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Abstract

Quantum information theory is an important branch of
theoretical physics with important experimental applications
and is much richer than the classical one. Nonetheless, it
seems that there is no precise description for it and people
usually refer to some special aspects which show the
difference between these two theories like, for instance, the no
cloning theorem. Our aim here is to propose a new definition of
quantum information theory by means of category theoretic
tools and then show it can be more “natural” than classical
information theory in some respect. This definition also
suggests that loop quantum gravity and string theory are two
shapes of a same theory of quantum gravity which are
describable as two different conceptions of space time and
space in a special mathematical structure. This mathematical
structure is topos. In addition, we claim that within this point of
view information is more fundamental than the concepts of
space and space time in physics. We got inspired from the
works of John Baez to work on this subject.

Keywords: Quantum information; Information theory; No
cloning theorem; Topos theory; Space time; Loop quantum
gravity; String theory

Introduction
Quantum information theory is a highly important branch of

theoretical and experimental physics and is much richer than classical
one [1]. A precise definition of this theory is needed to better
understand many concepts and problems in theoretical physics. For
instance Wigner’s friend problem which has been recently tackled by
experimental physicists [2,3]. In the present paper we introduce a new
notion of quantum probability theory and then by means of this new
concept, we define quantum information theory as a functor from a
special category which we call stringy information structure to the
category spin foams.

This new perspective has some significant effects on our
understanding of string theory and Loop Quantum Gravity (LQG)
which usually are considered as two different approaches to the
quantum gravity.

We try to show that either string theory or LQG can be considered as 
different approaches to the concepts of space and space time in the 
framework of topos theory. In 2014, Rodolfo Gambini and Jorge 
Pullin have shown the necessity of considering some specific non 
local interactions in quantum field theory similar to those that appear 
in string theory to avoid significant violations of Lorentz invariance 
[4]. This observation can show us the possible existence of some 
connection between LQG and string theory.

In addition, when we consider the notion of space, we can see that in 
both classical physics and general relativity physicists define space as 
a “set of points”. Indeed, the basic object used to define space in 
theoretical physics is a set which belongs to the category sets, of sets 
and usual maps, and then space is defined by considering elements of a 
set as points of the space. We call this notion of space an atomic 
notion.

This seems to suggest a more general approach in which the 
concept of space and consequently of space time is replaced by 
another notion based on topos theory, the category of toposes and 
geometric morphisms (topoi) which contains the atomic notion as a 
special case and, at the same time, is more useful and compatible with 
some general features of string theory. So, we believe that this more 
general characterization of space and space time is more appropriate 
for the formulation of a new theory which is compatible with both 
LQG and string theory. For this reason we reckon that this is a novel 
and insightful approach. Within our new quantum probability theory 
one can define the “chance that a superposition of states” occurs in 
quantum theory prior to an act of measurement. Moreover classical 
probability theory is a special case of this more general quantum one. 
In other words the quantum probability theory that we put forward is a 
probability theory describing a before and an after a measurement 
which is also quiet iconoclastic. The concept of superposition which is 
a weird concept in quantum theory will be a natural case in 
constructive mathematics and logic of topos theory which is equipped 
with heyting algebra. Historically, constructive or intuitionistic 
mathematics introduced by Brouwer with discarding the law of 
excluded middle [5]. Later Heyting provided an algebra which was 
consistent with Brouwer intuitionistic logic. In our point of view the 
law of excluded middle in logic implies the concept of position in 
classical physics and atomic notion of space in geometry. Despite of 
this, intuitionistic logic (constructive mathematics) which has 
discarded the law of excluded middle implies the concept of 
superposition in quantum physics and non-atomic notion of space in 
geometry. Thus, we are going to introduce a type of new quantum 
probability theory in a way that one can see the background logic of 
theory is intuitionistic logic.

To introduce our new quantum probability theory we use the 
concepts of partitions of a finite set and information structure which 
were recently introduced by Baudot and Bennequi [6]. The paper is 
organized as follows. In section 1, we just review the definition of 
partition and information structures and their related notions. In 
section 2 we put forward the notion of stringy information structure. In 
section 3, we suggest the new notion of quantum probability based on 
the concept of stringy information structure and mention the role of 
heyting algebra and topos theory in this new probability theory. 
Section 4 is the place that we define the quantum information functor. 
Finally, in the conclusion section we suggest some applications of our 
perspective to QFT, string theory and some problems in quantum 
theory. We also make some more general speculations, outlining our
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philosophical perspective about the interpretation of quantum 
mechanics in light of our general definition of quantum probability 
theory [7-9].

