low salinity water from the north with the warm saline 
water from the south. Shown also are the managed Crab Fishing Areas 
divided by thick dashed lines: NENS (North-Eastern Nova Scotia), SENS 
(South-Eastern Nova Scotia), CFA 4X (Crab Fishing Area 4X).
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[9]. Further, snow crab are generally observed on soft mud bottoms; 
with smaller-sized and molting crabs showing preference for more 
complex (boulder, cobble) substrates, presumably as they afford more 
shelter [10, 11]. This life history complexity induces complexity 
(non-random structure) in their dynamics and spatial distributions.

In the area of study, the continental shelf of the northwest 
Atlantic Ocean in Figure 2 snow crabs are further exposed to high 
bottom temperature variability due to the confluence of a number of 
oceanic currents: the warm Gulf Stream, the cold Labrador current, 
low salinity outflow from the St. Lawrence river and the cold coastal 
Nova Scotia current. In this region, snow crabs are generally observed 
between depths of 50 m to 300 m and between temperatures of -1°C 
to 11°C [12]. As the focal area is thermally complex, their spatial 
distributions can fluctuate seasonally and annually. The additional 
factors of global rapid climate and ecosystem change confounds 
make this understanding even further.

Snow crab eggs are brooded by their mothers for up to two years, 
depending upon ambient temperatures as well as food availability 
(which also depends upon temperature as it influences overall system 
primary and secondary production) and the health condition and 
maturity status of the mother (up to 27 months in primiparous females 
(first breeding event) event; and up to 24 months in multiparous 
females (second and subsequent breeding events) [13]. More rapid 
development of eggs, from 12 to 18 months, has been observed in 
other areas [14,15]. Over 80% of the female snow crab on the Scotian 
Shelf is estimated to follow an annual cycle, possibly due to extended 
periods of exposure to warmer temperatures. A primiparous female 
of approximately 58 mm carapace width produces between 35,000 
to 46,000 eggs, which are extruded between February and April. 
Multiparous females are thought to be more fecund, with more than 
100,000 eggs being produced by each female. Eggs are hatched from 
April to June when larvae are released. This pelagic larval stage 
lasts for three to five months (Zoea stages I and II) during which 
snow crab feed upon zooplankton. Pelagic stages seem to have 
highest abundance in October and so may begin settling in January. 
Thereafter, they settle closer to the ocean bottom in their Megalopea 
stage. Very little is known of survival rates at these early life stages, 
but they are thought to depend highly upon temperature.

There have only been a small number of attempts at modeling 
the dynamics of snow crab populations. Being long-lived, sexually 
dimorphic, pelagic and benthic organisms, usually living far offshore, 

they are not easily surveyed. Most population assessments approach 
abundance estimation with a fishery or survey-based relative index of 
a narrow segment of the population (the fishable component). Further, 
aging of snow crab is not possible due to a lack of retention of calcified 
body parts through molts. This has encouraged adoption of size-based 
models [16-18], often with strong and questionable assumptions. For 
example, assume the male fishable component is the spawning stock 
biomass, though of course it is the females that are the reproductive 
component and completely unexploited with a shorter life span. 
Similarly, implicitly assumes that the fishable biomass regenerates 
itself by application of a biomass dynamics model [19]. Importantly, 
sex and size-selectivity of sampling gear are almost always assumed 
to be a constant or some smooth monotonic function of body size 
and so static across time and space or known without bias. These are 
significant and biologically problematic assumptions. The problems 
encountered are fundamental issues shared with all other attempts at 
assessment. Specifically, they are the interplay between snow crab 
life history and behavior; our inability to observe them without 
bias due to sampling design being non-random with respects to the 
environmental factors controlling their distribution and abundance; 
and the sampling machinery (mesh size, trawls that cannot access 
rugose areas) that can only observe a small fraction of the population.

