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Abstract

Lignin is potentially an abundant source for the synthesis of energy-
dense fuels, phenolic chemicals, high-performance polymers, carbon 
fibers and value-added products surrogate to those conventionally 
obtained from fossil fuels. Low in cost, abundant in existence and 
product efficiency equivalent to the petroleum-derived products 
make lignin an excellent naturally occurring feedstock. This review 
attempts to broadly present the recent advancements in the field 
of lignin conversion and its applications as an energy resource. 
The growing popularity of lignin and the comprehensive research 
that is being conducted on biorefining has led to the inception 
of compiling this valuable information in the form of a review 
presented herewith. This review encompasses the vast extensive 
research towards lignin conversion and the new developments 
in this field. This paper reviews the chemistry of lignocellulosic 
biomass and the physicochemical changes occurring during 
biomass pre-treatment. Several ligninolytic microorganisms 
responsible for the degradation of lignin are also discussed. 
In addition, pyrolysis, liquefaction, gasification and microwave 
treatment for lignin conversion to biofuels and chemicals are 
elaborated.
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Introduction
The depleting fossil fuels have made it essential for the energy 

sector to bring the biomass-derived fuels to spotlight. The increasing 
energy demands and the current human lifestyle have made 
sustainability, renewability, commercial viability and environmental 
impact as the major focus of the global energy sector. The worldwide 
search for acceptable fuels has continued and still poses a major 
challenge to the scientific and technological advancements. The 
requirement is to produce a biofuel that has similar properties as the 
conventional fuel to have blends and substitution without affecting 
the existing motor engines. Biofuels such as bioethanol, biobutanol 
and biodiesel hold many promising outcomes in the transportation 
sector. The prominent concern when discussing these biofuels is their 
quantitative production to meet the large energy demands of the 
world [1]. 

Waste plant biomass or lignocellulosic biomass is a rich source of 
renewable organic matter that can be transformed to liquid or gaseous 
biofuels with the application of thermochemical or biochemical 
conversion technologies [2]. Since, lignocellulosic materials are non-
edible plant residues their diversion towards biofuel production 
does not pose any risk to arable lands, food security or rise in food 
commodity prices [3]. Moreover, the biofuels produced from waste 
lignocellulosic biomass are carbon-neutral because they tend to 
decrease the net emissions of CO2 per unit of energy delivered upon 
combustion [4]. On the other hand, the CO2 resulting from the 
combustion of biofuels is utilized by the plants during photosynthesis. 

Lignocellulosic biomass is not only inexpensive but also an 
abundant resource found globally that could sustain the production 
of biofuels [5,6]. It is estimated that the production of biomass from 
terrestrial plants at a global scale is 170-200 × 109 tons per annum, 
which has tremendous possibilities for biofuel production [7]. This 
vast amount of biomass supply could suggestively supplement a major 
portion of the worldwide energy consumption of 500 EJ/year [8]. 
Lignocellulosic biomass can be categorized into agricultural residues 
(e.g. straw, husk, stover, shells and bagasse), wood residues (e.g. 
softwood, hardwood and sawdust) and energy crops (e.g. Timothy 
grass, switch grass and hybrid poplar). 

The term “lignocellulose” originates from “lignin” and “cellulose” 
which are the two primary components of plant cell wall. In addition 
to lignin and cellulose, plant cell walls comprise of hemicellulose and 
extractives as the organic compounds. The cellulose, hemicellulose 
and lignin form an intricate organic network that is supported by van 
der Waals forces, covalent bonds and intermolecular bridges. This 
complex chemistry of lignocellulosic biomass makes them recalcitrant 
to attack by enzymes, microorganisms, pests and insects [9]. 

The starch-based materials (food grains, corn, potato, sugarcane, 
cassava, etc.) are considered as the first-generation biofuel feed stocks 
owing to their traditional use for bioethanol production though 
fermentation without any intensive pre-treatment process. Since these 
first-generation feed stocks are food-based, they are often criticized 
for food vs. fuel crisis. In contrast, lignocellulosic biomasses are non-
food materials and second-generation biofuel feed stocks. Unlike 
first-generation starch-based feedstocks, lignocellulosic biomass 
requires physical, chemical and biological pre-treatments to recover 
fermentable sugars for conversion to biofuels. While the starch-
based biomasses are targeted mostly toward bioethanol production 
through fungal or bacterial fermentation, lignocellulosic feed stocks 
can produce wide-ranging biofuel products such as bio-oil, biodiesel, 
bioethanol, biobutanol, biogas, syngas and hydrogen [10]. 