Materials and Methods

Partitions of a finite set and information structures
In this paper we consider measure theory as a known tool and refer 

the reader to Marzuoli, et al. Also, as far as topos theory is concerned, 
we refer the reader to Zafiris, et al.; Marzuoli, et al. We start from 
definition of a partition Zhang, et al.
Definition 1.1: Let (X, Σ, µ) be a probability distribution space with σ-
algebra  Σ  and   measure  µ.  A   finite  collection  of  measurable  sets,
α={A1, . . . , An} when n ∈ N and Ai ∈ Σ for i=1, . . . , n is called a 
finite partition if the following properties are fulfilled:

Remark 1: Each element of a partition is called a part of partition. 

Definition 1.2: Let α={A1, . . . , An} and β={B1, . . . , Bm} are two 
partitions of the space X. We define the joint partition of these two 
partitions by:

α ∨ β:={Ai ∩ Bj|Ai ∈ α, Bj ∈ β}.

Definition 1.3: A finite partition γ is a refinement of a finite
partition α whenever

∀C ∈ γ; ∃A ∈ α: C ⊂ A.

In this case also we say γ is “finer” than α.

Definition 1.4: Let Ω be a finite set. We define π (Ω) as the 
category of all finite partitions Ω of whose objects are finite partitions 
of Ω and there is an arrow between two objects X and Y, X → Y when 
X is finer than Y. When X is finer than Y we write Y ≤ X [10].

Remark 2: (π(Ω), V, {Ω}) has a monoid structure and {Ω} its unit 
element. Indeed we can easily verify that: for each

X ∈ π(Ω); X ∨ {Ω}={Ω} ∨ X=X

In fact it is the terminal object of the category π(Ω) since any
partition is finer than {Ω} and we can write: For all X ∈ π(Ω); X→ 
{Ω}. For this reason {Ω} is also named “coarse” partition.

Notation 1: We denote the terminal object of a category C by 1C, 
so for example 1π(Ω)={Ω}, which is the coarse partition. In addition 
we denote the initial object of category C by 0C. Note that the 
existence of an initial object generally depends on finiteness of the set 
Ω.

For the category π(Ω) we write 0π(Ω)=Atm(Ω) which is the finest 
partition and call it atomic partition. It is defined as the partition 
consisting of 1-element sets only.

Definition 1.5: An information structure S is a full subcategory of 
π(Ω) which satisfies the following properties:
• The partition {Ω} belongs to to obj(S).
• For every X, Y and Z in obj (S) if X → Y and X → Z then Y ∨ Z

belongs to obj(S)

To introduce our stringy information structure we need the notion 
of a sieve on an object of a category for which we refer the reader to 
Karakostas, et al.

Category of stringy information structures
Definition 1.5: S is a full subcategory of π(Ω) and since S contains 

{Ω}, it contains the identity morphism and from this it follows that the 
only sieve on the object {Ω} which will appear will be the maximal 
one. We introduce another notion, which is based on the concept of 
sieves in a category and the concept of minimal generator for the 
atomic partition which we define below. To this end we put forward 
the following two definitions.

Definition 2.1: Let Xi={{i, Ω-{i}} for i=1,...n be all the partitions
of Ω with only two parts, one of which consists of one element only. 
We say that objects X1, X2, . . . ,Xm define a minimal set of generators 
for Atm(Ω) when X1 ∨ X2 ∨. . .∨ Xm=Atm(Ω) and, if we omit just 
one of them, say Xj for j=1, . . . ,m, the joint partition is not the atomic 
one.

Definition 2.2: Stringy information structure: A stringy information 
structure SinfS on Ω is a subcategory (not necessarily full) of π(Ω) 
such that:

• {Ω} ∈ obj (SinfS).
• Be a closed set under ∨ and contains only one minimal set of 

generators <X1, . . . , Xm> of Atm(Ω).
• Mor(SinfS)-{Loops(identity morphisms)} be the minimal sieve on 

object {Ω} which is generated by the arrows X1 → {Ω}, X2 →
{Ω}, . . . , Xm → {Ω}.
Remark 3: A sieve S is said to be generated by a family F of

arrows contained in it if every arrow in S factors through an arrow in F 
[13].