This paper identifies a novel approach that overcomes some 
of these difficulties in modelling snow crab, in particular, by 
incorporating observation error across sex and stage-structure (often 
called a latent or state-space model) and non-stationary habitat 
variability to simultaneously model population dynamics and infer 
population parameters. We examine its utility and demonstrate 
the mechanism by which we can make these and more complex 
models operationally viable through the use of efficient and modular 
computing that simultaneously models and infers parameters by 
leveraging the Julia programming environment and the supporting 
Turing library for Bayesian parameter inference and the Differential 
Equations library for dynamical modeling [20-22]. This examination 
is conducted in the Scotian Shelf Ecosystem where the variability 
of ocean climate is known to be high and where we also have a 
consistently sampled population since the late 1990s [23,24]. The 
principal conclusion of this study is that the novel proposed model 
is informative and demonstrates utility in understanding snow crab 
dynamics, integrating all available information and versatility in 
incorporating/aggregating ecosystem effects through its influence 
upon habitat viability. It is sufficiently flexible in approach to permit 
other ecosystem factors such as classical inter-specific interactions 
and movement, which are planned for future studies.

Methodology
Data collection and subsequent index estimation are described 

in [25,26]. In short, sampling in an unbiased manner under 
complex hydrodynamic conditions is particularly difficult as the 
random (spatially) stratified sampling that is usually adopted to 
account for such variability, fail to do so, due to the large dynamic 
(i.e.,spatiotemporal) structures operating on scales comparable to 
the domain. A model-based approach Conditional Auto Regressive 
Spatiotemporal Models, (CARSTM), a simple extension of 
Generalized Linear Models (GLM) that accounts for spatiotemporal 
auto correlated random effects in a Bayesian context and computed 
with Integrated Nested Laplace Approximations (INLA), is used 
to address the estimation problem [27]. More specifically, biases 
induced by differential spatiotemporal variability in habitat for 
differing life stages which, upon aggregation across space, permits 

Figure 2: Life history patterns of snow crab and approximate timing of the 
main life history stages since larval release of snow crab and size (measured 
as carapace width; mm) and instar (Roman numerals). Size and timings 
are specific to the area of study and likely vary with regional environmental 
conditions, food availability and genetic variability. Brooding time is variable 
and is between 1 and two years. Initiation of terminal molt to maturity  
(  and ) also varies in timing. After initiation, longevity is thought to be 
about 5 to 6 year. Green solid line identifies approximate size and age of 
males exploited by humans. 
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The related Maximum A-Posteriori solutions, where using the 
same optimization techniques but with the addition of “prior-like” 
constraints can result in marginally more stable results, but they still 
have tremendous difficulty with high dimensional parameter spaces 
and the associated numerous local optima/multiple equilibria.

Here we use Bayesian inference, as informative priors for these 
parameters are explicit and variance propagation of index variables 
can be accomplished by using them as priors to respective error 
terms. They facilitate parameter estimates that are stable and credible, 
given some prior knowledge of latent processes and observation 
models. Previously, Just Another Gibbs Sampler (JAGS) and System 
Trace Audit Number (STAN) were used to compute the posteriors 

 Markov  chain  Monte  Carlo (MCMC) [33,34]. The latter uses 
the more efficient No-U-Turn Sampler (NUTS) which significantly 
speeds up the estimation process of these discrete difference equation 
models. Presently, we use Julia programming environment and the 
supporting Turing library for parameter inference and the Differential 
Equations library for modeling delay differential equation models; 
they demonstrate efficiency and flexibility to simultaneously model 
and infer parameter values in such problems, relative to basic MCMC 
procedures due to use of automatic differentiation and heavily 
optimized solution engines.

Specifically, the latent (“real” but unobserved) biomass was 
assumed to have a process model error that is a recursive Gaussian or 
Normal distribution (N) with a standard deviation σp (Bolker 2008) 
such that:

bt+1∼N bt+rbt(1−bt)−Fishingt K−1, σp.   (2)

Here, “~” indicates “distributed as”. Marginally informative 
priors were assumed: r~N(1.0, 0.1), and K~N(K, 0.1. K). The prior 
mean of the carrying capacity (K=[5.0, 60, 1.25], in kt, for the 
North-Eastern Nova Scotia (NENS), South-Eastern Nova Scotia 
(SENS), and Crab Fishing Area (CFA) 4x, respectively; were based 

Figure 3: A graphical representation of Model 1 (simple logistic; eq. 1). Here, 
b=BK−1 is a non-dimensional number that ranges from (0, 1) that represents 
the biomass B after being scaled to K. The loop rb identifies the growth rate 
and the loss term rb2 identifies the quadratic increase in “mortality” as b → 1. 
Fishing is also scaled to K, such that: db rb rb

dt
= −  · b − f=birth − death − fishing. 

