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Abstract

We review a novel computational method for Multiple Sequence 
Alignment (MSA), a fundamental problem in computational biology. 
In contrast to other known approaches, our method searches for 
an optimal alignment - structurally and evolutionarily by inserting or 
deleting gaps from a set of initial candidates in an efficient manner. 
Our method called a Universal Partitioning Search (UPS) approach 
for MSA uses graphical morphism to guarantee that the scores of 
the alignment candidates are always improved after each particle 
swarm optimization iteration.
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Introduction
Finding an optimal multiple sequence alignment (MSA) of three or 

more nucleic acid or amino acid sequences is a fundamental problem 
of bioinformatics with a large number of publications and citations 
over the last 30 years. Given a set of sequences, an optimal MSA 
identifies homologous characters, which have common ancestry. The 
resulting MSA is used for many downstream applications in medical 
and health informatics such as constructing phylogenetic trees, 
finding protein families, predicting secondary and tertiary structure 
of new sequences, and demonstrating the homology between new 
sequences and existing families.

Unfortunately, techniques that work well for pairwise alignment 
often become too computationally expensive when they are applied to 
multiple sequence alignment due the extremely large size of the search 
space. In fact, it is common for multiple sequence alignment problems 
to become computationally intractable. This is because multiple 
sequence alignment is a combinatorial problem, and as the number or 
size of the sequences in the problem set increases, the computational 
time required to perform an alignment increases exponentially. That 
is, for n sequences of length l, computing the optimal alignment 
exactly carries a computational complexity of O(ln). Thus, dynamic 
programming techniques such as the Needleman-Wunsch algorithm 
are guaranteed to produce optimal solutions to multiple sequence 
alignment problems, but are generally impractical for all but the 
smallest examples. Wang and Jiang demonstrated multiple sequence 

alignment using the sum-of-pairs heuristic to be NP-complete [1]. 
As a result, most currently-employed multiple sequence alignment 
algorithms are based on heuristics and must settle for providing a 
quasi-optimal alignment.

  In this editorial article, we will summarize the previous works 
on MSA. We then provide the details of some recent   computational 
methods for quasi-optimal multiple sequence alignments. Finally, we 
will discuss some possible approaches for future works.

The Sequence Alignment Problem
Sequence alignment is the process of arranging primary sequences 

of DNA, RNA, or protein to identify regions of similarity in order to 
discover functional, structural, or evolutionary relationships between 
the sequences [2]. These discoveries can result in the construction 
of phylogenetic trees, the discovery of new protein families, the 
prediction of secondary or tertiary structures of new sequences, and 
the demonstration of homology between existing families and the 
newly discovered sequences [3].

The general goal of sequence alignment is to find an optimum 
match between the sequences being investigated. This is actually a case 
of text manipulation, as these sequences are represented as strings 
over a given alphabet. For example, a DNA sequence is represented 
as a string drawing from an alphabet of four characters (A, C, G, and 
T), representing the four nucleotides. Similarly, a protein sequence 
is represented in the same way, but drawing from an alphabet of 20 
different symbols, each representing a unique amino acid [1]. In this 
context, the goal of alignment is to arrange these strings so that they 
are vertically aligned in the optimal way to highlight similarities and 
differences [4]. Blank spaces, or gaps, are inserted into the strings 
at strategic locations so that all of the sequences are extended to the 
same length and the symbols in each string match vertically with the 
corresponding symbols in the other strings as often as possible. The 
optimum match is defined as the largest number of symbols from 
one sequence that can be match with those of another sequence while 
allowing for all possible gaps [5].

There are two main approaches to sequence alignment: global 
alignment is concerned with the best alignment of the sequences as 
a whole, and local alignment detects and aligns similarities in smaller 
"neighborhoods" [6]. The Smith-Waterman algorithm [7] is a primary 
example of a best local alignment algorithm, while the Needleman-
Wunsch algorithm [5] is the most popular global alignment algorithm.

Regardless of which approach is used, a similarity measure 
is needed to quantify how well the sequences match in a given 
alignment, and these scores are compared to determine an optimal 
alignment [2]. Any similarity measure must account for changes in 
the sequences that are due to insertion, deletion, or mutation through 
evolutionary processes. This is usually done by the insertion of gaps 
within the sequences, presuming the presence of a gap leads to a 
higher number of symbol matches and thus a higher similarity score. 
To offset the higher score obtained through the insertion of gaps, 
and to prevent the introduction of an excessive number of gaps in a 
sequence, the similarity measure must also introduce a gap insertion 
penalty. Typically, two penalty values are used, one for introducing 
a new gap into a sequence, and one for extending an existing gap. 
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The scoring also relies on a substitution matrix, typically from 
the PAM or BLOSUM families, such as PAM250 or BLOSUM62, 
which assigns a score to each possible amino acid substitution, 
with higher values assigned to symbol mutations that are more 
likely to naturally occur [3]. A primary example of a metric used 
to evaluate the quality of the alignment is the sum of pairs score 
(SP). Given a set of n sequences, the sum-of-pairs score is the 
sum of all of the corresponding pairwise alignment costs from 
the chosen matrix [8]. Since a naive sum-of-pairs approach treats 
all pairwise alignments equally, even those that are redundant or 
highly correlated, a weighted-sum-of-pair score is commonly used 
[9]. In any case, the goal is to maximize the number of matching 
base pairs and minimize the costs of gap penalty by deleting and 
inserting gaps among the sequences.

The primary disadvantage of similarity measures like 
weighted-sum-of-pairs is the use of general substitution matrices. 
These matrices generally have been formed via statistical analysis 
of a large number of sample alignments, but may not be adapted 
to the specific set of sequences being aligned for a given problem. 
An alternative is to use a Hidden Markov Model approach, in 
which sequences are used to generate statistical models to create 
operation sequences of gap insertions and deletions. Unlike the 
standard substitution matrices, the model can be developed and 
trained based on the characteristics of the sequences to be aligned. 
Given a trained model, the sequences of interest are aligned to the 
model in succession, producing in a multiple sequence alignment 
[10]. Unfortunately, there isn’t a known deterministic algorithm 
that can successfully guarantee an optimally trained Hidden 
Markov Models within a reasonable time limit. Some algorithms, 
such as the forward-backward algorithm (also known as the BW 
algorithm) by Baum and Welch uses statistical approximations 
to determine a suitable Hidden Markov Model. Some stochastic 
approaches have been tried, but generally only for smaller Hidden 
Markov Models (10 states or less) [11].

Progressive Methods For Multiple Sequence Alignment
Since dynamic programming techniques such as the Needleman-

Wunsch algorithm are guaranteed to produce optimal solutions to 
multiple sequence alignment problems, but are generally impractical 
for all but the smallest examples, most currently-employed multiple 
sequence alignment algorithms are based on heuristics and must 
settle for providing a quasi-optimal alignment [4]. The most common 
heuristic method today is the progressive alignment technique. 
Progressive alignment requires initial guesses about the relationships 
between sequences in the set, and uses those guesses to build a guide 
tree to represent those relationships. The most closely related pairs 
of sequences are aligned using traditional dynamic programming 
methods, following the guide tree to start with the most similar pair 
and working towards the least similar pair. At each step, two sequences 
are aligned, or one sequence is aligned to an existing alignment. In the 
latter cases, any gaps that were introduced in earlier alignments are 
kept when a new sequence is added to the group. These groups of 
pairwise alignments are iteratively aligned together, resulting in the 
final multiple sequence alignment [12].

Phylogenetic trees such as a guide tree are usually produced using 
a similarity (or difference) matrix, so the “initial guesses” required 
prior to building the guide tree are actually used to construct such 
a matrix. The matrix classifies the sequences according to their 
differences, which is assumed to be a proxy for the evolutionary 

distance between them. The two key features of any tree are the 
branching order (called the topology) and the branch lengths, which 
should be proportional to the evolutionary distances between species. 
The trees that account for today’s extant species using the smallest 
number of historical genetic events are considered the best, so any 
tree-building algorithm will favour scores of high similarity (and 
thus, low difference) [13].

Hogeweg and Hesper’s research, published in 1984, was pri-
marily concerned with the construction of phylogenetic trees, but also 
proved foundational in multiple sequence alignment. Computational 
tree-building methods based on molecular sequence data required 
a set of aligned sequences as input, which in turn required a prior 
assessment of the sequences’ similarity. At this point in time, there 
was no practical method for obtaining a multiple alignment; the 
computational requirements for pairwise algorithms such as Needleman-
Wunsch were too much for the computers at the time to do anything 
beyond two sequences. So, the set of sequences was often aligned by hand 
using guidelines. Hogeweg and Hesper’s technique sought to improve 
that situation by taking advantage of pairwise alignment iteratively. Their 
algorithm took a set of N unaligned sequences as input and created a 
set of pairwise alignments and a resulting NxN similarity matrix. This 
similarity matrix was used to create an initial tree, and then the sequences 
were pairwise aligned again, this time following the branches of the tree. 
The new set of aligned sequences were used to create a new similarity 
matrix, which was in turn used to create a new tree. This iterative process 
continued until a specified termination criteria was met. The output of 
the process was the final tree and the corresponding multiple sequence 
alignment [14].

By contrast, Waterman’s consensus-based approach, published 
in 1986, did not work with phylogenetic trees at all, but focused solely 
on multiple sequence alignment. Waterman’s method addressed 
the same primary concern that Wilbur and Lipman’s method did 
for pairwise alignment. Whereas Waterman claimed that the most 
common techniques used for sequence analysis at the time aligned on 
single letters, his algorithm allowed for a fixed word size of arbitrary 
length k, just as Wilbur and Lipman’s context-based approach 
took into account longer sequence fragments. The choice of k was 
seemingly limited by the complexity of the chosen alphabet and the 
available computational power. The algorithm also used a specified 
word of length k, referred to as w, and a window width, W. The 
sequences could shift no more than W spaces in an attempt to find 
the consensus word w. If an exact match could not be found, the user 
could choose to allow a number of mismatches, d, up to a specified 
limit, with larger values of d receiving a worse weighting, λd , equal 
to (k-d)/k. The score s(w) for a given word w inside a given window 
W was calculated by multiplying q, or the number of sequences 
containing w (within a given number of allowed mismatches, d) 
inside W by the weight assigned to that d value, and summing across 
all allowed values of d. More formally, s(w) = ∑dλdqw,d . Intuitively, the 
best consensus word, w*, was the one with the maximum score; in 
other words, s(w*) = max (s(w)) [15].

The following example contains three sequences using a fictitious 
3-character alphabet consisting of A, B, and C:

SeqA   ABBACBABAC

SeqB   AAABBBACCC

SeqC   AACBCCBACA
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For simplicity in this example, d will be set equal to zero (so 
that mismatches are not allowed at all), which makes the weight λd a 
constant value of 1, so the scoring function reduces to a simple count 
of the number of sequences containing the desired word. If k is set 
equal to 3, there are 27 possible words, 17 of which have occurrences 
in the sequences:

AAA: 1 ACB: 2 BCC: 1

AAB: 1 ACC: 1 CBA: 2

AAC: 1 BAB: 1 CBC: 1

ABA: 1 BAC: 3 CCB: 1

ABB: 2 BBA: 2 CCC: 1

ACA: 1 BBB: 1 

So, the best consensus word w in this example is BAC with a score 
3, followed by ABB, ACB, BBA, and CBA with scores of 2 each.

However, finding a common word in all of the sequences is not 
the same as aligning them. To create an alignment, Waterman’s 
algorithm looks for a partial ordering of words; that is, a series 
of consensus words (w1, w2,...wn) such that the occurrence of w1 
in a given sequence is to the left of the occurrence of w2 in that 
same sequence, without intersecting, for all sequences being 
aligned. The optimal alignment is one that maximizes the sum of 
the scores of the consensus words used, which is not necessarily 
the same as using the largest number of consensus words. More 
formally, if w1|w2 indicates that w1 and w2 can be found in non-
overlapping windows in a sequence, the goal is to find the set of 
words wi that satisfies S=max{Σi≥1s(wi):w1|w2|…}. Optionally, a 
minimum constraint s(wi)≥ c may be imposed, for some value c, 
to ensure that consensus words of a sufficient quality are used. 
For implementation purposes, S can be defined recursively as 
follows: Si= max {Sj+ Sj+1,i : i-W + 1≤ j ≤ i- k }, where sj+1,i is the 
largest scoring consensus word in the window from j + 1 to i such 
that all occurrences of the consensus word are to the right of the 
consensus words for Sj [15].

Returning to the three-sequence example, since the length of 
each sequence being aligned is ten, and overlapping sequences are 
not allowed in a partial ordering, the number of words allowed n is 

limited to three. Obviously, the best possible partial ordering would 
include three words, specifically including BAC and two words with 
a score of two; this is the only way the maximum score of seven 
could be achieved. Since the goal is to find the partial ordering 
with the maximum possible score, this is a good place to start. 
There are thirty-six possibilities for partial orderings (w1, w2, 
w3) involving BAC with two words with a score of two. A third 
of those permutations place BAC in the first position (w1), and 
another third place BAC in the second position (w2). None of these 
partial orderings are viable, since the placement of the word BAC 
in sequences B and C require it to be the last word in the ordering. 
Thus, only the twelve permutations with BAC set to w3 require 
further consideration (see Figure 1).