Theorem 2.3: A stringy information structure is an information 
structure.

Proof: By definition 2.2, it is clear that a stringy information 
structure has the terminal element and also because of property b) of 
definition 2.2 automatically property (b) of definition 1.5 holds.

Remark 4: Clearly, an information structure is not a stringy 
information structure in general.

Since an information structure in definition 1.5 is based on the 
concept of full category and the existence of the identity of terminal 
object (i.e. a loop on the terminal object) is a fact there, this structure 
leads to the appearance of just maximal sieves on the terminal object. 
For this reason, from now on, we will refer to an information structure 
as a loopy information structure. So according to theorem 2.3 every 
stringy information structure is a loopy information structure.

Example 2.4: Let Ω={1, 2, 3, 4}. In the Figure 1 below: Figure 1A 
represents a loopy information structure on Ω which is not a stringy 
information structure because it is not closed under join of partitions. 
Figure 1B is a stringy information structure on Ω and Figure 1C is not 
a stringy structure because it has more than one minimal generator of 
Atm(Ω).
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Figure 1: A) Represents a loopy information structure on Ω which
is not a stringy information structure because it is not closed under
join of partitions; B) Is a stringy information structure on Ω and; C) Is
not a stringy structure because it has more than one minimal generator
of Atm(Ω).

Definition 2.5: Given finite sets X and Y, a stochastic map f: X~Y
assigns a real number fyx to each pair x ∈ X and y ∈ Y in such a way
that fixing any element x, the numbers fyx form a probability
distribution Y.

Remark 5: A function f: X → Y can be seen as special case of a
stochastic map when we look at it as a matrix of numbers fyx=δyf(x)
where, δ is the kronecker delta [14].

Let Ω be a finite set, f: {Ω}~obj (SinfS) be a stochastic map and
SinfS be a stringy information structure on Ω. From the property
{Ω}=1π(Ω), it follows that f: {Ω}~obj (SinfS) is a probability
distribution on obj(SinfS).

Definition 2.6: Let q: Ω~obj (SinfS1) and r: Ω~obj (SinfS2) be two
probability distributions on obj (SinfS1) and obj(SinfS2), respectively.
We say that a stochastic map p: obj (SinfS1)~obj (SinfS2) is a measure
preserving function when p◦q=r.

We note that p can be a usual map too because we have seen in the
above remark that it is possible to regard any usual function as a
stochastic map.

Definition 2.7: We say that an ordered pair of (SinfS, q) is an
informative stringy space if SinfS is a stringy information structure
and q a probability distribution on obj(SinfS).

Notation 2: We denote the category of all informative stringy
spaces and measure preserving maps among them by InfS.

Notation 3: Measure preserving maps play the role of
measurements in quantum physics.

Meet of partitions, negation of a partition, quantized field
(algebra) and new quantum probability

In part 1, we introduced the concept of partitions and their join.
Here first of all we will define what the meet of partitions is, and then
we shall introduce the new concepts of elementary and real quantized
algebra which will help us to understand the measure theoretical
background of our new definition of quantum probability based on the
concept of stringy information structure.

Definition 3.1: Let X and Y be two partitions of a finite set Ω. The
meet of X and Y is denoted by X ^ Y and defined as the finest 
partition which is less fine than both X and Y.

To compute the meet of two partitions we will use the graph 
theoretical method which is introduced in Mannone, et al. [15].

Example 3.2: Consider Ω={1, . . . , 4} and two of its partitions:

X4={{4}, {1, 2, 3}}

X1 ∨ X2={{1}, {2}, {3, 4}}.

We associate a vertex with each element of Ω and draw a graph that
has edges between each to vertices which are in a same part of at least
one of partitions X4 ={{4, {1, 2, 3}} or X1 ∨ X2 ={{1}, {2}, {3, 4}}.
So the graph is Figure 2A as like as in the Figure in next page. Now
the parts of the meet partition are the connected components of above
graph. So (X1 ∨ X2) ∧ X4={{1, 2, 3, 4}}={Ω}. Now consider
partitions X1 ∨ X2={{1}, {2}, {3, 4}} and X2 ∨ X3={{2}, {3}, {1,
4}} and compute the meet partition for them. So we have: Figure 2B
thus the meet partition has two connected components {2} and {1, 3,
4}, (X1 ∨ X2) ∧ (X2 ∨ X3)={{2}, {1, 3, 4}}=X2.