As such, rb2 represents the non-fishing related mortality that is density 
dependent.

an informative index of abundance comparable across time (years). 
This study focuses upon the indices of abundance derived from this 
process for the period from 1999 to 2022. Importantly, no survey 
was conducted in 2020 due to COVID-19 related uncertainties. The 
index generation method being Bayesian, imputes these estimates, 
but variability attached to this year is large. These aggregate time 
series data and supporting Julia models used in this paper. The well 
understood phenomenological single component model of Verhulst 
[is the usual starting point for most models and has been used to 
model snow crab for many years [28-30].

( )1 . 1dN NrN
dt K

 = − 
 

It is parameterized by an intrinsic rate of increase (r) representing 
the maximum exponential rate of increase and carrying capacity (K) 
the upper threshold. When numerical abundance N → 0, the loss 
term also 0N

K
→  and so dN rN

dt
→ . When N → K, then N → 1 and so the 

loss rate approaches rN and the overall rate of change approaches 
zero dN → 0. Parenthetically, this can be simplified further by 
dividing both sides by K to give 1 NdN rN r

Kdt
K K

 − 
 = . By focusing upon n=N 

as a non-dimensional number ranging from (0, 1), this becomes 
( )1dn rn n

dt
= − . For parameter estimation/inference, this form is useful as it 

is simpler and the magnitudes of variables are mostly similar, with 
the exception of K. This renders beneficial properties to numerical 
optimization procedures. The sigmoid nature of the equation has 
rendered it a frequently encountered model that shows versatility 
in phenomenologically describing population dynamics. Its discrete 
form is particularly common in fisheries settings and has also been 
used to describe snow crab dynamics in the area of study [31,32]. The 
focus is usually upon biomass B and its normalized value, b=BK-1, 
rather than numerical abundance: bt+1=bt+Δ bt, where Δ bt=rbt(1-bt)-
Fishingt K-1.

Here, Fishingt is scaled by K to make it non-dimensional and 
also in the interval (0,1), it is usually treated as an external factor 
(perturbation), measured without error. Of course, there is usually 
observation error and/or illegal removals that will get erroneously 
absorbed as a biological process; in this case by elevating the 
intrinsic rate of increase to compensate for the additional losses. 
This will have an effect of creating bias and uncertainty in related 
parameters (see below). Note also that the discretization to an annual 
basis is a significant assumption as the time span is large relative 
to the processes of most biota. This has the effect of averaging out 
sub-annual dynamics. This means temporal aliasing or discretization 
errors and censoring are introduced which ultimately increases 
process and observation errors (see sub annual dynamics, below). 
From this phenomenological view, the minimal parameters required 
to estimate biological reference points, and the relative distance 
a system is from such reference points help delimit the status of a 
population. Values such as Maximum sustainable yield 

4
rkMSY = 

 
 

and the fishing mortality associated with such a yield 2
rFMSY = 

 
 are 

commonly used to help define some consistent landmarks of scale for 
use as management reference points to guide the implementation of a 
consistent precautionary approach for fishery exploitation.

Many approaches exist to estimate these model parameters. 
Currently, Maximum Likelihood approaches dominate due to their 
computational speed. However, it has been the author’s experience 
with this data that they do not navigate and optimize very high-
dimensional parameter spaces reliably, especially in the delay 
differential equation models that we explore, below (Figure 3). 
This renders their utility in an operational setting, minimally useful. 

via
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upon historical analyses with other analytical procedures, namely 
Geostatistical Kriging with External Drift and Generalized Additive 
Models [35]. It is further assumed that the real unobservable (latent) 
process b is sampled with error (observation standard deviation σ0). 
The observation error model in most fishery applications is a simple 
multiplicative factor, often referred to as a “catchability” coefficient 
q. In this case we assume that: q~N (1.0, 0.1), and so the observation 
error model becomes:

 ( ) ( )0~ , 3t tY N qKb σ

This means that the observed biomass indices Y are some 
constant fraction of the true abundance bt, across all sampling time 
(years, season) and locations. The recursive logistic process model 
(eq.2) in tandem with the observation model (eq.3), we will refer to 
it as, “Model 1”.