Thus, in this example, the only set of consensus words that results 
in the maximum score S = 7 is (w1, w2, w3) = (ABB, ACB, BAC). The 
resulting alignment would match the word ABB in sequences A and 
B, CBA in sequences A and C, and BAC in all three sequences, like so:

SeqA  ---ABBACBA-BAC---

SeqB  AAABB-------BACCC

SeqC  -----AACBCCBACA-

Waterman’s algorithm was originally coded in the C program-
ming language, and was made available for DNA sequences only 
due to its smaller 4-character alphabet. Protein alignment using the 
usual 20-letter amino acid alphabet was limited to a maximum word 
length of 3 at the time. The algorithm intentionally did not include 
any penalty for unmatched letters due to insertions or deletions, 
and its result was not guaranteed to be equal to the global maximum 
[15]. Waterman’s algorithm was not a true progressive alignment 
technique, because it did not iteratively conduct pairwise alignments 
of two sequences in the fashion of Hogeweg and Hesper’s work. 
Instead, it aligned small individual words within all of the sequences, 
improving the alignment left-to-right as it progressively con-sidered 
additional consensus words.

In 1987, Feng and Doolittle published a true progressive 
alignment method iteratively utilizing the Needleman-Wunsch 
pairwise alignment technique to achieve a multiple sequence 
alignment. Feng and Doolittle identified a consistency problem 

 
(ABB, ACB, BAC) - all criteria are met successfully.  
(ABB, BBA, BAC) - invalid; ABB and BBA overlap in both B and C.  
(ABB, CBA, BAC) - invalid; the only instances of CBA and BAC in C overlap.  
(ACB, ABB, BAC) - invalid; ABB never appears to the right of ACB.  
(ACB, BBA, BAC) - invalid; BBA never appears to the right of ACB.  
(ACB, CBA, BAC) - invalid; the only instances of ACB and CBA in A overlap.  
(BBA, ABB, BAC) - invalid; ABB never appears to the right of BBA.  
(BBA, ACB, BAC) - invalid; the only instances of BBA and ACB in A overlap.  
(BBA, CBA, BAC) - invalid; the only instances of BBA and BAC in B overlap.  
(CBA, ABB, BAC) - invalid; ABB never appears to the right of CBA.  
(CBA, ACB, BAC) - invalid; ACB never appears to the right of CBA.  
(CBA, BBA, BAC) - invalid; BBA never appears to the right of CBA. 

Figure-1: Three-sequence example. 
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with the pairwise alignment method used in previous progressive 
alignment methods. That is to say, when sequence A is aligned 
with sequence B, gaps are inserted in particular locations. But, 
if either sequence A or sequence B is aligned with sequence C, 
the likely result is a completely different set of gaps. In general, 
scientists are more confident in the gap placement of the pairwise 
alignment of the two most similar sequences, but previous 
progressive alignment methods did not distinguish between levels 
of confidence in a given pairwise alignment. Feng and Doolittle 
wanted to ensure that a high-confidence gap used to align two 
closely related sequences was not discarded in service of improving 
an alignment to a more distantly related sequence. To this end, 
their algorithm progressively aligned sequences in pairs using the 
Needleman-Wunsch algorithm, starting with the most similar 
pair and iteratively adding the next most similar sequence, just 
as earlier progressive alignment techniques had done, but added 
an additional rule of “once a gap, always a gap.” To enforce this 
rule, after a pairwise alignment was completed, the newly inserted 
gaps were replaced with neutral characters, X. Thus, when the 
next sequence was added and the alignment was recalculated, 
necessitating new insertions and deletions, the brand new gaps 
would not be confused with the previous gaps (which were now 
X’s). The X characters were invisible to the scoring system, so that 
when an X was matched to any other amino acid symbol, the value 
was zero, not aiding the quality of the alignment, but also avoiding 
a new gap penalty. Once all sequences were added to the final 
alignment, the difference scores were calculated and the tree was 
constructed [13]. This process is shown in Algorithm 1.

The program was written in C and executed on a computer 
running the UNIX operating system. Subprograms were writ-
ten and called as needed, including SCORE for conducting 
pairwise alignment and computing difference scores, BORD 
for establishing preliminary tree branching orders, BLEN for 
determining tree branch lengths, and DFalign for generating 
the multiple alignment. Feng and Doolittle reported that while 
their method “throttled” the pursuit of global optimization, 
which maximized overall similarity at the cost of removing 
existing gaps during the optimization process, the net gain 
was positive because the trees generated from their alignments 
appeared to more accurately agree with biological expectations 
[13].

The Clustal Family
Feng and Doolittle’s progressive approach became the most 

popular technique for carrying out multiple sequence align-ment, 
and was used as the basis of the Clustal software package by Desmond 
Higgins and Paul Sharp [16]. In fact, Higgins and Sharp described 
their program as a "quick and dirty" version of Feng and Doolittle’s 
algorithm. It was originally implemented on an IBM AT-compatible 
microcomputer running at 10 MHz, with 640kb of RAM, using 
FORTRAN77. Much like Feng and Doolittle’s progressive alignment 
program, Clustal consisted of three separate subprograms that 
executed independently in sequence, using text files to communicate 
intermediate results. The first stage was the calculation of all pairwise 
similarity scores using Wilbur and Lipman’s algorithm to perform 
the pairwise alignments and produce a similarity matrix. 

Input sequences;

4

(ABB, ACB, BAC) - all criteria are met successfully.
(ABB, BBA, BAC) - invalid; ABB and BBA overlap in both B and C.
(ABB, CBA, BAC) - invalid; the only instances of CBA and BAC in C overlap.
(ACB, ABB, BAC) - invalid; ABB never appears to the right of ACB.
(ACB, BBA, BAC) - invalid; BBA never appears to the right of ACB.
(ACB, CBA, BAC) - invalid; the only instances of ACB and CBA in A overlap.
(BBA, ABB, BAC) - invalid; ABB never appears to the right of BBA.
(BBA, ACB, BAC) - invalid; the only instances of BBA and ACB in A overlap.
(BBA, CBA, BAC) - invalid; the only instances of BBA and BAC in B overlap.
(CBA, ABB, BAC) - invalid; ABB never appears to the right of CBA.
(CBA, ACB, BAC) - invalid; ACB never appears to the right of CBA.
(CBA, BBA, BAC) - invalid; BBA never appears to the right of CBA.

Fig. 1. Three-sequence example

an additional rule of “once a gap, always a gap.” To enforce
this rule, after a pairwise alignment was completed, the newly
inserted gaps were replaced with neutral characters, X. Thus,
when the next sequence was added and the alignment was
recalculated, necessitating new insertions and deletions, the
brand new gaps would not be confused with the previous gaps
(which were now X’s). The X characters were invisible to the
scoring system, so that when an X was matched to any other
amino acid symbol, the value was zero, not aiding the quality
of the alignment, but also avoiding a new gap penalty. Once
all sequences were added to the final alignment, the difference
scores were calculated and the tree was constructed [13]. This
process is shown in algorithm 1.
The program was written in C and executed on a computer
running the UNIX operating system. Subprograms were writ-
ten and called as needed, including SCORE for conducting
pairwise alignment and computing difference scores, BORD
for establishing preliminary tree branching orders, BLEN for
determining tree branch lengths, and DFalign for generating
the multiple alignment. Feng and Doolittle reported that while
their method “throttled” the pursuit of global optimization,
which maximized overall similarity at the cost of removing
existing gaps during the optimization process, the net gain
was positive because the trees generated from their alignments
appeared to more accurately agree with biological expectations
[13].

III. THE CLUSTAL FAMILY

Feng and Doolittle’s progressive approach became the most
popular technique for carrying out multiple sequence align-
ment, and was used as the basis of the Clustal software
package by Desmond Higgins and Paul Sharp [16]. In fact,
Higgins and Sharp described their program as a "quick and
dirty" version of Feng and Doolittle’s algorithm. It was origi-
nally implemented on an IBM AT-compatible microcomputer
running at 10 MHz, with 640kb of RAM, using FORTRAN77.
Much like Feng and Doolittle’s progressive alignment pro-
gram, Clustal consisted of three separate subprograms that
executed independently in sequence, using text files to commu-
nicate intermediate results. The first stage was the calculation
of all pairwise similarity scores using Wilbur and Lipman’s
algorithm to perform the pairwise alignments and produce a

Input sequences;
for each pair of sequences do

Produce pairwise alignment using Needleman-Wunsch
method;

Convert similarity score to difference score;
Write results to file;

end
Sort pairwise alignments to establish preliminary order of
sequences;

Select the pair of sequences with the highest similarity score;
Insert neutral element (X) in place of any gaps that exist in
the aligned pair;

while there remains sequences not part of the multiple
sequence alignment do

Select the next nearest relative for alignment;
Produce two pairwise alignments (ABC and BAC) using
Needleman-Wunsch method;

Select pairwise alignment with highest similarity score;
Replace gaps with neutral element (X);

end
Obtain new branching order based on final multiple sequence
alignment;

Determine branch lengths of final phylogenetic tree;
Output final dendogram;
Algorithm 1: Feng and Doolittle’s Progressive Alignment
Method

similarity matrix. That matrix was then fed to the second stage
of the Clustal program, which used it to derive a dendogram
file using the popular UPGMA method. Dendograms can be
used to represent phylogenetic trees, although in this case the
output was not considered reliable enough to be used in this
way. Instead, the resulting dendogram file, along with the
original sequence data, was given to Clustal’s third stage,
which Higgins and Sharp described as the "core" of the
package. This third stage followed the order of branching in
the tree to perform pairwise alignments of the most similar se-
quences first, again using Wilbur and Lipman’s method. Once
a pairwise alignment was complete, the consensus alignment
(including gaps) for the sequence cluster was substituted into
the tree, so gaps that occurred in earlier alignments were
preserved if those sequences were aligned with a different

That matrix was then fed to the second stage of the Clustal program, 
which used it to derive a dendogram file using the popular UPGMA 
method. Dendograms can be used to represent phylogenetic trees, 
although in this case the output was not considered reliable enough 
to be used in this way. Instead, the resulting dendogram file, along 
with the original sequence data, was given to Clustal’s third stage, 
which Higgins and Sharp described as the "core" of the package. This 
third stage followed the order of branching in the tree to perform 
pairwise alignments of the most similar se-quences first, again 
using Wilbur and Lipman’s method. Once a pairwise alignment was 
complete, the consensus alignment (including gaps) for the sequence 
cluster was substituted into the tree, so gaps that occurred in earlier 
alignments were preserved if those sequences were aligned with a 
different sequence later, as prescribed by Feng and Doolittle. Thus, as 
the iteration continued, the alignments kept building upon previous 
consensus, and the addition of gaps was cumulative. At the end of 
the process, the resulting multiple sequence alignment was given as 
output. (See Algorithm 2.)

Input sequences;

Calculate all pairwise similarity scores using Wilbur-Lipman 
method;

Perform cluster analysis and generate dendogram file using

UPGMA;
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sequence later, as prescribed by Feng and Doolittle. Thus,
as the iteration continued, the alignments kept building upon
previous consensus, and the addition of gaps was cumulative.
At the end of the process, the resulting multiple sequence
alignment was given as output. (See algorithm 2.)

Input sequences;
Calculate all pairwise similarity scores using Wilbur-Lipman
method;

Perform cluster analysis and generate dendogram file using
UPGMA;

while there remains sequences not part of the multiple
sequence alignment do

Select the two most-similar remaining sequences or
clusters;

Perform 2-way alignment using Wilbur-Lipman method;
Output consensus alignment and new copies of the
original sequences with gaps inserted;

end
Output final multiple sequence alignment;
Algorithm 2: Original Clustal Algorithm for Multiple Se-
quence Alignment

The second version of the program, Clustal V, was released in
1992 by Higgins, Alan Bleasby, and Rainer Fuchs [17]. It was
rewritten in the C programming language. A major new feature
was the ability to store and reuse old alignments (referred to
as profile alignments) and align alignments with each other.
Improvements to tree generation included the option to use
the Neighbour-Joining method, the ability to calculate true
phylogenetic trees after alignment, and the option to perform
a bootstrap test to calculate confidence intervals of the tree
topology [18].

A major difficulty with the progressive approach, as identified
by Higgins, Julie Thompson, and Toby Gibson, is proper
choice of alignment parameters. Just as with stochastic op-
timization methods, progressive alignment methods will pro-
duce poor results if the starting parameters are inappropriate.
In this case, the alignment parameters in question are the
choice of which weight matrix to use, and which two values
should be used for gap penalties (one for opening a new gap
and one for extending an existing gap). While a single matrix
and a broad range of penalty values may work acceptably
for sets of similar sequences, as the sequences become more
divergent, different weight matrices may be optimal and the
useful range of penalty values will narrow substantially [12].

In 1994, a new version of the software, Clustal W, made four
significant improvements addressing the issue of parameter
choice. First, each sequence was assigned an individual weight
from the guide tree, with near-duplicate sequences receiv-
ing lower weights and more divergent sequences receiving
higher weights. As part of this improvement, the guide tree
creation step was changed from the UPGMA method to the
Neighbor-Joining Method, which produces better estimates of
the individual tree branch lengths used to derive the weights.
The weights were then used as multiplication factors for
scoring positions; position matches between more divergent

sequences were rewarded more than matches between two
nearly-identical sequences. The second major improvement
also dealt with the degree of divergence among the sequences;
different substitutions matrices from the PAM and BLOSUM
series were algorithmically chosen at different points in the
alignment process depending on the estimated divergence of
the sequences being aligned at that point. When the sequences
were closely related, stricter matrices were used, and when
the sequences were more divergent, more forgiving matrices
were selected. The third improvement was the addition of
residue-specific and position-specific gap opening penalties.
As opposed to applying the same opening and extension
penalties at every position, manipulating the gap opening
penalties in a position-specific manner encouraged new gaps to
be placed at certain positions more than others. For example,
gap penalties were lowered at positions with existing gaps
in one of the sequences, but increased in the areas near
existing gaps. Finally, positions where gaps were added early
in the iterative process were subsequently assigned reduced
gap penalties, in order to encourage new gaps to be placed
there rather than in brand new areas [19].