Figure 2: A) Now the parts of the meet partition are the connected
components of above graph; B) Thus the meet partition has two
connected components {2} and {1, 3, 4}.

Definition 3.3: The implication partition X ⇒ Y of two partitions
X and Y of a finite set Ω is the partition whose parts are the connected
components of the graph obtained by associating a vertex with each
element of Ω and joining by an edge only those pairs of vertices which
are in a same part of Y but not in a same part of X (Figure 3).

Example 3.4: Consider Ω={1, 2, 3, 4} and these two partitions on
it;

X4={{4}, {1, 2, 3}} and Y={{1, 2}, {3, 4}}.

For computing X4 ⇒ Y, following the above rules we draw the
graph below and so we have the connected components: {1}, {2},
{3,4}. Thus we have (X4 ⇒ Y)={{1}, {2}, {3,4}}.
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Figure 3: We draw the graph below and so we have the connected
components.

Definition 3.5: The negation or pseudo complement of a partition
X of a finite set Ω is denoted by ¬X and defined as the partition X ⇒
{Ω}.

According to what we discussed above, one can easily see that the
sextuple (π(Ω), ∨,∧ ⇒,¬,≼) is a non-distributive heyting algebra
whose bottom element is {Ω} and top element is Atm(Ω), while
(π(Ω), ∨, ∧, ⇒, ¬, ≼OP) also is a heyting algebra whose bott, m
element is Atm(Ω) and top element is {Ω}. Where relation ≼OP is
defined as the converse relation of “which means;

Y ≼OP X if and only if X ≼OP Y.

When X ≼OP Y we say Y is coarser than X.

We recall that Y ≼ X means partition X is finer than Y and so X ≼OP

Y means that

Y is coarser than X if and only if X is finer than Y (Y ≼ X).

For some technical reasons to show compatibility of our new
quantum probability with classical one we also need to use (π(Ω), ∨,
∧, ⇒, ¬, ≼OP).

We note that ∨ of (π(Ω), ∨, ∧, ⇒, ¬, ≼) plays the role of the meet
in the Heyting algebra (π(Ω), ∨, ∧, ⇒, ¬, ≼OP) and ∧ of (π(Ω), ∨, ∧,
⇒, ¬, ≼) plays the role of the joint in the Heyting algebra (π(Ω), ∨,
∧, ⇒, ¬, ≼OP).

Quantized algebra (field)
Definition 3.6: An elementary quantized algebra of sets on Ω is a

non-empty collection QA of subsets of pow(Ω), such that:

• {Ω} ∈ QA
• Q is closed under operator V: Let X ⊆ Pow(Ω) and Y⊆ Pow(Ω) we

define X ∨ Y:={A ∩ B|A ∈ X, B ∈ Y}on Pow(Ω).
• Q is closed under the power complement operation which is defined:

if X ∈ QA then XPc:={Ac|A ∈ X} ∈ QA.
Now we can show that an algebra is a special case of an elementary

quantized algebra.

Theorem 3.7: Let QA be an elementary quantized algebra, which
contains only the subsets X ⊂ Pow(Ω) that chard (X)=1, then QA
induces algebra A on Ω.

Proof: Since card ({Ω})=1, we have no problem with its presence
in QA. Let X and Y be in QA so card(X)=card(Y)=1 by assumption.
Let X={A} and Y={B} where A and B are subsets of Ω. We then have
X ∨ Y={A ∩ B} ∈ QA by definition of QA. So if A and B are subsets
of Ω such that {A}, {B} ∈ QA we construct A={Ai ⊂ Ω|{Ai} ∈ QA}.
Now let Ai and Aj be elements of A so that {Ai} and {Aj} are elements
of QA. Thus, by definition {Ai} ∨ {Aj}={Ai ∩ Aj} ∈ QA. So we

have Ai ∩ Aj ∈ A. Now let Ai ∈ A, so {Ai} ∈ QA and {Ai}Pc ={Ai
c}

∈ QA. (By definition) thus Ai
c ∈ A and, because of Demorgan’s Law

we have Ai ∪ Aj ∈ A. Finally, {Ω}Pc={Ωc}={∅} ∈ QA so we have
∅ ∈ A. Thus A is algebra on Ω.