From the graphical representation of the processes of Model 
1 (Figure 4), one can immediately see that there is no input term 
from outside of the system: it is a simple phenomenological self-
loop model with two outputs (death and fishing). The term rb can 
be referred to as the (net) “birth process” [36-38], and represents a 
first order processes that increases b (         birth,  growth,   enhanced 
survival, improved food availability, movement, strong year class 
strength, etc.), through the single (static) parameter r. The mechanism 
is not identified and is implied to be some internal recycling of b. 
In reality, there are biological mechanisms involved and associated 
parameters that are not-static and non-stationary (in first and second 
order; across time and space). Growth in biomass or increase in 
numbers is seasonal and pulsed, due to the molting process and body 
mass increases, that progress at variable rates depending upon time 
of year and environmental variability. Across years, there are strong 
and weak year classes due to match-mismatch type processes and 
so also pulsed [39,40]. These simple models cannot address these 
more realistic dynamics and so we obtain instead, an average state, 
with poor resolution of peaks and troughs and associated parameter 
estimates that are likely to be in error.

The strength of Model 1 is simplicity; but this simplicity is also 
a weakness. As the biomass dynamics model is phenomenological; 
it is heuristic, without mechanism. For example, fishable biomass 
“creates” fishable biomass at a maximum exponential rate (r) to a 
limit of K. In reality, fishable biomass being mature male snow crab, 

does not produce more mature male snow crab; instead, it is the 
female mature population that creates the eggs and broods them to 
larvae, some fraction of which eventually mature into the fishable 
component. The dynamics and longevity of these females are very 
different from those of the males, often showing unbalanced sex 
ratios and differential utilization of habitat and of course complete 
unfished. The rate of increase in biomass is not a simple exponential 
rate; instead, a certain number of fishable crab die from various 
causes (predation, disease, competitive fighting), a certain number of 
recruits terminally molt to a size in the fishable range to increase their 
numbers, they grow in weight as they eat, some fraction move in and 
out of a given area, and some are fished; these rates are not constant 
in time nor space and there are many lags in time. Fundamentally it 
is a numerical process. So Model 1 from the perspective of “biomass 
dynamics” is less than satisfactory in terms of biological realism. 
However, in the heuristic perspective, it implies that the biomass in 
one year is related to the biomass in the previous year within some 
constraints, constraints that are only diffusely/indirectly related to the 
“real” mechanistic processes represented by individual-individual 
interactions. As such, they can be seen as a temporal autoregressive 
model.

These constraints unfortunately result in a model that is sometimes 
not responsive enough to large fluctuations in dynamics caused by 
intrinsic and/or extrinsic factors. For example, due to the pulse-like 
dynamics observed since the late 1990s, no recruits entered fishable 
components for a number of years, even though their abundance was 
low. Model 1 expected recruitment simply because biomass was 
low. This was an erroneous expectation due to the low numbers of 
pre-recruits that lasted for an extended period of time; the extreme 
warm bottom temperatures during this period and associated shifts in 
their spatial distributions; the increase in abundance of predators that 
followed which potentially reduced the strength of that recruitment. 
Model 1 is too simple to express the expectations of such highly 
nonlinear pulse-like dynamics and interactions with environment 
and predators. In another example, there was an extreme warming 
event in 2021 that significantly altered and constricted the spatial 
distribution of snow crab. Again a simple model such as Model 1, 
with static expectations of environmental conditions (stationarity) is 
not able to account for such effects.

In an attempt to begin addressing these issues, we entertain 
Model 2 which resolves some size groups, sex and maturity and 
permits time-varying viable habitat area (non-stationarity) (Figure 4). 
Model 2 is, therefore, an intermediately complex, marginally more 
structured and mechanistic (ontological) model relative to Model 1.

There is approximately an 8+ year period that is required for 
females Ft−8 to produce the next generation of instar 9 females and 
males, denoted by Ft and M5,t respectively. They represent crabs in the 
range of approximately 40 to 60 mm carapace width. The “birth” rates 
represent a combination of egg production and larval survival to instar 
9+. If the population is stable, “birth” rates are expected to be similar 
in magnitude to overall death rates. Note that “stage” is defined based 
upon size-sex-morphometric traits and so misclassification is likely. 
The error in such knife-edge stage determinations can be substantial if 
growth and maturity schedules vary significantly. It is assumed, here, 
that in the aggregate, this has been stable in the survey record (1999 
to 2022). This may of course be incorrect if persistent size/stage/age 
related mortality occurs due to exploitation/predation patterns and/or 
directional environmental change such as climate warming or food 
availability shifts.