Clustal X was released in 1997. It produced the same align-
ments as Clustal W, but added a graphical user interface,
including pull-down menus, cut-and-paste functionality, se-
quence highlighting and custom coloring, and an integrated
environment for performing multiple alignments, viewing re-
sults, and refining and improving the alignment as necessary.
The user could interact with the results of an alignment using
the mouse cursor and manually realign questionable areas [20].
The windowed interface used the NCBI Vibrant Toolkit and
was made available on computers running Microsoft Windows,
the Macintosh operating system, and UNIX/Linux with the
X Windows System [21]. Shortly after the introduction of
the windowed interface, parallelized versions and World Wide
Web-based versions were made available [22].

In the late 1990s, Clustal W and Clustal X were the most
widely used multiple alignment programs, but as time pro-
gressed, the need for updating and modernizing the code base
became apparent. In 2007, version 2.0 of both Clustal W and
Clustal X were released. The new versions were completely
rewritten using the C++ language and redesigned for easier
maintainability. The programs’ new object model made it eas-
ier to modify or replace the alignment algorithms in case new
developments in the field necessitated it. The windowing code
replaced the NCBI Vibrant Toolkit with the Qt windowing
toolkit, while keeping identical functionality and still running
on Windows, Macintosh, and Linux platforms. The UPGMA
algorithm was reintroduced as an option for tree generation,
primarily for efficiency and speed. [23].

Clustal Omega is the current version of the software package.
It is another complete rewrite of the software and was first
released in 2011 [24]. Two major improvements over previous
versions utilize newly developed third-party packages to keep
the performance and quality of results current with the state
of the art. First, Clustal Omega uses an algorithm called
mBed to produce the guide tree. mBed has been shown to
produce just as accurate guide trees as conventional methods,
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The second version of the program, Clustal V, was released in 1992 
by Higgins, Alan Bleasby, and Rainer Fuchs [17]. It was rewritten in 
the C programming language. A major new feature was the ability to 
store and reuse old alignments (referred to as profile alignments) and 
align alignments with each other. Improvements to tree generation 
included the option to use the Neighbour-Joining method, the ability 
to calculate true phylogenetic trees after alignment, and the option to 
perform a bootstrap test to calculate confidence intervals of the tree 
topology [18].

A major difficulty with the progressive approach, as identified 
by Higgins, Julie Thompson, and Toby Gibson, is proper choice of 
alignment parameters. Just as with stochastic optimization methods, 
progressive alignment methods will produce poor results if the starting 
parameters are inappropriate. In this case, the alignment parameters 
in question are the choice of which weight matrix to use, and which 
two values should be used for gap penalties (one for opening a new 
gap and one for extending an existing gap). While a single matrix 
and a broad range of penalty values may work acceptably for sets of 
similar sequences, as the sequences become more divergent, different 
weight matrices may be optimal and the useful range of penalty values 
will narrow substantially [12].

In 1994, a new version of the software, Clustal W, made four 
significant improvements addressing the issue of parameter choice. 
First, each sequence was assigned an individual weight from the 
guide tree, with near-duplicate sequences receiving lower weights 
and more divergent sequences receiving higher weights. As part of 
this improvement, the guide tree creation step was changed from the 
UPGMA method to the Neighbor-Joining Method, which produces 
better estimates of the individual tree branch lengths used to derive 
the weights. The weights were then used as multiplication factors 
for scoring positions; position matches between more divergent 
sequences were rewarded more than matches between two nearly-
identical sequences. The second major improvement also dealt with 
the degree of divergence among the sequences; different substitutions 
matrices from the PAM and BLOSUM series were algorithmically 
chosen at different points in the alignment process depending on the 
estimated divergence of the sequences being aligned at that point. 
When the sequences were closely related, stricter matrices were used, 
and when the sequences were more divergent, more forgiving matrices 
were selected. The third improvement was the addition of residue-
specific and position-specific gap opening penalties. As opposed to 
applying the same opening and extension penalties at every position, 
manipulating the gap opening penalties in a position-specific manner 
encouraged new gaps to be placed at certain positions more than 
others. For example, gap penalties were lowered at positions with 
existing gaps in one of the sequences, but increased in the areas near 
existing gaps. Finally, positions where gaps were added early in the 
iterative process were subsequently assigned reduced gap penalties, in 
order to encourage new gaps to be placed there rather than in brand 
new areas [19].

Clustal X was released in 1997. It produced the same align-ments 
as Clustal W, but added a graphical user interface, including pull-
down menus, cut-and-paste functionality, sequence highlighting 
and custom coloring, and an integrated environment for performing 
multiple alignments, viewing results, and refining and improving the 
alignment as necessary. The user could interact with the results of an 
alignment using the mouse cursor and manually realign questionable 
areas [20]. The windowed interface used the NCBI Vibrant Toolkit 
and was made available on computers running Microsoft Windows, 

the Macintosh operating system, and UNIX/Linux with the X 
Windows System [21]. Shortly after the introduction of the windowed 
interface, parallelized versions and World Wide Web-based versions 
were made available [22].

In the late 1990s, Clustal W and Clustal X were the most widely 
used multiple alignment programs, but as time progressed, the need 
for updating and modernizing the code base became apparent. In 
2007, version 2.0 of both Clustal W and Clustal X were released. 
The new versions were completely rewritten using the C++ language 
and redesigned for easier maintainability. The programs’ new object 
model made it easier to modify or replace the alignment algorithms 
in case new developments in the field necessitated it. The windowing 
code replaced the NCBI Vibrant Toolkit with the Qt windowing 
toolkit, while keeping identical functionality and still running on 
Windows, Macintosh, and Linux platforms. The UPGMA algorithm 
was reintroduced as an option for tree generation, primarily for 
efficiency and speed. [23].

Clustal Omega is the current version of the software package. It 
is another complete rewrite of the software and was first released in 
2011 [24]. Two major improvements over previous versions utilize 
newly developed third-party packages to keep the performance and 
quality of results current with the state of the art. First, Clustal Omega 
uses an algorithm called mBed to produce the guide tree. mBed has 
been shown to produce just as accurate guide trees as conventional 
methods, while lowering the computational complexity of that step 
from O(N2) to O(N log N) for N sequences. Secondly, once the guide 
tree is in place, the alignments are computed by an implementation 
of HHalign, which converts sequences and intermediary profiles into 
Hidden Markov Models prior to alignment [25].

T-Coffee 
As described in the previous section, improvements in later 

versions of Clustal were aimed at solving the parameter choice 
problem, but a second major drawback to the progressive approach 
is the local minimum problem. It is due to the "greedy" nature of the 
alignment strategy. As the most similar pairs of sequences are aligned 
together early in the algorithm, there is no guarantee that those 
pairwise alignments will place gaps in the optimal positions for the 
multiple sequence alignment. They will be optimal for that particular 
pairwise alignment, and since the best matches are being aligned first, 
they are assumed to be of a sufficient quality and correctness. Even 
so, some misalignments will occur, especially for more divergent 
sequences. Unfortunately, when such a misalignment occurs early on, 
by the nature of the algorithm, it will never be corrected later. In many 
cases, these misalignment errors will compound through multiple 
iterations. Thus, there is no guarantee that the global optimum 
solution for the set of sequences will be found by the progressive 
alignment approach [19]. Higgins, Thompson, and Gibson did not 
attempt any direct solutions to this problem, admitting that it is 
intrinsic to progressive alignment techniques. They suggested that an 
overall measure of multiple alignment quality could be used, and then 
one could find the alignment that maximized that overall measure, 
but such a solution was only feasible for small numbers of sequences. 
They posited that stochastic optimization procedures could be used in 
the future to this purpose [12].

This local minimum problem was addressed by Notredame’s 
consistency principle and the development of the COFFEE 
(Consistency-based Objective Function For alignment Evalu-ation) 
family of software tools. Originally published in 1998 by Cedric 
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Notredame, Lisa Holm, and Desmond Higgins, the key characteristic 
of COFFEE is a novel objective function that measures the degree of 
consistency between a multiple sequence alignment and a library of 
pairwise alignments of the same sequences. The objective function 
is a global measure for evaluating an entire alignment, with a higher 
objective function score indicating a more biologically sound and 
relevant alignment [10].

The library of pairwise alignments must be built before the 
objective function can be used. The library is specific to a given set 
of sequences, so a new one must be made for each desired multiple 
sequence alignment. Generally speaking, given N sequences to be 
aligned, the library will contain at least (N2-N)/2 pairwise alignments, 
one for each of the possible pairings. In reality, there is no limit to the 
amount of redundancy that can be included in the library, so more 
pairwise alignments can be added as desired. Any appropriate method 
can be used to generate the pairwise alignments, and the amount of 
time required to produce the library is dependent upon the method 
used and increases quadratically with the number of sequences [10].

Once the library is built, evaluation of a given alignment is 
performed using the COFFEE objective function. Each pair of 
aligned residues (either two residues aligned with each other or a 
residue aligned with a gap) in the input alignment is compared to the 
contents of the library. The residues are identified by their position 
in the sequence, and the overall consistency score is equal to the 
number of pairs of residues found in the multiple alignments that 
are also present in the library, divided by the total number of pairs in 
the multiple sequence alignment, which will produce a consistency 
score between 0 and 1. This simplistic scoring scheme was improved 
by adding weighting. In the final COFFEE objective function, each 
pairwise alignment in the library was weighted according to the 
percent identity between the two aligned sequences. This ensured that 
the alignment of a given sequence was most influenced by its closest 
relatives, and that the most closely related pairs of sequences were 
correctly aligned in the final multiple alignment [10].

Formally, the COFFEE objective function takes as input N aligned 
sequences, labeled S1 through SN . Ai,j is the pairwise projection of the 
sequences Si and Sj, and LEN(Ai,j) is the length of this alignment. 
SCORE(Ai,j) is the number of aligned pairs of residues that are shared 
between Ai,j and the corresponding pairwise alignment in the library, 
and Wi,j is the weight assigned to that pairwise alignment. Then, the 
COFFEE score is equal to the following [10]:
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Substituting the pairwise library in place of a standard substi-
tution matrix, the COFFEE objective function shares obvious 
similarities to the previously discussed weighted sum-of-pairs metric, 
but also has three main differences. There are no extra gap penalties 
assigned in the COFFEE calculation, because that information is 
already accounted for in the pairwise library. Second, the COFFEE 
score is normalized between 0 and 1. Thirdly, using the pairwise 
library makes the cost of the substitutions position dependent; 
when using a standard substitution matrix, a pair of residues will be 
assigned the same cost, but in COFFEE scoring the result will differ if 
those residues have different position indices within their sequences 
[10].

When evaluating the COFFEE objective function apart from 
the entire alignment method, Notredame demonstrated that higher 

scores for a sequence correlated strongly with higher average 
alignment accuracy. The weighting scheme and the flexibility to 
define the pairwise library on a case-by-case basis were the primary 
reasons credited for COFFEE’s positive performance [10].

In the original COFFEE software package, the objective func-
tion was used in conjunction with the Sequence Alignment Genetic 
Algorithm, or SAGA, package developed by Notredame and Higgins 
[26]. Given an initial population of alignments, the alignments 
are scored using the objective function, and the result is used as a 
fitness measure. Based on this fitness measure, members of the 
population are selected for survival, crossover-based breeding, or 
random mutation, with the least-fit members failing to persist. The 
new generation is scored with the COFFEE objective function, and 
the process repeats. These iterations continue until the best-scoring 
alignment is not improved for a specific number of generations 
(typically 100), at which point the highest-scoring alignment in the 
population is selected for output [10].

Across thirteen test cases, SAGA-COFFEE was shown to 
outperform other methods, including Clustal W, in at least nine 
of them. SAGA-COFFEE performed particularly well when the 
sequences being aligned exhibited low levels of identity. Even 
though the full SAGA-COFFEE method outperformed other 
common approaches on average, it also proved to be extremely slow. 
Additionally, Notredame pointed out that it did not always produce 
the best alignment, and it seemed that under the right conditions, any 
method could do better than the others [10].

Build pairwise library;
Initialize population of alignments;
Score candidate alignments using COFFEE objective function;

7

and Higgins [26]. Given an initial population of alignments,
the alignments are scored using the objective function, and
the result is used as a fitness measure. Based on this fitness
measure, members of the population are selected for survival,
crossover-based breeding, or random mutation, with the least-
fit members failing to persist. The new generation is scored
with the COFFEE objective function, and the process repeats.
These iterations continue until the best-scoring alignment is
not improved for a specific number of generations (typically
100), at which point the highest-scoring alignment in the
population is selected for output [10].
Across thirteen test cases, SAGA-COFFEE was shown to
outperform other methods, including Clustal W, in at least nine
of them. SAGA-COFFEE performed particularly well when
the sequences being aligned exhibited low levels of identity.
Even though the full SAGA-COFFEE method outperformed
other common approaches on average, it also proved to be
extremely slow. Additionally, Notredame pointed out that it
did not always produce the best alignment, and it seemed that
under the right conditions, any method could do better than
the others [10].