Definition 3.8: A real quantized algebra on Ω is a non-empty
collection RQA of subsets of Pow(Ω) such that:

•
•

{Ω}∈ RQA
RQA closed under V (joint of the subsets of Pow(Ω)).
Theorem 3.9: Let Ω be a finite set. π(Ω) is a real quantized algebra. 
Proof: Clearly {Ω}, being a partition, belongs to π(Ω) and, by

definition, π(Ω) is closed under the joint operation between partitions.

Remark 6: Every elementary quantized algebra is a real quantized
algebra which, in addition, includes the complement operation.
Therefore any probability theory built on such a structure contains the
notion of incompatibility of some events induced by the mathematical
concept of complementarity between sets.

We want to build a probability theory which is suited to describing
quantum super positions. To this end choose as mathematical
framework for defining our notion of quantum probability not an
elementary quantized algebra but rather a real one as the universe set.
According to the definition of a stringy information structure, it is a
real quantized Algebra and also it is a subcategory of π(Ω). We define
our quantum probability on a stringy information structure, because of
its nice categorical properties and the existence of a heyting algebra.

Definition 3.10: Suppose Ω is a finite set and SinfS is a stringy
information structure equipped with same converse relation ≼OP of
(π(Ω), ∨, ∧, ⇒, ¬, ≼OP). We define the quantum probability of two
partitions X and Y of (obj(SinfS), ≼OP) as follows:

QP (X|Y):=P (X ∨ Y)/P (Y ).

Here, we try to illustrate the main point of quantum probability in
Figure 4.

Figure 4: As one can see in the figure, we can always just talk
about in compatible events in Ω. The main idea of quantum
probability is to replace Ω with Pow(Ω) to play the role of universe set
in probability theory, the place that we can assume partitions are the
events.

Remark 7: We used converse relation ≼OP in the definition of
Quantum Probability (QP) because we wanted to adapt the order with
what we have in classical probability theory which has the empty set
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in the bottom and the universe set at the top of the order of classical
algebra of subsets.

Properties of quantum probability theory

• If Y={Ω} the top element of (SinfS, ≼) then we have,

(Compatibility of quantum probability theory with classical 
probability theory).

• QP never vanishes for any pairs of non-empty partitions. It means
there are no incompatible events in quantum probability theory. This
property allows us to talk about quantum superposition in a natural
way, consistently with the way this notion is defined in physics.

• Let Y = Atm(Ω) the bottom element of (SinfS, ≼) then we have:

• We note that, for instance, one can define the probability of a of a set
Ω as which is finite because we have no empty partition so that the
cardinality of a partition is never zero.

Results and Discussion

Quantum information functor and quantum gravity
Definition 4.1: Let Ω be a finite set and SinfS a stringy Information

Structure equipped with same converse relation ≼OP of (π(Ω), ∨, ∧,
⇒, ¬, ≼OP).

We define a quantum information functor on Ω at a partition X as
the following functor.

QInf FX: SinfS → Spinfoamsn

(Xi → X) ›→ Conv ({QP (Xi|X)} ∪ {0}),

Where (Xi → X) is the refinement arrow while by conv ({QP (Xi|
X)} ∪ {0}) we mean the convex hull of {QP(Xi|X) ∪ {0} and 
spinfoamsn denotes the category of n-dimensional spin foams 
(morphisms) and their boundaries, which are (n-1)-dimensional spin 
networks.

Definition 4.2: Classical information theory is a special case which 
arises when we put X={Ω} in above definition.

Remark 8: We put {0} in the definition to make it compatible 
with classical information theory based on the notion of 
classical probability.

Although we have not enough information about conv ({QP (Xi|X)} 
∪ {0}) yet, here we conjecture that it represents a full subcategory of 
spin foams with a monoidal structure. A formal proof of this statement 
is work in progress.

Definition 4.3: A Quantum Information Theory (QIT) on a finite set 
Ω is the category QIT of all functors QInf FX: SinfS spin foamsn, for 
all partitions X of Ω, and natural transformations between them.