Figure 4: Graphical structure of the six-component Model 2 of snow crab 
with associated numerical flows. F indicates mature females, determined 
from size range and morphometric maturity. Associated with each 
component is a carrying capacity (Ki), and a death rate wi, and molt rates 
vij; and birth/survival rates bi. Ft-8 is the state of mature females F from 8 
years prior. Fishing is considered an external, deterministic sink imposed 
by external factors.

via
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Some fraction of instar 9 males transition to instar 10 (M4), and then 
11 (M3) to 12 (M2) and 13+(M1); each transition rate parameterized by 
v, with numeric indices identifying the instar pairs. Due to the knife 
edge-cut of stages, there will be misclassification issues which will 
be absorbed by these transition rates. For example, a small fraction of 
instar 11 crab (M3) will be large enough to be considered a fishable 
size (>95 mm carapace width); but most will molt into instar 12 (M2); 
this would result in a reduced molt transition rate. M2 will represent 
a composite group of most crab that have entered fishable size but 
are still immature. Some fraction of this group will mature into the 
fishable component in the next year; the fractional nature will result 
in a smaller molt transition rate. Others will continue to molt to instar 
13 and higher; for our purposes, all morphologically mature males 
of fishable size will be considered M1 and so it represents a range of 
different ages. This is especially the case as terminally molted crab 
can live for up to another 5 years; this aggregation will effectively 
decrease mortality rate of the group.

Survey sampling and estimation of instar 9 to 13+ (40 mm 
to 130+mm carapace width) is reasonably informative. Earlier 
instars tend to have divergent habitat preferences relative to those 
of the fishable component and are known to be poorly/erratically 
sampled due to size approaching mesh size of sampling nets. 
This is because the snow crab surveys are primarily optimized 
for sampling the fishable component (>95 mm carapace width), 
both in terms of mesh size and choices of sampling location. The 
utility of these additional compartments is that they also permit 
more stable parameter estimation and forward projections that are 
biologically more reasonable (mechanistic). The challenge is to keep 
track of much more information due to the increased realism and 
computational limits. Each state variable u=(M1,M2,M3,M4,M5,F), 
is scaled by their respective carrying capacity K., such that they are 
non-dimensional numbers: ( )1 1 1 1 1 1

1 1 2 2 3 3 4 4 5 5 6 6, , , , ,iu U K U K U K U K U K U K− − − − − −=

. Thus, for example, in the molt transition process from i=2 to j=1, 
the instantaneous rate is:

 ( )1 1 1
21 2, 1 21 21 2,t 1 2 2 1 21 2,t 1 1 .tv u a v U K K K v U K− − −

− − −= =

The multiplier 1
21 2 1a K K −=  is required to convert normalized density 

of category 2 to that of category 1     the ratio of the respective 
normalizing constants, Ki. As with Model 1, first order birth/survival 
rates bi are assumed: βi=biui.

So far, most of the core model has been the same as Model 1, only 
applied to more components with some appropriate time lags. Where 
Model 2 diverges from Model 1 is by decomposing mortality into two 
components: the first component is a simple background mortality 
parameterized as a first order decay (ωiui,t) the second component is 
mortality associated with fluctuations of viable habitat, parameterized 
as in the logistic equation as in Model 1 as a second order process 

,
,

,

. .i t
i i t

i t it

U
U

K H
ψ  ui,t. As such, it incorporates all density dependent processes 
such as competition and interaction between stages. Note the 
congruence of this term with that of the .NNr

K  loss term of Model 1 (see 
Fig. 4, eq. 1). With normalization to u, we obtain:

 
,

, , ,
,

. .i t
i t i i t i i t

i t

u
w u u

H
ω ψ= +

Here, H=V/max(V), represents the viable habitat surface area V 
normalized to a maximum value of 1, where the maximum is defined 
in the reference/focal time period. This modifies the carrying capacity 
proportionately and so KH can be seen as the “effective carrying 
capacity”, adjusting for viable habitat fluctuations. The assumption 

here is that when viable habitat area declines by some fraction H, so 
too does the effective carrying capacity, proportionately.

The inclusion of predator-prey and other ecological processes are 
therefore straightforward extensions as additional terms in this type 
of model formalism are well understood [41-44]. Such extensions are 
planned for future research and evaluation.