Build pairwise library;
Initialize population of alignments;
Score candidate alignments using COFFEE objective
function;

while termination criteria is not met do
Select candidates for survival, crossover, or mutation;
Perform crossover or mutation as applicable;
Score candidate alignments using COFFEE objective
function;

end
Output highest-scoring multiple sequence alignment;

Algorithm 3: SAGA-COFFEE

Just as new versions of Clustal brought changes and improve-
ments to its methods, the Coffee family of software tools
continued to be developed and improved. In 2000, T-Coffee
(Tree-based Consistency Objective Function For alignment
Evaluation) was released, which took a different approach
than its predecessor. Like the original Coffee, T-Coffee uses a
pairwise alignment library to guide its evaluation, but unlike
the original program, it uses a more traditional progressive
alignment approach instead of a genetic algorithm. While T-
Coffee is still first and foremost a greedy, progressive method,
it also represents a direct effort to minimize the “greediness”
of the progressive alignment approach. [27].
Among progressive alignment techniques, T-Coffee’s two dis-
tinctive features are its use of heterogeneous data sources from
its pairwise alignment library, and its optimization method.
The former feature is similar to the original Coffee, but distinct
among progressive alignment tools, and intentionally was
designed to allow for a mixture of local and global pairwise
alignments. During development and testing, ClustalW was
used to construct the pairwise global alignments, and the
Lalign program from the FASTA package was used to generate
local alignments. To give priority to the most reliable pairings,

weights were assigned to the alignments in the library using
the same approach as the original Coffee program. When the
global and local alignment sets were combined to form the
library, duplicates were merged into a single entry and given
a weight equal to the sum of the two original entries. Finally,
the weights were adjusted using a process called library
extension. First, each aligned pair was checked against the
other sequences not in the pair, forming triplets. For example,
given sequences A, B, C, and D, and concerning ourselves
with the pairing of A and B, two triplets would be formed.
ACB would be formed by combining the pairwise alignment
AC with the pairwise alignment CB. Similarly, ADB would be
formed using the pairwise alignments AD and DB [27].

The objective function is based on a standard progressive
strategy similar to what is used in ClustalW, but integrates
information from the library during each step. The progressive
alignment uses a dynamic programming algorithm, but sets the
gap-opening and gap-extension penalties to zero (just as gap
penalties were not needed in the original genetic-algorithm-
based Coffee calculation). Also as in the original Coffee, the
weights from the library are used in place of the weights from
a standard substitution matrix, which reduces the “greedy”
effect by utilizing information that was specially generated for
the current set of sequences, not only the position-dependent
weighting present in the original Coffee scheme, but also the
context-aware weighting produced from the library extension
process described above. Once the dynamic programming al-
gorithm has completed an alignment step, Feng and Doolittle’s
“once a gap always a gap” principle is maintained; once a gap
is introduced in the progressive alignment, it is never removed.
The key difference here is that the placement of those gaps is
better informed by data customized for this specific alignment,
resulting in fewer misplaced gaps earlier in the process [27].

Build global alignment-based pairwise library using
ClustalW;

Build local alignment-based pairwise library using FASTA’s
Lalign;

Merge global and local libraries into one;
Assign weights to library entries using library extension
method;

Set gap opening penalty = 0 and gap extension penalty = 0;
while there remains sequences not part of the multiple
sequence alignment do

Perform Feng and Doolittle’s progressive alignment
algorithm using weights from pairwise library in place
of substitution matrix;

end
Output final multiple sequence alignment;

Algorithm 4: T-Coffee

When tested using the BaliBase database of multiple sequence
alignments, T-Coffee produced the highest average accuracy
among four leading software tools (including ClustalW, Prrp,
and Dialign), especially on more divergent test cases. The
increased accuracy came at the expense of computational cost
and running time; even when given a previously generated
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tinctive features are its use of heterogeneous data sources from 
its pairwise alignment library, and its optimization method. The 
former feature is similar to the original Coffee, but distinct among 
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allow for a mixture of local and global pairwise alignments. During 
development and testing, ClustalW was used to construct the 
pairwise global alignments, and the Lalign program from the FASTA 
package was used to generate local alignments. To give priority to 
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the most reliable pairings, weights were assigned to the alignments in 
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with the pairing of A and B, two triplets would be formed.
ACB would be formed by combining the pairwise alignment
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strategy similar to what is used in ClustalW, but integrates
information from the library during each step. The progressive
alignment uses a dynamic programming algorithm, but sets the
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based Coffee calculation). Also as in the original Coffee, the
weights from the library are used in place of the weights from
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When tested using the BaliBase database of multiple sequence
alignments, T-Coffee produced the highest average accuracy
among four leading software tools (including ClustalW, Prrp,
and Dialign), especially on more divergent test cases. The
increased accuracy came at the expense of computational cost
and running time; even when given a previously generated

When tested using the BaliBase database of multiple sequence 
alignments, T-Coffee produced the highest average accuracy among 
four leading software tools (including ClustalW, Prrp, and Dialign), 
especially on more divergent test cases. The increased accuracy came 
at the expense of computational cost and running time; even when 
given a previously generated pairwise library, T-Coffee ran about two 
times slower than ClustalW [27]. 

Stochastic Optimization Methods For Multiple 
Sequence Alignment

Since multiple sequence alignment can be viewed as an 
optimization problem with the goal of maximizing the scoring 
function, it comes as no surprise that stochastic optimization and 

swarm intelligence techniques have emerged as a prevailing option for 
improving the computational cost of MSA. The two major advantages 
of using stochastic methods are a lower degree of complexity and 
greater flexibility in the objective function used for scoring, while a 
major disadvantage is that, by their nature, they do not guarantee 
optimality [10].

Several stochastic techniques have been employed with success, 
but drawbacks still exist. For example, simulated annealing was 
pursued as an alternative method by Myers and Miller and others, but 
has since been given consideration only as an alignment improver. It 
proved to be too slow to converge and was too often trapped by local 
optima [6].

Evolutionary algorithms such as genetic algorithms were ex-
plored, resulting in techniques such as Notredame and Higgins’ SAGA 
(Sequence Alignment by Genetic Algorithm) [3]. Genetic algorithms 
have proven to be a good alternative for finding optimal solutions for 
a small number of sequences, but still experience exponential growth 
in computational time as the number of sequences increases [6].

Novel combinations of techniques and objective functions pro-
vide reasons for optimism. A recent research project modified the 
objective function used by the genetic algorithm-based tool MSA-GA. 
MSA-GA normally uses a weighted sum-of-pairs (WSP) objective 
function, but weighted sum-of-pairs is known to have limitations 
when dealing with sequences with regions of low similarity. In 2014, 
Amorim, Zafalon, Neves, Pinto, Valencio, and Machado replaced the 
weighted sum-of-pairs objective function with Notredame’s COFFEE 
with promising results. The COFFEE-based implementation 
outperformed the WSP-based implementation in 81% of test cases 
with low similarity [28].

Ortuno et al. experimented with various machine learning and 
regression techniques to determine if they could predict the alignment 
quality of the several alignment tools, using 216 sequence sets from 
Balibase as the benchmark. Features from well-known biological 
databases were extracted and used to supplement and enrich the 
sequence information. The study used four different regression 
techniques: regression trees, bootstrap aggregation trees, least-
squares support vector machines (LS-SVM) and Gaussian processes. 
These techniques were used to estimate each alignment’s quality, 
with the alignment’s Baliscore value used as the benchmark. The 
most popular currently used alignment evaluation systems, including 
PAM, BLOSUM, RBLOSUM, and STRIKE, were also reference for 
comparison purposes. The normalized mutual information feature 
selection (NMIFS) procedure was used to determine which of the 
twenty-two selected biological features were most relevant for each 
model and thus worth of inclusion. The regression techniques were 
able to predict the quality of the alignments with a high correlation 
against the Baliscore values (R > 0.9), while STRIKE had a slightly 
worse correlation (R = 0.714) and PAM250, BLOSUM62, and 
GONNET had a far worse correlation with Baliscore (R < 0.21). The 
Gaussian and LS-SVM techniques performed the best of the four 
regression techniques studied, with the Gaussian processes being 
slightly better overall. The authors suggested that, in addition to using 
supplementary biological features and multiple scoring methods for 
alignment evaluation, these regression models could be used in the 
design and optimization of MSA tools, perhaps in the design of objec-
tive functions. They also suggested that traditional alignment quality 
scoring methods may not use enough information to provide realistic 
evaluations of alignments, to the detriment of the software tools that 
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rely on them [29].

Particle Swarm Optimization For Multiple Sequence 
Alignment

In addition to the stochastic methods mentioned in the previ-
ous section, particle swarm optimization-based techniques for 
multiple sequence alignment have been utilized with positive results. 
However, the standard particle swarm algorithm must be modified 
in a few key ways to successfully adapt it to sequence alignment. 
First, problem-specific operators should be designed to achieve better 
results. Second, experimentation on parameters is often needed to 
obtain the most appropriate range of values. Third, problem-specific 
domain knowledge must be incorporated to reduce randomness and 
the computa-tional time required [2].

8

pairwise library, T-Coffee ran about two times slower than
ClustalW [27].

V. STOCHASTIC OPTIMIZATION METHODS FOR MULTIPLE
SEQUENCE ALIGNMENT

Since multiple sequence alignment can be viewed as an
optimization problem with the goal of maximizing the scoring
function, it comes as no surprise that stochastic optimization
and swarm intelligence techniques have emerged as a prevail-
ing option for improving the computational cost of MSA. The
two major advantages of using stochastic methods are a lower
degree of complexity and greater flexibility in the objective
function used for scoring, while a major disadvantage is that,
by their nature, they do not guarantee optimality [10].

Several stochastic techniques have been employed with suc-
cess, but drawbacks still exist. For example, simulated anneal-
ing was pursued as an alternative method by Myers and Miller
and others, but has since been given consideration only as an
alignment improver. It proved to be too slow to converge and
was too often trapped by local optima [6].

Evolutionary algorithms such as genetic algorithms were ex-
plored, resulting in techniques such as Notredame and Hig-
gins’ SAGA (Sequence Alignment by Genetic Algorithm) [3].
Genetic algorithms have proven to be a good alternative for
finding optimal solutions for a small number of sequences, but
still experience exponential growth in computational time as
the number of sequences increases [6].

Novel combinations of techniques and objective functions pro-
vide reasons for optimism. A recent research project modified
the objective function used by the genetic algorithm-based tool
MSA-GA. MSA-GA normally uses a weighted sum-of-pairs
(WSP) objective function, but weighted sum-of-pairs is known
to have limitations when dealing with sequences with regions
of low similarity. In 2014, Amorim, Zafalon, Neves, Pinto,
Valencio, and Machado replaced the weighted sum-of-pairs
objective function with Notredame’s COFFEE with promising
results. The COFFEE-based implementation outperformed the
WSP-based implementation in 81% of test cases with low
similarity [28].

Ortuno et al. experimented with various machine learning
and regression techniques to determine if they could predict
the alignment quality of the several alignment tools, using
216 sequence sets from Balibase as the benchmark. Features
from well-known biological databases were extracted and
used to supplement and enrich the sequence information.
The study used four different regression techniques: regres-
sion trees, bootstrap aggregation trees, least-squares support
vector machines (LS-SVM) and Gaussian processes. These
techniques were used to estimate each alignment’s quality,
with the alignment’s Baliscore value used as the benchmark.
The most popular currently used alignment evaluation sys-
tems, including PAM, BLOSUM, RBLOSUM, and STRIKE,
were also reference for comparison purposes. The normalized
mutual information feature selection (NMIFS) procedure was
used to determine which of the twenty-two selected biological
features were most relevant for each model and thus worthy

of inclusion. The regression techniques were able to predict
the quality of the alignments with a high correlation against
the Baliscore values (R > 0.9), while STRIKE had a slightly
worse correlation (R = 0.714) and PAM250, BLOSUM62,
and GONNET had a far worse correlation with Baliscore
(R < 0.21). The Gaussian and LS-SVM techniques performed
the best of the four regression techniques studied, with the
Gaussian processes being slightly better overall. The authors
suggested that, in addition to using supplementary biological
features and multiple scoring methods for alignment evalua-
tion, these regression models could be used in the design and
optimization of MSA tools, perhaps in the design of objec-
tive functions. They also suggested that traditional alignment
quality scoring methods may not use enough information to
provide realistic evaluations of alignments, to the detriment of
the software tools that rely on them. [29].

VI. PARTICLE SWARM OPTIMIZATION FOR MULTIPLE
SEQUENCE ALIGNMENT

In addition to the stochastic methods mentioned in the previ-
ous section, particle swarm optimization-based techniques for
multiple sequence alignment have been utilized with positive
results. However, the standard particle swarm algorithm must
be modified in a few key ways to successfully adapt it to
sequence alignment. First, problem-specific operators should
be designed to achieve better results. Second, experimentation
on parameters is often needed to obtain the most appropriate
range of values. Third, problem-specific domain knowledge
must be incorporated to reduce randomness and the computa-
tional time required [2].