It is known that a spinfoam is a kind of set and so the category of 
spinfoams is a subcategory of the category sets. We denote by ℇ=(C, 
sets) the category of all functors from category to category of sets is a 
topos when is a small category. Thus, QIT=(SinfS, spinfoamsn) is a 
topos (Table 1). Of course when we change our stringy information 
structure we arrive at another QIT on our universe set and consequently 
another topos will emerge. Therefore, in our category theoretic 
perspective quantum information theory is the study of the category 
topoi of toposes which we constructed in this text.

Quantum probability General relativity Quantum theory

Philosophical perspective Neo-realism (superposition as aspects 
of being which looks like positions)

Ontology is equivalent to  epistemology 
(mass determines the geometry of 
space)

Ontology is equivalent to epistemology 
(reduction of superposition to position)

Aspects of being Partitions in a stringy information 
structure (states)

(n-1)-dimensional manifold (space) Hilbert space (states)

Aspects of becoming Refinements Cobordism between (n-1)-
dimensional manifolds (space time)

Operator between Hilbert spaces 
(process)

Aspects of interacting Factoring some arrows through other
arrows

Composition of cobordisms Composition of operators

Aspects of stability Loops Identity cobordism Identity operator

Conclusion
We know about the idea of strings as one-dimensional objects 

which play in string theory the role of zero dimensional particles in 
Quantum Field Theory (QFT), and the notion of Dirichlet branes as 
hypersurfaces where open strings can end. It sounds that this increase 
in the dimension of the fundamental object when going from QFT to 
string theory calls for a more general categorical setting which is more 
suitable for a consistent formulation of a quantum gravity theory. 
More precisely, in terms of Baez’s concept of “aspects of being and 
becoming”, we can say that Dirichlet Branes are aspects of being. 
When  particles  are  replaced  by strings, it  is probably  appropriate  to

that of a non global object. This in turn would lead to a generalization 
of the notion of a Dirichlet Brane to a new geometrical entity which 
instead of allowed end points for open strings consists of “allowed non 
global generalizations of end points for open strings”.

Let us recall at this point that a non global element in a topos (or 
generally in a category) is an arrow whose domain is not a terminal 
object. So these elements do not behave as points of a connected 
space, which are global elements in categorical framework, since they 
can be reached from any other points by a path.
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This suggested refinement of the notion of Dirichlet Branes and the
content of this paper may support the necessity of giving up the atomic
notion of space and space time in favor of a new concept which
naturally emerges in our framework of topos, in which quantum
information turns out to be more fundamental than space and space-
time themselves.

In addition, in our perspective, we can see quantum information
theory is more natural than the classical one, because classical
information arises when we restrict the quantum information functor
to the coarsest partition {Ω} and arrive to the functor

QInf F{Ω}: SinfS → spin foamsn

(Xi → {Ω}) ›→ conv ({QP (Xi|{Ω})} ∪ {0}),

It means we have an information theory based on a probability
theory associates a probability also with quantum states prior to any
act of measurement, with the notions that we introduced in this paper.
In this way, we can see logic becomes probability theory and then with
defining quantum information functor we can see logic becomes
information and information becomes space, space time and
mechanics, in special case quantum mechanics.

Moreover, with our quantum probability theory, it may be possible
to reformulate some deep open questions such as Wigner’s friend
problem which is about quantum measurement in an ultimate
observer-independent theory.

Let us end this concluding section by some more general comments
of philosophical nature about the concepts which we dealt with in this
paper.

Topological quantum field theory, as a toy model of string theory in
a categorical framework, is a functor from the category n cobs of n-
dimensional cobordisms to the category Hilbs of Hilbert spaces
(objects) and linear operator between them (morphisms).

Let us quote from John Baez: “Space and states are aspects of
being and space time and processes are aspects of becoming”.

Let us summarize some categorical analogues of general relativity
and quantum theory similarly to what Baez did in with add some
analogues of quantum information theory and also aspects of
interacting.

Neo-realism is the conceptual consequence of the fact that, from a
categorical perspective, a physical theory expressed in a topos looks
like classical physics described in the topos of sets.

If we want to define quantum information theory based on our
definition of quantum probability we should accept the position of
neo-realists. This iconoclastic idea of talking about partitions as states
and quantum probability will remove the weirdness of quantum theory
and quantum information theory, even if our theory is a toy model of a
more general and rich theory of information.
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