The full set of delay differential equations are, therefore:
11

21 2, 1 21 1, 1,t t t t
du v u a w Landings K
dt

−
−= − −

 
2

32 3, 1 32 21 2, 1 2,t t t
du v u a v u w
dt − −= − −

 
3

43 4, 1 43 32 3, 1 3,t t t
du v u a v u w
dt − −= − −

 
4

54 5, 1 54 43 4, 1 4,t t t
du v u a v u w
dt − −= − −

 
5

5 6, 8 56 54 5, 1 5,t t t
du b u a v u w
dt − −= − −

6
6 6, 8 6, .t t

du b u w
dt −= −

Model 2 is, therefore, a more mechanistic (structured) extension 
of Model 1 that brings to bear additional information available about 
the abundance of other size and sex classes and transition rates 
between them, and mortality rates that depend upon variations of 
numerical density in viable habitat surface area. Fishery landings 
were converted to number based upon annual average weight of 
the fishable component estimated from surveys and discretized to a 
two week time step within each year. The latter was to avoid strong 
discontinuities which facilitates differential equation modeling and 
parameter inference. Survey-based indices of numerical abundance 
were estimated using a Hurdle process, where probability of 
observation and the numerical abundance of positive-valued 
observations were modeled as an extension of small-area analysis 
Conditional Auto Regressive (CAR) Models in space and time; see 
methods in Modeled average weights, also analyzed using the same 
small-area space-time analyses were used to convert numbers back to 
biomass to make comparisons with Model 1.

In Model 1, the meaning of q is clear, a survey catches only 
some (fixed) fraction of the true abundance. This is a reasonable first 
approximation. However, what is implied is: first, this fraction is 
unchanging, applying equally in high abundance and low abundance 
years and areas, whether they are in the mating or molting season or 
not. Ignored are issues such as differential net saturation, aggregation 
behave or, even when bottom temperatures can force aggregation 
and dispersal away from or into other areas. The second issue implied 
by q is that when a survey fails to capture snow crab, that there truly 
is no snow crab in the area: an observation of zero is a true zero. 
This is clearly false. Visual observation of trawl operation through 
video monitoring has shown that crabs are missed: when they are 
in a slight depression, when they are close to protruding rocks or on 
bedrock, when bottom topography is complex or simply by the gear 
jumping off of the bottom due to tidal currents. That is, sampling 
gear is biased. Furthermore, it is not just sampling gear that is 
problematic. Survey design is biased: in design, each areal unit is 
expected to be homogeneous in space and time. External factors 
being factored out such as bottom temperatures, food availability 
and predation, aggregation behavior are not homogeneous, no matter 
how well designed a sampling design may be. Further, there is the 
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notion of trawlable bottom: some areas cannot be sampled without 
tearing or losing nets. These areas are of course not sampled and 
only habitats that are easier to sample will be used and consequently, 
over represented. Though allocation may be random in design and 
theory, in application, it is at best, almost random and depending upon 
bottom type, usually biased.

As such, the observation model is also more complex in Model 
2. The assumption of zero values in survey abundance indicating a 
true zero is a very strong assumption. This is especially tenuous when 
it is known that surveys sample many size ranges very poorly. The 
observation model of Model 2 is, therefore, a simple linear regression. 
Of course, higher order terms and other covariates can and should 
enter into the observation model to account for potential survey and 
behavior induced bias. In this paper,this is mostly accomplished 
the statistical abundance index model. Some additional freedom is 
given in the observation model in that the prior for the intercept term 
ci was informed by µi, the fraction of the minimum observed value 
relative to the maximum value.

 ( )~ N 1.0,0.1 ,im

 ( )~ N ,0.1 ,andi ic µ

 ( )y ~ N n , .ti i ti i ticµ σ+

Here, yti=Yti/max(Yi), constrains abundance to the interval (0, 1) 
and helps to confer better numerical properties (faster and more stable 
optimization, integration) in that variables are of similar magnitudes. 
Additionally, the variability of the observations was propagated into 
Model 2 by assuming that the coefficient of variation of observations 
were modal estimates of the observation model using a Log Normal 
(LN) prior with a mode of log Coefficient Variation (CV) specific to 
each component i and survey time t and a Standard Deviation (SD) of 
0.25: σti ∼ LN(log(CVti), 0.25).