Initialize particle swarm;
while termination criterion is not met do

for i = 1 to Population Size do
for d = 1 to Dimension do

vid = vid + c1 · r1 · (pid − xid)+ c2 · r2 · (pgd − xid);
xid = xid + vid ;
Next d;

end
if f (xi)< f (pi) then

pi = xi;
end
Next i;

end
pg = min(pi);

end
Algorithm 5: Original Particle Swarm Optimization

Many techniques employ a particle swarm in conjunction
with another method, or in addition to an existing software
tool, in order to improve the latter’s results. One of the first
such techniques, published in 2003, achieved better protein
sequence alignments by using a combination of particle swarm
optimization and an evolutionary algorithm to train hidden
Markov models (HMMs). The general approach to using hid-
den Markov models to perform multiple sequence alignment,
apart from using a particle swarm, is as follows: the set of

Many techniques employ a particle swarm in conjunction with 
another method, or in addition to an existing software tool, in order 
to improve the latter’s results. One of the first such techniques, 
published in 2003, achieved better protein sequence alignments 
by using a combination of particle swarm optimization and an 
evolutionary algorithm to train hidden Markov models (HMMs). 
The general approach to using hid-den Markov models to perform 
multiple sequence alignment, apart from using a particle swarm, is 
as follows: the set of states in the HMM is divided into three groups 
(match, insert, and delete), and the model moves between states using 
directed transitions with associated probabilities. The hidden Markov 
model uses a nondeterministic walk to generate a path of visited states 
and a sequence of emitted observables. The sequence of observables 
represents an unaligned sequence, and the goal is to find a path that 
yields the best alignment. The most probable state sequence path for 
each sequence is determined. Each match or insert state in the path 
emits the next symbol in the sequence, while a delete state emits a 
gap. Once this process has been completed for all of the sequences, 
they are aligned according to their common match or delete states in 
shared positions [11].

Before the hidden Markov model can be used, the transition and 
emission probabilities must be determined. The process of determining 
these probabilities is called "training" the hidden Markov model. No 
exact method for determining the probabilities has been discovered; 
one of the most well-known and widely-used approaches is the 
Baum-Welch (BW) method. Rasmussen and Krink used a particle 
swarm to improve the training, and seeded the swarm using initial 
solutions produced by the Baum-Welch algorithm and a Simulated 
Annealing (SA) algorithm. These two seed solutions were added to 

the randomly generated initial population of candidate solutions in 
the swarm. The candidate solutions were represented by encoding the 
transition and emission probabilities in the position vector of each 
particle, and either log-odds or sum-of-pairs was used as the objective 
function. New velocity vectors and particle movement were calculated 
as usual. Rasmussen and Krink added an evolutionary aspect to the 
particle swarm algorithm by including a breeding step at the end of 
each iteration, after the particles’ positions had been updated. Two 
particles bred with probability pb by performing a crossover operation 
on their position vectors and computing the arithmetic mean of their 
velocity vectors. After the breeding step, the next iteration proceeded 
as usual. At the conclusion of the algorithm, the global best position 
of the particles was considered the best hidden Markov model and the 
transition and emission probabilities associated with it were used to 
create the multiple sequence alignment. Experimental results showed 
that, compared to HMMs trained solely by the BW or SA algorithms, 
the PSO-trained version produced a final hidden Markov model with 
a better log-odds score and a final alignment with a better sum-of-
pairs score. Despite the improvement compared to other hidden 
Markov model-based approaches, this algorithm was not able to 
match the results of Clustal W or SAGA in terms of alignment quality 
[11].

In 2013, Sun, Palade, Wu, and Fang proposed another technique 
using hidden Markov models, this time trained by a random drift 
particle swarm. The random drift variation is inspired by the free 
electron model in metal conductors placed in an external electric 
field, and aims to improve the particle swarm’s ability to search the 
problem space by modifying the velocity updating calculation. In a 
standard particle swarm, the position of each particle, the particle’s 
best value, and the global best value are all converging to a single 
point. A particle’s directional movement towards this single point is 
similar to the drift motion of an electron in metal conductors in an 
external electric field. The free electron model shows that, in addition 
to directional movement caused by the electric field, these electrons 
are also in a seemingly random thermal motion, resulting in the 
electron’s motion being expressed as a combination of a drift motion 
and a random motion, with velocity of V = VR +VD. The random drift 
particle swarm optimization algorithm uses this analogy to change 
the velocity calculation of the swarm particles; The random velocity 
VR is calculated using the distance between the particle’s position and 
the mean best position, mbest , multiplied by a random number from a 
Gaussian distribution. The drift velocity VD is calculated as usual for 
a simple linear of directional movement. User-specified coefficients 
on VR and VD control the balance between global and local search in 
determining the new velocity of the particle [30].

The new algorithm also introduced a diversity control measure 
based on each particle’s best value to help prevent premature 
convergence. When a particle swarm is initialized, the particles have 
a significant degree of diversity, but as the algorithm continues, the 
particles begin to converge, which lessens the diversity. Of course, 
this convergence is desirable for agreeing on an optimal value, but at 
some point, if the population diversity is too low and the global best 
position happens to be at a local optima, the particles will be unable 
to escape that premature convergence. A diversity control strategy 
can help prevent this. The random drift particle swarm optimiza-
tion (RDPSO) algorithm calculates each particle’s Euclidean distance 
from the centroid of the swarm and sets a minimum distance for 
each iteration. If a particle’s distance crosses the threshold and is too 
low at a given iteration, it is altered to increase the distance until it is 
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larger than the minimum value again. This new algorithm is referred 
to as random drift particle swarm optimization with diversity guided 
search (RDPSO-DGS). When RDPSO-DGS was used to train a 
HMM in much the same way as Rasmussen and Krink’s method, 
and compared to training by a standard particle swarm and the 
standalone BW algorithm, it produced the best overall performance 
on two benchmark data sets. The resulting HMM produced the best 
overall multiple sequence alignment on the same data sets, even 
outperforming standard MSA tools such as ClustalW. However, the 
RDPSO-DGS algorithm was more time-consuming [30].

Particle swarm optimization has been used in multiple sequence 
alignment research in other ways beyond training hidden Markov 
models. For example, in 2007, Rodriguez, Nino, and Alonso used 
a particle swarm to improve an alignment originally obtained via 
ClustalX. In their experiment, each particle in the swarm represented 
a different candidate alignment, with each particle’s coordinates 
representing a set of vectors specifying the positions of the gaps in 
each sequence. ClustalX produced an initial alignment used to seed 
the swarm, and other particles were derived from this seed by applying 
a mutation operator similar to that of a genetic algorithm. The size 
of the swarm was set by the user. The allowed length of a candidate 
alignment was given as a range, with the minimum value equal to the 
longest sequence to be aligned, and the maximum value defaulting to 
twice the length of the longest sequence. The sum-of-pairs similarity 
score was used as the objective function to be optimized, and the 
particle best and global best values were the best similarity scores 
obtained [3].

This algorithm proposed a variant for particle motion similar to 
the crossover operator from genetic algorithms. A randomly selected 
crossover point separated each sequence into two segments. The 
distance between particles was measured as a percentage of similarity; 
that is, the distance was measured as the number of matching gaps 
between two candidate alignments divided by the total number of 
gaps. If the distance between two particles (for example, a candidate 
particle and the global best) was greater than 0.5, the longer segment 
of the candidate particle would be replaced with the longer segment 
of that same sequence from the global best particle. If the distance 
between the particles was less than 0.5, the shorter segment would 
be replaced. Given the data structure used to represent each particle, 
this is technically achieved by removing the candidate particle’s 
segment’s gap from the appropriate vector, and inserting the global 
best particle’s segment’s gaps into that vector [3].

The algorithm was tested using seven protein families from the 
BALIiBASE database, and the initial alignment from ClustalX used 
the PAM250 substitution matrix and a gap penalty of 10. The particle 
swarm’s termination criterion was 10 consecutive iterations without 
an improvement in the global best. Under these conditions, the 
algorithm was able to improve the initial results obtained by ClustalX 
in the majority of cases [3].

In 2008, Juang and Su combined particle swarm optimization 
with the standard pairwise dynamic programming progressive 
alignment technique in an effort to escape the latter’s tendency to be 
trapped by local optima due to its greedy approach. In their proposed 
MDPPSO algorithm, dynamic programming is used to perform 
pairwise alignment of all sequence pairs. Next, as in standard in 
progressive alignment, the highest scoring sequence pair is selected, 
and other sequences are added to the set iteratively. In Juang and Su’s 
algorithm, after each dynamic programming step, particle swarm 

optimization was used as an improver for the intermediate alignment, 
to help avoid being trapped by local optima. The particle swarm 
algorithm modified the aligned sequence prior to the next dynamic 
programming iteration, and then the progressive alignment algorithm 
proceeded. The algorithm was tested using the BLOSUM62 scoring 
matrix, a gap penalty of -4, with only 5 particles and 1000 iterations in 
the particle swarm. They employed a randomized inertia weight value 
w, and used 2 for the value of both c1 and c2 in the particle swarm 
velocity calculation. All other parameters were assigned commonly 
used values with acceptable results. In their experiments with 10 
different sets of proteins to be aligned, the MDPPSO algorithm 
produced superior alignments compared to ClustalW, T-Coffee, and 
other current software tools [4].

In 2009, Xu and Chen published research utilizing particle swarm 
optimization to perform multiple sequence alignment on its own, 
without the use of other tools or algorithms to initialize the swarm 
or conduct progressive alignment. Much like the approach taken by 
Rodriquez, Nino, and Alonso, a particle in the swarm represented 
a sequence alignment, and consisted of a set of vectors, where 
each vector specified the location of the gaps in a single sequence. 
However, in this case the swarm was initialized randomly. During 
initialization, in each particle, gaps were inserted at random positions 
into the sequences to produce an alignment. The number of gaps 
inserted varied, but was constrained by the maximum sequence 
length parameter L, which by default was set at 1.4 times the length 
of the longest sequence being aligned. The process was repeated 
until the desired number of starting alignments (particles) had been 
generated. Traditional sum-of-pairs scoring was used as the objective 
function [31].

Particle velocity and position updating were similar to that of 
a traditional particle swarm; each position vector in a particle was 
compared dimension-by-dimension against the particle’s personal 
best and the swarm’s global best values, and adjusted according to the 
standard formulas. A minor adjustment had to be added to prevent 
elements in the sequence from illegally swapping positions. Because 
the individual amino acids in a protein sequence must remain ordered, 
if a particle’s velocity and position calculations caused a given amino 
acid to move ahead of another amino acid in the sequence, the latter’s 
position was adjusted to be one more than the position of the former. 
After the particle’s velocity and position updates were finalized, if a 
given column in the alignment contained only gaps, that column was 
safely deleted from all of the sequences in the alignment at the end 
of the current iteration. At the end of each iteration, extra gaps were 
inserted into the current best alignment by a probability m to help 
avoid premature convergence to local optima [31].

Testing involved eight protein families from BALiBASE. 
Baseline alignments were created using ClustalX, using the PAM250 
substitution matrix, a gap open penalty of 10, and a gap extend penalty 
of 0.3. The proposed algorithm performed better than ClustalX in 
test cases with smaller sequences and shorter sequence lengths, and 
similar to ClustalX otherwise. Xu and Chen recommended future 
research using alternative scoring methods for the objective function, 
speed improvements, and other initialization techniques [31].

In 2014, Gao published a paper describing a multiple sequence 
alignment algorithm based on particle swarm optimization with 
inertia weights. As with earlier research described previously in 
this section, each dimensional coordinate in a particle is a vector 
representing the positions of gaps to be inserted into the sequence. 
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During each iteration, Gao used a random number generator to 
determine the new length of a particle’s candidate alignment, then 
used that length to determine the number of gaps that needed to 
be inserted into (or removed from) each sequence. Once that had 
been established, the velocity calculation was used to compare the 
current candidate to the best solutions, and determine where the 
new gaps should be inserted. The distinguishing characteristic of 
Gao’s implementation was the use of Notredame’s COFFEE as the 
objective function being optimized. Experimental results using a 
subset of the BALiBASE library produced positive results, although 
no substantial improvements were noted. Rather, the COFFEE-based 
particle swarm was viewed as an alternative, new solution for multiple 
sequence alignment that produced effective results [32].

Coincidentally, this same objective function substitution was also 
researched in 2014 by Amorim, Zafalon, Neves, Pinto, Valencio, and 
Machado. They worked with a genetic algorithm-based optimizer 
for multiple sequence alignment known as MSA-GA, and replaced 
the default weighted-sum-of-pairs objective function with COFFEE. 
Amorim found that the substitution produced better results than 
the standard MSA-GA settings when aligning sequences of lower 
similarity. This was not surprising, given COFFEE’s known strength 
in that situation [28].

Recent Developments For Quasi-Optimal Multiple 
Sequence Alignments

One of the key decisions in building a particle swarm for multiple 
sequence alignment involves how to encode the information in 
the particles. When using the swarm for a different purpose, such 
as to train a hidden Markov model, it is necessary for the particles 
to represent particular data structures. However, in the case of the 
swarm building or improving an alignment of sequences, a consensus 
seems to be forming. Based on three separate publications from three 
separate teams of researchers, all detailed in the previous section, 
the particle coordinate vectors represent the positions of the gaps in 
the alignment. This is both intuitive and efficient. Since the amino 
acids will remain the same in all of the candidate alignments, they 
do not need to be encoded in every particle. Storing a single copy of 
the actual sequences, without any gaps, saves memory space, and it 
is easy to construct an alignment by combining the sequences with 
the corresponding gap location information stored in the particle’s 
vectors.

The initialization of the particles in the swarm can be a crucial 
factor in the success of an optimization. For example, Rodriguez, 
Nino, and Alonso initialized their swarm by starting with an 
alignment from ClustalX and varying the particles using a mutation 
operator similar to that of a genetic algorithm, while Xu and Chen 
initialized their particles randomly. The UPS particle swarm in [33] 
borrows ideas from both of these approaches, as well as ideas found 
in Notredame’s COFFEE, to produce an initial swarm that is both of 
sufficient quality and sufficiently varied.