The advancements towards efficient lignocellulosic biomass 
conversion to quality fuel products rely on lignin and cellulose. Lignin 
follows cellulose in being the most abundant biopolymer naturally 
found on the earth. Lignin abundantly contains nature’s aromatic 
(phenolic) polymers, even more than any other naturally occurring 
substance [11]. In plants, lignin acts as a reinforcing material to 
the cellulosic fibers. It is reported that almost 60% excess lignin is 
generated than what is needed to meet the internal energy demands 
for its combustion to produce fuels and chemicals [12-17]. This 
justifies the need to develop processes that can make an efficient and 
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economical use of lignin towards energy generation. Lignin being rich 
in aromatic contents and abundantly present as a renewable feedstock 
has driven attention to producing energy-dense second-generation 
biofuels. Although lignin appears to be an excellent biomaterial 
trapped in the plant biomass, its applications are just starting to be 
realized on different platforms. 

The abundant existence of lignin as a potential ingredient of 
lignocellulosic biomass makes it essential for biofuel refineries and 
bio product industries to focus on the development of technologies 
to efficiently derive fuels, chemicals and value-added products. The 
literature on lignin is available marginally and is scattered. This work is an 
attempt to systematically present the structural chemistry, biosynthesis, 
as well as bio refining applications of lignin. This paper reviews several 
biochemical and thermochemical conversion technologies, as well as 
microwave treatment of lignin to fuels and chemicals.

Applications of Lignin
In addition to fuel production, the diverse applications of lignin can 

be found in chemical production, specialty materials, pulp and paper 
industries, pharmaceuticals and environmental (Figure 1). Table 1 
summarizes the various sub-disciplines under each of these industrial 
aspects for lignin application. Owing to its structural chemistry and 
easier recovery from lignocellulosic biomass, cellulose has gained the 
most spotlights in terms of the production of fuels, fine chemicals and 
engineered materials (fibers, tubes, aerogels, electronics, packaging, 
3D printing, etc.) [18]. The use of lignin derivatives has found diverse 
applications ranging from fuel to biomaterials. Due to the versatile 
properties of lignin, various value-added industrial applications have 
been recognized. Lignin has proven to exhibit several health benefits 
such as anti-carcinogens, anti-inflammatories, prebiotics [19,20], 
antioxidants [21,22], antibiotics and antimicrobials [23-26]. 

In novel materials engineering, lignin has been extensively used 
in the fabrication of polymeric materials for multifarious utility [27-
29], biofuels [30-33], carbon fibres [34,35], graphene nanosheets 

[36], activated carbon [37,38], agriculture and construction [14]. 
Renewable gasoline has also been produced from lignin as the 
feedstock [32]. The by-products from lignin are also worthy of 
applications in a variety of industrially used goods. The wood 
lignin has been explored for biomaterial synthesis, but the use of 
herbaceous lignin has not been studied much. Li and Ragauskas [39] 
used different weight compositions of sucrose polyol and glycerol 
polyol to synthesize lignin-based polyurethanes. The coupling of 
bioengineering with biomass refining and pretreatment techniques is 
expected to contribute towards the synthesis of low-cost biopolymers, 
fungible green fuels, valuable chemicals, elastomers, carbon fibers 
and engineered plastics. 

Lignocellulosic Biochemistry
Lignocellulosic biomass exemplifies a widely available and largely 

under-explored category of raw materials for the generation of 
biofuels such as bio-oil, bioethanol, biobutanol and hydrogen. The 
sugar (e.g. pentose and hexose) composition in the biomass decides 
the theoretical yield of alcohol fuels through fermentation. In contrast 
to woody biomass, agricultural residues demonstrate a higher surface 
area and smaller pore volume, which reduces their susceptibility to 
enzymatic hydrolysis and other pretreatments [40]. Furthermore, 
hardwood biomass has more cellulose than hemicellulose resulting in 
higher glucose yields compared to and xylose for easier bioconversion 
[41]. Lignocellulosic biomasses are composed of 35-55 wt% cellulose, 
20-40 wt% hemicellulose and 10-25 wt% lignin in addition to 
extractives (e.g. pectin, resins, waxes, etc.), ash and minerals [42-47]. 
The composition of cellulose, hemicellulose, lignin and extractives in 
a few lignocellulosic biomasses are shown in Table 2. 

Figure 2 graphically illustrates the arrangement of cellulose, 
hemicellulose and lignin inside a plant cell. The plant cells consist 
of cell wall (primary wall and secondary wall), plasma membrane, 
cytoplasm and cell organelles (e.g. plamodesmata, chloroplast, 
thylakoids, vacuoles, mitochondria, vesicles, endoplasmic reticulum, 
ribosomes, Golgi apparatus, ribosomes, nucleus, leucoplast, etc.). 