This works as yti are already normalized to (0, 1). The other 
priors used for the Model 2 are also informative based upon expected 
biological constraints and some very wide distributions for the variance 
components to provide well mixed posterior samples as determined 
by Effective Sample Size (given autocorrelation in samples within 
chains) and Rhat (convergence criterion across chains):

( )( )~ LN log ,0.25 ,K K

 ( )( )~ LN log 1 ,0.5 ,b

 ( )( )d ~ LN log 0.22 ,0.25 ,

 ( )( )~ LN log 0.49 ,0.5 ,andψ
 

 
( )( )v ~ LN log 1.46 ,0.5 .

Fixed reference points analogous to the concepts of Maximum 
Sustainable Yield (MSY) and Maximum Rate of Fishing Mortality 
(FMSY) are not readily identifiable in Model 2 as “production” is 
now dependent upon multiple system components each of which have 
externally imposed effective habitat viability trends and related natural 
and fishing mortalities (perturbations). That is, they are nonstationary, 
in the dynamical sense. It is, however, possible to compute a related 

concept, which we will call the fisheries footprint; it is computed 
as the difference in trajectories between the system state estimated 
for the fishable component with and without fishing. The biological 
parameters are estimated under conditions of fishing activity. In the 
absence of fishing, these parameters may be expected to be different, 
especially when fishing activity is extreme. In some cases, maturity 
and growth schedules can shift [45,46]. The assumption here is that 
extreme fishing activity has not occurred with sufficient pressure nor 
time to generate phenotypic or genotypic change. The difference in 
predicted trajectories between the fished and unfished conditions, 
therefore, provides a crude, first order estimate of the impact of fishing, 
without assumptions beyond that the model reasonably approximates 
reality. This fisheries footprint is placed on a relative scale from 0 to 
1, by normalizing with the expected unfished abundance. As such, the 
fisheries footprint identifies the fraction of potential biomass that was 
reduced by fishery exploitation.

Results and Discussions
Estimates of abundance (biomass) of the exploited component are 

shown for each region for each model in Figure 5. In NENS, the discrete 
Model 1 showed two troughs in (pre-fishery) abundance in 2005 
and 2017. The surveyed index after adjustment for the observation 
model tends to be lower relative to the pre-fishery abundance, which 
is consistent with the removal of biomass during the fishing season. 
The exception to this pattern was in late 2013 and 2019 when strong 
recruitment was also observed. Model 2 shows a similar pattern of fall 
fishable biomass, though with a reduced magnitude. The post 2019 
period showed significant divergence relative to the survey index and 
especially in 2020 when no surveys were completed due to Covid-19 
related disruptions. SENS also demonstrated a similar periodicity to 
NENS in both models In Figure 5, model 2 suggests a dampened time 
series, attributable to the dynamics of the recruitment being estimated 
to be flat. In CFA 4X, Model 1 suggests an important decline following 
a peak in 2010. Model 2 suggests a similar trajectory, though one 
that is much more variable. This area is subject to crab movement 
from the adjoining area as well as spatial aggregation due to extreme 
temperature conditions, elevated mortality from other predators and 
disease. Model 2 also suggests overall abundance that is much lower 
than the very optimistic expectations of Model 1.

Figure 5: Posterior median biomass ( ) for each area of study and model. 
Posterior realizations of dynamics are shown to demonstrate variability 
of solutions. For Model 1 (left), pre-fishery posterior estimates of fishable 
biomass are shown. For Model 2, the posterior estimates of fishable 
biomass are shown in orange. Overlaid ( ) in both are survey abundance 
estimates (post-fishery, except prior to 2004) after correction for their 
respective observation models. Overlaid in green are posterior samples of 
abundance trajectories expected had there been no fisheries exploitation  
( ); and dark green identifies their respective means.
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has a reasonably direct relationship to a question that is often asked in 
applied situations: How much of an effect is fishing activity having? 
In the case of the areas studied, the fishery footprint has declined to 
conservative and manageable levels (that is, a small fraction of the total 
available abundance) since the mid-2000’s. SENS, in particular, has 
been consistently sustainable in the historical record. In the presence 
of strong environmental variability, it will be necessary to continue 
to maintain a small fisheries footprint to reduce the susceptibility of 
the species such forces as has been the case for Atlantic cod and other 
collapsed fisheries. This is especially the case as heavy exploitation in 
the long-term can result in reduced reproductive success of females; 
loss of dominance by invasion of habitat by competitors and even 
genetic/phenotypic selection for reduced size at maturity [47] (Figure 
7).