One of the primary advantages of using a particle swarm for 
function optimization is the ability to apply the same technique to 
many different target functions. In the case of multiple sequence 
alignment, previous research has focused on the same traditional 
metrics. Rodriguez, Nino, and Alonso and Xu and Chen’s research 
both used the standard sum-of-pairs scoring method as the objective 
function to be optimized by the swarm; Gao’s research used 
Notredame’s original COFFEE function. Xu and Chen specifically 

recommended that future research explore alternative scoring 
methods for the objective function, and the research in [33] attempts 
to expand on those previous works by introducing a new objective 
function named Universal Partitioning Search, or UPS. The UPS 
function is summarized in more detail in the following section.

Another distinguishing characteristic of a particle swarm im-
plementation is the metric used to determine the distance between a 
particle’s current position and its personal best or global best position, 
and the application of that distance metric to the particle swarm’s 
standard velocity and position updating formulas. When optimizing 
most mathematical functions, such as the Griewank function a 
standard Euclidean measure of distance suffices, but multiple sequence 
alignment may call for more novel approaches. As discussed in the 
previous section, Rodriguez used a simple percentage of similarity 
measure to determine distance, and employed a crossover technique 
to move the particles. Xu attempted to keep the standard velocity 
and position updating formulas intact, making minor adjustments as 
necessary when the Euclidean calculations moved a given amino acid 
to an illegal position in the alignment. Gao used a random number 
generator to change the target lengths of candidate alignments prior 
to updating the particle’s velocity and position. The research in [33] 
uses a novel method of determining particle distance and movement, 
inspired by wavelet-based volume morphing techniques from the 
field of computer animation and image processing.

Reviewing the prior research on particle swarm optimization 
for multiple sequence alignment led to a few key takeaways and 
conclusions. First, particle swarm optimization has proven to be 
versatile. It has been used as a trainer, to improve the results of 
an alignment obtained from another method, and to produce an 
alignment by itself. In all cases, the results have been positive and 
promising, but open research questions and opportunities for further 
improvement remain plentiful.

Particle initialization

The particle swarm is initialized using a seed alignment, whose 
source can be set using a parameter value at runtime. There are 
currently three choices for seed values, but other options could be 
added easily. Two of the existing choices take a cue from Rodriguez, 
Nino, and Alonso, seeding the swarm using an alignment produced 
by either Clustal Omega or T-Coffee. When either of these options are 
used, the particle swarm takes on the role of an alignment improver.

The third initialization option, which is considered the default and 
most widely used during testing, takes inspiration from Notredame’s 
original COFFEE function by utilizing a library of all possible 
pairwise combinations of the sequences being aligned. The library 
was built by aligning each of the sequence pairs with the Needleman-
Wunsch algorithm, using the BLOSUM62 scoring matrix and a gap 
penalty of -4. (These are the same settings used by Juang and Su in 
their research.)

Given n sequences to be aligned, each sequence is found in n-1 
pairwise alignments in the library. To initialize the swarm, for a given 
sequence, each of its n-1 pairwise alignments is consulted, and the 
longest version of that sequence is selected. The seed particle, then, 
consists of the longest versions of each of the sequences taken from 
the pairwise library, padded with gaps at the end as needed to reach 
the length of the longest sequence.

To complete initialization, in [33] each particle in the swarm 
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must have its values perturbed so they are not identical. Rather 
than doing so completely randomly (as Xu and Chen reported) or 
using a different stochastic method (such as the genetic mutation 
technique used by Rodriguez, Nino, and Alonso), the particles 
in the swarm are divided evenly among multiple perturbation 
techniques, including:

1) Padding individual sequences with a random number of 
gaps in the front or back

2) Inserting a random number of gaps into a random gap 
segment in each sequence

3) Inserting a new segment of random length into each 
sequence at a random location

4) Removing a random number of gaps from a random gap 
segment in each sequence

5) Removing a randomly selected segment in each se-quence

For each of these techniques, the resulting sequences are checked 
for consistent lengths. If the sequence lengths in an initialized particle 
differ, the ends of the shorter sequences are padded with gaps to make 
them all the same length.

The random element of the lengthening or shortening of each 
candidate alignment is controlled by a user-supplied runtime 
parameter specifying the maximum percentage change in length. 
Multiple values for the parameter were tested in [33]; the best 
value to use varied depending upon the sequences being aligned, 
but 20 percent proved to be a good starting point, meaning that 
the initialized sequences were all between 100% and 120% of the 
length of the seed alignment. As a result of experimental testing, the 
sequences are never shorter than the seed alignment; in the case of 
the last two techniques, padding at the end of the sequences ensures 
they return to that minimum length. A more thorough investigation 
of the experimental results led to the default value of 20 percent. The 
full particle initialization routine can be seen in algorithm 6. Once 
initialization was complete, the candidate particles were ready to be 
scored using the objective function so that the initial pbest and gbest 
values could be determined.

The universal partitioning search optimization function

If one is not concerned with penalties associated with gap 
insertion, it is trivial to create a multiple sequence alignment with 
amino acids perfectly aligned but spaced far apart. This also increases 
the potential for orphans to occur in the alignment. This strategy can 
result in high scores under certain circumstances, but the resulting 
alignments are not desirable or biologically sound.

The goal of the new Universal Partitioning Search optimization 
function in [33] is to penalize egregious gap insertions and favor 
alignment candidates with large blocks of homogeneous columns. 
To that end, the UPS function considers not only the individual 
column-wise matching score between the sequences being aligned, 
but also the effects of that column on the quality of the alignment 
before and after it. An alignment candidate is split into all possible 
pairwise alignments, and each pair is scored individually. While 
traversing through each pair column-by-column, three partitions 
are created at each step. The first partition includes all columns in 
the pairwise alignment leading up to the current column. The second 

partition is the current column itself. The final partition includes 
the remaining columns from the current column to the end of the 
pairwise alignment.

N = number of particles in the swarm
Create seed particle from user-specified source alignment (Clustal 

Omega, T-Coffee, or longest pairwise library sequences)
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To complete initialization, in [33] each particle in the swarm
must have its values perturbed so they are not identical. Rather
than doing so completely randomly (as Xu and Chen reported)
or using a different stochastic method (such as the genetic
mutation technique used by Rodriguez, Nino, and Alonso),
the particles in the swarm are divided evenly among multiple
perturbation techniques, including:

1) Padding individual sequences with a random number of
gaps in the front or back

2) Inserting a random number of gaps into a random gap
segment in each sequence

3) Inserting a new segment of random length into each
sequence at a random location

4) Removing a random number of gaps from a random gap
segment in each sequence

5) Removing a randomly selected segment in each se-
quence

For each of these techniques, the resulting sequences are
checked for consistent lengths. If the sequence lengths in an
initialized particle differ, the ends of the shorter sequences are
padded with gaps to make them all the same length.
The random element of the lengthening or shortening of
each candidate alignment is controlled by a user-supplied
runtime parameter specifying the maximum percentage change
in length. Multiple values for the parameter were tested in [33];
the best value to use varied depending upon the sequences
being aligned, but 20 percent proved to be a good starting
point, meaning that the initialized sequences were all between
100% and 120% of the length of the seed alignment. As a
result of experimental testing, the sequences are never shorter
than the seed alignment; in the case of the last two techniques,
padding at the end of the sequences ensures they return to
that minimum length. A more thorough investigation of the
experimental results led to the default value of 20 percent. The
full particle initialization routine can be seen in algorithm 6.
Once initialization was complete, the candidate particles were
ready to be scored using the objective function so that the
initial pbest and gbest values could be determined.

B. The Universal Partitioning Search Optimization Function

If one is not concerned with penalties associated with gap
insertion, it is trivial to create a multiple sequence alignment
with amino acids perfectly aligned but spaced far apart.
This also increases the potential for orphans to occur in the
alignment. This strategy can result in high scores under certain
circumstances, but the resulting alignments are not desirable
or biologically sound.
The goal of the new Universal Partitioning Search optimization
function in [33] is to penalize egregious gap insertions and
favor alignment candidates with large blocks of homogeneous
columns. To that end, the UPS function considers not only the
individual column-wise matching score between the sequences
being aligned, but also the effects of that column on the
quality of the alignment before and after it. An alignment
candidate is split into all possible pairwise alignments, and
each pair is scored individually. While traversing through

N = number of particles in the swarm
Create seed particle from user-specified source alignment

(Clustal Omega, T-Coffee, or longest pairwise library
sequences)

for i = 1 to N do
if i < 0.2N then

xi = seed particle perturbed by padding front and
back

else if i < 0.4N then
xi = seed particle perturbed by adding gaps to
existing segment(s)

else if i < 0.6N then
xi = seed particle perturbed by removing gaps from
existing segment(s)

else if i < 0.8N then
xi = seed particle perturbed by adding new gap
segment

else
xi = seed particle perturbed by removing existing gap

segment
end
if Sequences in xi have different lengths then

Add gaps to end of shorter sequences until all
lengths are equal;

end
end

Algorithm 6: Particle Initialization

each pair column-by-column, three partitions are created at
each step. The first partition includes all columns in the
pairwise alignment leading up to the current column. The
second partition is the current column itself. The final partition
includes the remaining columns from the current column to the
end of the pairwise alignment.

The Needleman-Wunsch algorithm is applied to all three parti-
tions, with the score for each partition equal to the lower-right
entry in the Needleman-Wunsch scoring matrix produced for
the alignment of that partition. The sum of these three scores
is compared to the Needleman-Wunsch score for the pairwise
alignment as a whole, yielding a subscore for the current
column. The subscores of all of the columns are summed
and then divided by the length of the candidate alignment,
producing the average score across all of the columns for that
pairwise alignment. This process is repeated for all pairwise
alignments in the candidate alignment, summing all of the
average scores, and ultimately dividing by the number of
pairwise alignments to arrive at the overall average score for
the candidate alignment as a whole. This process is shown in
algorithm 7.

After the UPS objective function was applied to the initialized
particles, it was time to iterate through the standard particle
swarm optimization routine (see algorithm 5). In order to do
so, a distance metric and calculations for particle velocity and
movement needed to be specified.

The Needleman-Wunsch algorithm is applied to all three parti-
tions, with the score for each partition equal to the lower-right entry in 
the Needleman-Wunsch scoring matrix produced for the alignment 
of that partition. The sum of these three scores is compared to the 
Needleman-Wunsch score for the pairwise alignment as a whole, 
yielding a subscore for the current column. The subscores of all of the 
columns are summed and then divided by the length of the candidate 
alignment, producing the average score across all of the columns 
for that pairwise alignment. This process is repeated for all pairwise 
alignments in the candidate alignment, summing all of the average 
scores, and ultimately dividing by the number of pairwise alignments 
to arrive at the overall average score for the candidate alignment as a 
whole. This process is shown in algorithm 7.

After the UPS objective function was applied to the initialized 
particles, it was time to iterate through the standard particle swarm 
optimization routine (see algorithm 5). In order to do so, a distance 
metric and calculations for particle velocity and movement needed 
to be specified.

Figure-2: One-Dimensional Correspondence Mapping [35].
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n = number of sequences in candidate alignment;
l = length of candidate alignment;
p = number of pairwise combinations of sequences;
for j = 0 to n-2 do

A = jth sequence in the candidate alignment;
for k = j+1 to n-1 do

B = kth sequence in the candidate alignment;
candidateScore =

NeedlemanWunsch(A[0, l −1],B[0, l −1]);
subtotal = 0;
for i = 0 to l-1 do

term1, term2, term3,columnTotal = 0;
if i > 0 then

term1 =
NeedlemanWunsch(A[0, i−1],B[0, i−1]);

end
term2 = NeedlemanWunsch(A[i, i],B[i, i]);
if i < l −1 then

term3 = NeedlemanWunsch(A[i+1, l −
1],B[i+1, l −1]);

end
if term1+ term2+ term3 > 0 then

columnTotal =
(term1+ term2+ term3)/candidateScore;

end
subtotal+= columnTotal;

end
upsScore+= subtotal/l;

end
end
upsScore = upsScore/p;
return upsScore;

Algorithm 7: UPS Scoring Function

C. Applying Computer Graphics Techniques for Particle Dis-
tance and Motion

In its first design of the UPS particle swarm in [33], the
standard Hamming distance was used as the measurement
between a particle’s current position and its pbest or gbest
position. The Hamming distance represented the number of
gap placements between the two that differed. Velocity and
particle movement were based on this Hamming distance, and
attempted to move a candidate particle towards the pbest or
gbest values by reducing the difference in Hamming values.
In the standard particle swarm velocity formula vid = vid +
c1 · r1 · (pid − xid) + c2 · r2 · (pgd − xid), the first term is the
particle’s previous velocity, and the second and third terms
are the distances between the pbest and gbest , respectively.
In trials where a maximum velocity value, Vmax, was used,
particles tended to achieve maximum velocity very early in the
program’s execution, and remained there until convergence.
Unsurprisingly, convergence also tended to happen quickly,
because gaps were added rapidly until they matched the
number of gaps found in the best particles. This led to particles
frequently becoming trapped by local optima, because they
became too similar to the pbest or gbest too soon; if an early

gbest value was actually a local optima, the particles would
rush there too quickly and not give the algorithm a chance to
find a better gbest .

A second attempt in [33] retreated from the Hamming dis-
tance approach, and tried a simpler counting method that
simply counted how many gaps the particle contained in
each sequence, and subtracted that value from the number of
gaps in the pbest or gbest . This allowed for both positive and
negative distances, with positive distances indicating that the
best coordinates contained more gaps than the candidate par-
ticle, and negative distances indicating the candidate particle
contained more gaps. The possibility of both positive and neg-
ative distances allowed the velocity calculation to increase or
decrease from one iteration to the next, with positive velocities
causing gaps to be added to the candidate particle, and negative
velocities causing gaps to be removed. Unfortunately, the net
effect was the opposite as the revised Hamming distance
technique. As the particles approached the same number of
gaps as the pbest or gbest values, their velocity’s absolute
value approached zero early in the program’s execution and
stayed there. This premature convergence resulted in little to
no change from one iteration to the next, and did not solve
the local optima tendency.

It became clear a more nuanced and sophisticated view of
particle distance and movement was needed.

In the field of computer image processing, “morphing” is a
technique used to create a metamorphosis from one image
to another by specifying a warp that distorts the first image
until it resembles the second. The technique produces a
sequence of images such that the early images in the sequences
more closely resemble the first source image. As the process
continues, the middle image of the sequence is the average
of the two source images, and the latter images increasingly
resemble the second source image [34].

A challenge to implementing this technique is the “corre-
spondence problem,” which involves determining which el-
ements of the first source image should be mapped to a
given element of the second source image. He, Wang, and
Kaufman addressed this problem using a wavelet transform.
They explained their approach first in one dimension, and then
extended it to three dimensions. The one-dimensional case is
of primary interest here. We begin with two one-dimensional
objects, A and B, each containing multiple object segments.
Without loss of generality, we define A containing m object
segments and B containing n object segments, with m greater
than or equal to n. Each object segment in A must be mapped
to only one object segment in B, and the object segments of
A should be mapped onto B as evenly as possible to minimize
shape distortion. Thus, the optimal correspondence is the one
that most “evenly” distributes the m segments of A onto the n
segments of B by minimizing the variance using this formula
[35]:
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Applying computer graphics techniques for particle dis-
tance and motion

In its first design of the UPS particle swarm in [33], the standard 
Hamming distance was used as the measurement between a particle’s 
current position and its pbest or gbest position. The Hamming distance 
represented the number of gap placements between the two that 
differed. Velocity and particle movement were based on this Hamming 
distance, and attempted to move a candidate particle towards the pbest 
or gbest values by reducing the difference in Hamming values. In the 
standard particle swarm velocity formula vid = vid + c1 r1 (pid-xid ) + 
c2.r2.(pgd-xid ), the first term is the particle’s previous velocity, and 
the second and third terms are the distances between the pbest and 
gbest , respectively. In trials where a maximum velocity value, Vmax, 
was used, particles tended to achieve maximum velocity very early 
in the program’s execution, and remained there until convergence. 
Unsurprisingly, convergence also tended to happen quickly, because 
gaps were added rapidly until they matched the number of gaps 
found in the best particles. This led to particles frequently becoming 
trapped by local optima, because they became too similar to the pbest 
or gbest too soon; if an early gbest value was actually a local optima, the 
particles would rush there too quickly and not give the algorithm a 
chance to find a better gbest .

A second attempt in [33] retreated from the Hamming dis-
tance approach, and tried a simpler counting method that simply 
counted how many gaps the particle contained in each sequence, and 
subtracted that value from the number of gaps in the pbest or gbest . 

This allowed for both positive and negative distances, with positive 
distances indicating that the best coordinates contained more gaps 
than the candidate particle, and negative distances indicating the 
candidate particle contained more gaps. The possibility of both 
positive and negative distances allowed the velocity calculation to 
increase or decrease from one iteration to the next, with positive 
velocities causing gaps to be added to the candidate particle, and 
negative velocities causing gaps to be removed. Unfortunately, the net 
effect was the opposite as the revised Hamming distance technique. 
As the particles approached the same number of gaps as the pbest or 
gbest values, their velocity’s absolute value approached zero early in the 
program’s execution and stayed there. This premature convergence 
resulted in little to no change from one iteration to the next, and did 
not solve the local optima tendency.

It became clear a more nuanced and sophisticated view of particle 
distance and movement was needed.

In the field of computer image processing, “morphing” is a 
technique used to create a metamorphosis from one image to another 
by specifying a warp that distorts the first image until it resembles the 
second. The technique produces a sequence of images such that the 
early images in the sequences more closely resemble the first source 
image. As the process continues, the middle image of the sequence 
is the average of the two source images, and the latter images 
increasingly resemble the second source image [34].

A challenge to implementing this technique is the “corre-
spondence problem,” which involves determining which elements 
of the first source image should be mapped to a given element of 
the second source image. He, Wang, and Kaufman addressed this 
problem using a wavelet transform. They explained their approach 
first in one dimension, and then extended it to three dimensions. The 
one-dimensional case is of primary interest here. We begin with two 
one-dimensional objects, A and B, each containing multiple object 
segments. Without loss of generality, we define A containing m object 
segments and B containing n object segments, with m greater than 
or equal to n. Each object segment in A must be mapped to only one 
object segment in B, and the object segments of A should be mapped 
onto B as evenly as possible to minimize shape distortion. Thus, the 
optimal correspondence is the one that most “evenly” distributes the 
m segments of A onto the n segments of B by minimizing the variance 
using this formula [35]:
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For a given example, the second term inside the parentheses is a 
constant, representing the ratio between the total length of segments 
in A and the total length of segments in B. The individual lengths 
of the segments of B are also constant, and the denominator of the 
first term will iterate through those lengths. The values for w (the 
combined width of the segments from A being mapped to the current 
segment of B) will change depending on the correspondence mapping 
being considered [35]. The correspondence mapping between object 
segments that produces the minimum variance is considered optimal. 
Once it has been determined, morphing between the two objects can 
proceed.

This approach has been applied to particle swarm optimization 
for multiple sequence alignment in [33]. Each particle contains a 
candidate alignment, and each sequence in that candidate alignment 
contains segments of gaps in between the amino acids. In this way, a 
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sequence in the candidate alignment corresponds to the object A, and 
the gap segments in that sequence correspond to the m segments. The 
second source object, B, corresponds to either the particle’s personal 
best (pbest) or the swarm’s global best (gbest ), and those gap segments 
correspond to the n segments. For each particle in the swarm, He, 
Wang, and Kaufman’s variance calculation and one-dimensional 
correspondence mapping technique are applied to the gap segments 
in each sequence, obtaining the optimal mapping between the gap 
segments in the particle’s current alignment and the gap segments in 
the best alignment. This is shown in algorithm 8.

A = collection of m gap segments from candidate particle;
B = collection of n gap segments from pbest or gbest particle;
Mi, j = collection of possible correspondence mappings,

mapping the ith segment(s) of A to the jth segment of B;
V = array of variance values, with length equal to the

number of mappings in M;
for k = 1 to Number of Mappings in M do

Vk = result of variance calculation shown in formula ( );
end
Vmin = min(Vk);
Moptimal = mapping corresponding to Vmin;
Algorithm 8: Particle-Based Minimum Variance and Corre-
spondence Mapping

The following two examples illustrate this approach. For both, 
assume we are given two sequences, A (containing 5 gap segments) and 
B (containing 3 gap segments). There are six possible correspondence 
mappings from A to B, listed in Table 1. Going forward, each mapping 
will be referred to by the number in the leftmost column.

For the first example, A contains 5 gap segments and a total of 
12 gaps, while B has 3 gap segments and a total of 10 gaps. The gap 
placements of the two segments are shown in Figure 3.

Applying the variance formula to this example, the second term 
will always be 1.2 (12 divided by10). The lengths of the segments 
in B (used in the denominator of the first term) are 4, 3, and 3. The 
values for w, the full variance calculation, and the final result for each 

possible mapping are presented in Table 2.

The table indicates correspondence mapping #6 is the optimal 
one to use, which is in Figure 4.

For the second example, as before, A has 5 segments and a total of 
12 gaps, and B contains three segments and a total of 10 gaps. But, the 
distribution of the gaps varies, as shown in Figure 5.

Once again, the second term of the variance calculation will always 
be 1.2 (12 divided by10). The lengths of the segments in B (used in the 
denominator of the first term) are 2, 3, and 5. The values for w, the full 
variance calculation, and the final result for each possible mapping 
are presented in Table 3.

This suggests that correspondence mapping #1 is the optimal one 
to use, which is in Figure 6.

Once a correspondence mapping has been established between 
the two sequences, it is used to move the particles from one iteration 
to the next. In place of the traditional PSO’s velocity and position 
calculations, the particle’s candidate alignment is morphed towards 
the pbest or gbest alignment. Traditional particle swarm optimization 
uses a random number generator to determine the extent that 
the distance between the particle’s current position and the best 
position(s) should influence the particle’s movement. Likewise, 
random number generators are used in the morphing technique to 
determine the extent to which the current particle’s gap segments 
will morph towards the gap segments in the best-scoring alignments, 
with smaller random numbers keeping the end result closer to the 
particle’s original segments, and larger random numbers pushing 
them towards the best segments.

For example, in the final correspondence mapping in Figure 
6, sequence A’s second gap segment (in positions 7 through 12) is 
mapped to sequence B’s second gap segment (in positions 9 through 
11). The morphing technique must determine the “velocity” of A’s 
segment so it can change its position; that is, how closely will it 
resemble B’s gap segment at the end of this iteration? Since the 
segment from A is starting with a length of 6 and is mapped to a 

Mapping B1 B2 B3
1 Al A2 A3:A5
2 Al A2:A3 A4:A5
3 Al A2:A4 A5
4 Al:A2 A3 A4:A5
5 Al:A2 A3:A4 A5
6 Al:A3 A4 A5

Table 1: Six possible correspondence mappings from A to B.

Figure 3: Sequences for Correspondence Mapping Example 1.
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segment with a length of 3, the velocity and position change of 
this iteration could conclude with a segment length of 3, 4, 5, or 
6. In this case, a generated random number between 0 and 0.25 
would imply a small velocity, and thus a small position change, 
keeping the segment as it is. A random number between 0.25 
and 0.5 would move the particle slightly towards sequence B by 
reducing the segment length to 5 gaps, and a number between 
0.5 and 0.75 would move it closer to sequence B by reducing the 
segment length to 4 gaps. A random number greater than 0.75 
would imply a large velocity and fully move the particle’s position 

towards sequence B’s best position, so that the gap segment length 
is reduced to 3. More formally, the calculations for this particle 
movement are shown in algorithm 9.

m = number of gaps in the current particle’s gap segment A; 
n = number of gaps in the pbest or gbest particle’s gap segment B;
change = f loor((abs(n-m) + 1) random()) sign(n-m); 
m = m + change;
Algorithm 9: Correspondence Mapping - Morphing Case

Mapping W1 W2 W3 Variance Calculation Result
1 3 2 7 (0.75-1.2)^2 + (0.67-1.2)^2 + (2.33-1.2)^2 1.77139
2 3 3 6 (0.75-1.2)^2 + (1-1.2)^2 + (2-1.2)^2 0.8825
3 3 7 2 (0.75-1.2)^2 + (2.33-1.2)^2 + (0.67-1.2)^2 1.77139
4 5 1 6 (1.25-1.2)^2 + (0.33-1.2)^2 + (2-1.2)^2 1.39361
5 5 5 2 (1.25-1.2)^2 + (1.67-1.2)^2 + (0.67-1.2)^2 0.50472
6 6 4 2 (1.5-1.2)^2 + (1.33-1.2)^2 + (0.67-1.2)^2 0.39222

Table 2: Variances for each possible mapping in example 1.

Figure 4: Final Correspondence Mapping for Example 1.

Figure-5: Sequences for Correspondence Mapping Example 2.

Mapping W1 W2 W3 Variance Calculation Result
1 2 6 4 (1-1.2)^2 + (2-1.2)^2 + (0.8-1.2)^2 0.84000
2 2 7 3 (1-1.2)^2 + (2.33-1.2)^2 4- (0.6-1.2)^2 1.68444
3 2 9 1 (1-1.2)^2 + (3-1.2)^2 + (0.2-1.2)^2 4.28000
4 8 1 3 (4-1.2)^2 + (0.33-1.2)^2 -I- (0.6-1.2)^2 8.95111
5 8 3 1 (4-1.2)^2 + (1-1.2)^2 4- (0.2-1.2)^2 8.88000
6 9 2 1 (4.5-1.2)^2 + (0.67-1.2)^2 + (0.2-1.2)^2 12.17444

Table 3: Variances for each possible mapping in example 2.
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The morphing case described in the previous paragraph is 
the simplest possibility, in which one segment from sequence A is 
mapped to one segment in sequence B. It may also be the case that 
multiple segments from A map to a single segment in B. In this case, 
multiple segments must be merged into one. In figure 6, this is seen 
in the rightmost three segments of sequence A being mapped to the 
rightmost segment of sequence B. Furthermore, the three segments in 
sequence A collectively contain four gaps, while the single sequence 
in sequence B contains five. Thus, in this “merge” case, the random 
number generator used for the velocity must determine two separate 
position changes: the total number of gap segments and the total 
number of gaps. In this implementation, the gap segments are merged 
first. In the current example, a random number less than 0.33 would 
keep all three rightmost segments of A separate, a random number 
between 0.33 and 0.67 would merge the first two segments but leave 
the third separated, and a random number 0.67 or greater would 
merge all three segments into one. Once the merging is complete, the 
number of gaps in the merged segments would be adjusted towards 
the number of gaps in sequence B’s segment in the same way that was 
done in the morphing case. This is shown in algorithm 10.

The final possibility is a split, where a single gap segment from 
sequence A maps to multiple gap segments in sequence B. Due to the 
variance formula’s stipulation that the number of segments in A is 
greater than or equal to the number of segments in B, this possibility 
can’t be handled as-is. However, it readily occurs in the multiple 
sequence alignment problem; one can envision a situation where a 
sequence in a candidate alignment contains fewer gap segments than 
the global bestalignment (which likely came from a different particle). 
In order to move the candidate towards the global best alignment, 
at least one of its gap segments will need to be split into multiple 
segments, so that it more closely resembles the global best.