The first ever estimate of potential recruitment (M2) and mature 
female abundance (F) for the area in focus is shown in Figure 8. It 
shows that Model 2 has difficulty tracking these components. However, 
peaks and troughs are identified and they seem to be coherent across 
areas. The lack of concordance with the observations suggests that 
other, as yet un modeled processes likely need to be better accounted. 
The most likely missing processes include movement (inshore-
offshore, shallow-deep) as well as predation, as the areas of study 
are not well mixed and show spatiotemporal structure and increases 
in the relative abundance of predators such as Atlantic Halibut [48]. 
Smaller areal units would also better parameterize the spatiotemporal 

It is important to note that Model 1 will project an increase in 
abundance, even if recruitment does not exist. It will only project 
a decline if abundance is above carrying capacity. This structural 
expectation is of course unrealistic. Model 2, which accounts for 
recruitment, navigates this problem a little more sensibly as an 
increase can only occur if recruitment exceed mortality. For example, 
it projects for CFA 4X, a decline, even in the absence of fishing. In 
SENS, abundance is projected to increase slightly in the absence 
of fishing. Only NENS was projected to have a rapid increase in 
abundance.

Another observation is that abundance may be overestimated 
by Model 1. For example, in CFA 4X where we have supporting 
information of very high natural mortality rates associated with 
predation and environmental variability, through the loss of strong 
year classes, abundance estimates are extremely optimistic. The same 
issues also exist for NENS, where strong adolescent crab year classes 
seem to disappear at a rate faster than might be expected, possibly 
due to predation. By extension, SENS also likely exhibits overly 
optimistic time trends, given the very strong year classes diminishing 
rapidly before entry into the fishable component. As a result of this 
potential overestimation of abundance, fishing mortality estimates by 
Model 1 may in fact be overly low. Model 2’s solutions seem more 
reasonable given the supporting contextual information known of the 
different areas. The overall relative shapes of abundance and fishing 
mortality are, however, similar (Figure 6).

The continuous form of model 2 also permits us to infer the 
sub annual dynamics of the snow crab. The saw tooth pattern 
of abundance suggests that during the fishing season, the rate of 
exploitation far surpasses the slower rate of growth of the fishable 
component. It also identifies how important temporal aliasing might 
be if observations of landings or survey sample times are not properly 
accounted. The fishery footprint across the different areas indicates 
that they are very similar to fishing mortality in overall form (as they 
should be, as the numerator, catch are the same). The former is on a 
scale that is the same as abundance and so simpler to understand than 
the exponential scale of an instantaneous rate. Fishery footprint also 

Figure 6: Instantaneous fishing mortality estimated from Model 1 and 2 
across time. The overall patterns of fishing mortality are similar across 
models. However, the overall magnitudes are much higher in Model 2. Fishing 
in CFA 4X was closed in 2018 due to low abundance estimates and warm 
environmental conditions. Figure 7: Posterior realizations of Fisheries footprint for each area of study 

derived from Model 2.
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17. Cadigan NG, Wade E, Nielsen A (2017) A spatiotemporal model 
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heterogeneity observed in the latent biological processes known to 
occur in the area [49] (Figure 8).

Conclusions
In studies of exploited marine animal populations, most models 

focus upon age structure. Most also tend to be temporally discrete 
(annual) difference equation approximations. This is largely due 
to the annual cycle in temperate regions of exploitation, and data 
assimilation, survey and assessment cycles and historically due to 
limitations to computational capacity. With such discretization’s, 
come various approximations and assumptions and ultimately 
potential error or bias from temporal (and spatial) aliasing. Space is 
treated as an externality or more usually, completely ignored, though 
of course, advection-diffusion differential equation models are readily 
formulated.

The continuous approach that we developed in this study 
addresses mechanisms in a structured manner. The additional model 
complexity succeeds in providing a similar and perhaps more 
reasonable understanding of snow crab population dynamics than the 
classical biomass dynamics model. It also permits a promising way 
forward towards describing the fishery footprint measured relative to 
potential, non-stationary abundance in the absence of fishing. It also 
identifies the importance of accounting for temporal dynamics with 
minimal aliasing in survey and landings, and the difficulties that may 
still need to be addressed: most notably the non-well-mixed nature 
of the areas studied show spatial and temporal structures that require 
further parameterization and development.
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