16

A1...k = collection of gap segments from candidate particle;
B = single gap segment from pbest or gbest particle;
m1...k = number of gaps in each corresponding gap segment

in the candidate particle;
n = number of gaps in the pbest or gbest gap segment, B;
segsToMerge = ceiling(k ∗ random());
if segsToMerge > 1 then

for i = 2 to segsToMerge do
m1 = m1 +mi;
Remove Ai from A;
Next segsToMerge;

end
end
morph(A1,B);

Algorithm 10: Correspondence Mapping - Merging Case

alignment (which likely came from a different particle). In
order to move the candidate towards the global best alignment,
at least one of its gap segments will need to be split into
multiple segments, so that it more closely resembles the global
best.
Initially, when it is discovered that B contains more segments
than A, this case is handled by simply reversing the order
of the correspondence mapping; rather than determining the
optimal mapping from A to B, the implementation determines
the optimal from B to A; that is, from the better alignment
to the candidate alignment. Once the mapping has been
determined, the only difference between the split case and
the merge case is that the meaning of the randomly generated
number is reversed; rather than smaller random values keeping
the candidate closer to itself, and larger values moving it
closer towards the global best, in this case the larger values
will produce a new positioning that is closer to the original
candidate, and smaller values will lead to a new positioning
that more closely resembles the global best alignment. This is
accomplished by simply calling the merging function with the
order of the arguments reversed, as shown in algorithm 11.

A = single gap segment from candidate particle;
B1...k = collection of gap segments from pbest or gbest

particle;
merge(B,A);

Algorithm 11: Correspondence Mapping - Splitting Case

The complete process for a single particle’s candidate align-
ment combines the correspondence mapping and the choice
between the morphing, merging, and splitting cases. This
algorithm would be repeated for each particle in the swarm,
during every iteration of the particle swarm optimization
process.
The final consideration for adapting the correspondence map-
ping and morphing algorithms to replace the particle swarm’s
velocity and position updating calculations involves the cog-
nitive and social parameters, c1 and c2, shown in algorithm
5. The traditional particle swarm algorithm uses those two
parameters to control the relative influence of a particle’s

individual best position and the swarm’s global best position
on the particle’s flight path. To accomplish the same effect,
this implementation conducts three correspondence mappings
for each particle in each iteration. First, the particle’s current
position is morphed with the particle’s pbest , using a random
number corresponding to r1 in the traditional particle swarm
velocity calculation to determine the degree of the morph.
Second, the particle’s current position is morphed with the
swarm’s gbest , using a random number corresponding to r2
to determine the degree of the morph. Finally, these two
intermediate results are morphed with each other, using the
fraction c1/(c1+c2) in place of the random number. Thus, in the
case that c1 and c2 are equal, the candidate’s new position
will be determined equally by its movement towards pbest and
gbest . If c1 is smaller than c2, gbest will carry more influence.
Similarly, if c1 is greater than c2, the particle’s pbest will
carry more influence. This process is shown in algorithm 13.
The function called by mapping() is the mapping procedure
shown in algorithm 12, which calls the morph(), merge(),
and split() functions described in algorithms 9, 10, and 11,
respectively, with one difference: each of those four functions
would take an additional floating point parameter that would
ultimately replace the calls to random() found in the morph()
and merge() functions. This way, the call to random() can be
initiated here when it is appropriate, or replaced with a floating
point value derived from c1 and c2 when necessary.
The segment morphing technique described here contains
parallels to the previous Hamming distance implementation.
First, as a distance metric it is focused on the difference in
the gap placements between the candidate particle and the pbest
or gbest particle. Second, the use of random number generation
varies the degree that the candidate particle moves towards the
pbest or gbest .
However, the key advantage to the new morphing approach
in [33] is that it operates at the segment level, rather than
the individual gap level. The morphing calculation is more
concerned with the optimal way to move the existing gap
segments to become more like the gap segments found in the
pbest or gbest , and less concerned with the number or position
of individual gaps. As shown in the illustrated examples, the
number of gaps in a given segment can increase or decrease as
the candidate transitions towards the pbest or gbest , so there is
no concern over a monotonic increase in the number of gaps.
Thus, there is less of a “rush” to converge around an early gbest
value, and being trapped by local optima is less common.
In the current implementation, the objective function indicated
by f () in algorithm 13 is the UPS scoring metric described
in this session. Importantly, other objective functions could
be used in its place; there is no coupling between the UPS
objective function and the morphing technique for distance,
velocity, and movement.

VIII. APPROACHES FOR FUTURE WORK

MSA is a fundamental problem in computational biology. New
approach for MSA uses graphical morphism to guarantee that
the scores of the alignment candidates are improved in some
way after each particle swarm optimization iteration. A few

Initially, when it is discovered that B contains more segments 
than A, this case is handled by simply reversing the order of the 
correspondence mapping; rather than determining the optimal 
mapping from A to B, the implementation determines the optimal 
from B to A; that is, from the better alignment to the candidate 
alignment. Once the mapping has been determined, the only 
difference between the split case and the merge case is that the 
meaning of the randomly generated number is reversed; rather than 
smaller random values keeping the candidate closer to itself, and larger 
values moving it closer towards the global best, in this case the larger 
values will produce a new positioning that is closer to the original 
candidate, and smaller values will lead to a new positioning that more 
closely resembles the global best alignment. This is accomplished by 
simply calling the merging function with the order of the arguments 
reversed, as shown in algorithm 11.

A = single gap segment from candidate particle;
B1…k = collection of gap segments from pbest or gbest particle;
merge(B; A);
Algorithm 11: Correspondence Mapping - Splitting Case

The complete process for a single particle’s candidate alignment 
combines the correspondence mapping and the choice between the 
morphing, merging, and splitting cases. This algorithm would be 
repeated for each particle in the swarm, during every iteration of the 
particle swarm optimization process.

The final consideration for adapting the correspondence map-
ping and morphing algorithms to replace the particle swarm’s velocity 
and position updating calculations involves the cognitive and social 
parameters, c1 and c2, shown in algorithm 5. The traditional particle 
swarm algorithm uses those two parameters to control the relative 
influence of a particle’s individual best position and the swarm’s 
global best position on the particle’s flight path. To accomplish the 
same effect, this implementation conducts three correspondence 
mappings for each particle in each iteration. First, the particle’s 
current position is morphed with the particle’s pbest, using a random 
number corresponding to r1 in the traditional particle swarm velocity 
calculation to determine the degree of the morph. Second, the 
particle’s current position is morphed with the swarm’s gbest, using a 
random number corresponding to r2 to determine the degree of the 
morph. Finally, these two intermediate results are morphed with 
each other, using the fraction c1/(c1+c2) in place of the random 

Figure 6: Final Correspondence Mapping for Example 2
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number. Thus, in the case that c1 and c2 are equal, the candidate’s 
new position will be determined equally by its movement towards 
pbest and gbest . If c1 is smaller than c2, gbest will carry more influence. 
Similarly, if c1 is greater than c2, the particle’s pbest will carry more 
influence. This process is shown in algorithm 13. The function 
called by mapping() is the mapping procedure shown in algorithm 
12, which calls the morph(), merge(), and split() functions 
described in algorithms 9, 10, and 11, respectively, with one 
difference: each of those four functions would take an additional 
floating point parameter that would ultimately replace the calls to 
random() found in the morph() and merge() functions. This way, 
the call to random() can be initiated here when it is appropriate, 
or replaced with a floating point value derived from c1 and c2 when 
necessary.

The segment morphing technique described here contains 
parallels to the previous Hamming distance implementation. First, as 
a distance metric it is focused on the difference in the gap placements 
between the candidate particle and the pbest or gbest particle. Second, 
the use of random number generation varies the degree that the 
candidate particle moves towards the pbest or gbest 

.

However, the key advantage to the new morphing approach in 
[33] is that it operates at the segment level, rather than the individual 
gap level. The morphing calculation is more concerned with the 
optimal way to move the existing gap segments to become more like 
the gap segments found in the pbest or gbest , and less concerned with 
the number or position of individual gaps. As shown in the illustrated 
examples, the number of gaps in a given segment can increase or 
decrease as the candidate transitions towards the pbest or gbest , so there 
is no concern over a monotonic increase in the number of gaps. Thus, 
there is less of a “rush” to converge around an early gbest value, and 
being trapped by local optima is less common.

In the current implementation, the objective function indicated 
by f() in algorithm 13 is the UPS scoring metric described in this 
session. Importantly, other objective functions could be used in its 
place; there is no coupling between the UPS objective function and 
the morphing technique for distance, velocity, and movement. 

Approaches for future work

MSA is a fundamental problem in computational biology. New 
approach for MSA uses graphical morphism to guarantee that the 
scores of the alignment candidates are improved in some way after 
each particle swarm optimization iteration. A few areas of the method 
can be improved such as (a) efficiently handle the monotonic increase 
in the number of gaps. In this rare situation, a “rush” to converge 
around an (b) early gbest value will have the particles trapped by local 
optima; and design a better objective function for optimization. 
Since there is no coupling between the UPS objective function and 
the morphing technique for distance, velocity, and movement, better 
objective function will definitely help to further improve the method.
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for i = 1 to Number of Sequences do
Ai = collection of gaps segments from ith sequence in the

candidate alignment Bi = collection of gap segments
from ith sequence in the best alignment if number of
segments in Ai ≥ number of segments in Bi then

f indMinimumVariance(Ai,Bi);
else

f indMinimumVariance(Bi,Ai);
end
M = the set of correspondence mappings associated with
the minimum variance;

for j = 1 to number of correspondences in M do
M j = the current correspondence mapping Ai, j =

subset of gap segments from Ai that are part of M j;
Bi, j = subset of gap segments from Bi that are part
of M j;

if number of segments in Ai, j = number of segments
in Bi, j then

morph(Ai, j,Bi, j);
else

if number of segments in Ai, j > number of
segments in Bi, j then

merge(Ai, j,Bi, j);
else

split(Ai, j,Bi, j);
end

end
end

end
Algorithm 12: Correspondence Mapping Procedure for a
Single Candidate Particle and Single Best Particle

Initialize particle swarm x;
Initialize pbest values, pi = xi;
Initialize gbest value, pg = min(pi);
while termination criterion is not met do

for i = 1 to Population Size do
temppbest = mapping(xi, pi,random());
tempgbest = mapping(xi, pg,random());
xi = mapping(temppbest , tempgbest , c1/(c1+c2));
if f (xi)> f (pi) then

pi = xi;
end
Next i;

end
pg = max(pi);

end
Algorithm 13: Correspondence Mapping in the Particle
Swarm

areas of the method can be improved such as (a) efficiently
handle the monotonic increase in the number of gaps. In this
rare situation, a “rush” to converge around an early gbest
value will have the particles trapped by local optima; and
(b) design a better objective function for optimization. Since
there is no coupling between the UPS objective function and
the morphing technique for distance, velocity, and movement,
better objective function will definitely help to further improve
the method.
Another note is on the need of using High Performance
Computing (HPC) techniques for improving the performance
of PSO-based algorithms for MSA. PSO-based algorithms
are inherently parallelizable. But, due to the amount of data
needed for the communication between particles, using the
technologies from the next generation of GPU-CPU paral-
lelism would be more viable. GPU-based computation offers
the advantages of large-scale parallelism and implementation
using industry-standard libraries and tools such as NVidia’s
CUDA. With significant changes to the traditional particle
swarm algorithm, including replacing the velocity and distance
calculations, and using a computationally complex objective
scoring function, adapting the implementation for parallel
execution using CUDA would undoubtedly be a challenge but
would also yield impressive improvements in running time.
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areas of the method can be improved such as (a) efficiently
handle the monotonic increase in the number of gaps. In this
rare situation, a “rush” to converge around an early gbest
value will have the particles trapped by local optima; and
(b) design a better objective function for optimization. Since
there is no coupling between the UPS objective function and
the morphing technique for distance, velocity, and movement,
better objective function will definitely help to further improve
the method.
Another note is on the need of using High Performance
Computing (HPC) techniques for improving the performance
of PSO-based algorithms for MSA. PSO-based algorithms
are inherently parallelizable. But, due to the amount of data
needed for the communication between particles, using the
technologies from the next generation of GPU-CPU paral-
lelism would be more viable. GPU-based computation offers
the advantages of large-scale parallelism and implementation
using industry-standard libraries and tools such as NVidia’s
CUDA. With significant changes to the traditional particle
swarm algorithm, including replacing the velocity and distance
calculations, and using a computationally complex objective
scoring function, adapting the implementation for parallel
execution using CUDA would undoubtedly be a challenge but
would also yield impressive improvements in running time.
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Another note is on the need of using High Performance 
Computing (HPC) techniques for improving the performance 
of PSO-based algorithms for MSA. PSO-based algorithms are 
inherently parallelizable. But, due to the amount of data needed 
for the communication between particles, using the technologies 
from the next generation of GPU-CPU parallelism would be more 
viable. GPU-based computation offers the advantages of large-scale 
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parallelism and implementation using industry-standard libraries 
and tools such as NVidia’s CUDA. With significant changes to the 
traditional particle swarm algorithm, including replacing the velocity 
and distance calculations, and using a computationally complex 
objective scoring function, adapting the implementation for parallel 
execution using CUDA would undoubtedly be a challenge but would 
also yield impressive improvements in running time.
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