 

Figure 1: The multifarious applications of lignin.
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Industrial sector Application

Biofuels

(i)	 Bio-oil from pyrolysis and liquefaction

(ii)	 Syngas from gasification

(iii)	 Green diesel via Fischer-Tropsch process

(iv)	 Heat energy from combustion

Biochemicals

(i)	 Phenolic compounds

(ii)	 Dispersants

(iii)	 Flocculants

(iv)	 Paints

(v)	 Adhesives

Specialty materials

(i)	 Biocomposites

(ii)	 Bioplastics

(iii)	 Carbon fibers

(iv)	 Activated carbon

(v)	 Adsorbent

(vi)	 Board binder

(vii)	 Foams

(viii)	 Densification of biomass pellets

(ix)	 Battery components

(x)	 Energy storage

Pulp and paper

(i)	 Sizing agent

(ii)	 Packaging and lamination

(iii)	 High tensile strength

Pharmaceutical

(i)	 Antioxidants

(ii)	 Antimicrobial agents

(iii)	 Cosmetics

(iv)	 Prebiotics

Environmental

(i)	 Dust controlling agent

(ii)	 Soil stabilization

(iii)	 Pesticide

(iv)	 Herbicide

(v)	 Water retention agent

(vi)	 Heavy metal adsorption

Table 1: Utility of lignin as a value-added product [13-17].

The protoplast secretes the cell walls that act as structural support, 
integrity and protection to the cells. The plant cell wall consists of 
three layers such as primary wall, secondary wall and middle lamella 
[48-52]. The primary layer is relatively thin, flexible and provides 
protection to the cells as it is exposed to the external environment. 
In contrast, the secondary layer has three sub-layers termed as S1, 
S2 and S3 that contain lignin which further strengthens the call 
wall and makes it rigid and relatively waterproof (as lignin is water-
insoluble). The middle lamella, which contains pectins acts as a glue 
to hold all the adjacent cells together in an interface. The primary cell 
wall contains cellulose microfibrils produced by cellulose synthetase 
complex connected by hydrogen bonding for rendering tensile 
strength to the plant cells. Cellulose and hemicellulose are held 
together by polymeric lignin.

Cellulose (C6H10O5)n is a polysaccharide comprising of numerous 
β (1, 4) linked D-glucose units, which are aggregated through 
hydrogen bonding and van der Waals forces [53]. Cellulose is present 
in both crystalline and amorphous forms in lignocellulosic biomass. 
Moreover, cellulose has six crystalline forms, especially cellulose I, 
cellulose II, cellulose III1, cellulose III2, cellulose IV1 and cellulose IV2, 
among which cellulose I and II are largely found in lignocellulosic 

biomasses [54]. Cellulose I is the most common crystalline form 
of cellulose characterized by parallel glucan chains and strong 
intramolecular hydrogen bonding [55]. In addition, cellulose I has 
two crystalline polymorphs, namely cellulose Iα and cellulose Iβ. 
Cellulose Iα, predominant in lower plants and herbs, is metastable and 
triclinic, whereas cellulose Iβ, present in higher plants and woods, is 
monoclinic and stable [56]. Compared to amorphous cellulose that 
is easily hydrolyzable, the higher degree of crystallinity in crystalline 
cellulose leads to its requirement of intensive pretreatments such as 
those involving dilute acid, alkaline and cellulolytic enzymes [9,57].

Hemicellulose is a mixture of polysaccharides composed of 
pentose (C5) and hexose (C6) sugars such as arabinose, glucose, 
mannose, rhamnose and xylose. Hemicellulose also includes 
arabinoxylan, glucomannan, glucuronoxylan, xylan, xyloglucan, 
glucuronic acid and galacturonic acid. Cellulose is a long-chain 
polysaccharide made up of 7000-15000 units of glucose monomers, 
whereas hemicellulose is relatively short-chained consisting of 500-
3000 sugar monomers with acidic groups [58]. Cellulose has a higher 
degree of polymerization between 1,510 and 5,500, which strengthens 
is crystallinity [59]. On the contrary, hemicellulose has a lower degree 
of polymerization between 50 and 200, which makes it amorphous, 
easily hydrolyzable and hydrophilic [48]. Moreover, cellulose (342.3 
g/mol) has a higher molecular weight than hemicellulose (150.1 g/mol 
for xylose). Cellulose (260°C-270°C) also has a higher melting point 
than hemicellulose ( ~ 145°C for xylose). The thermal devolatilization 
temperatures for cellulose and hemicellulose are 250°C-350°C and 
200°C-300°C, respectively. However, lignin degrades at a much wider 
temperature range of 200°C-500°C [60].

Lignin is a phenylpropane polymer comprising of p-coumaryl, 
coniferyl and sinapyl alcohols linked by ester bonds. Lignin tightly 
binds cellulose and hemicellulose together in a complex network 
through robust inter-chain covalent hydrogen bonding, thereby 
providing a higher-order structure and recalcitrance to plant cells 
[55]. Extractives are also present in lignocellulosic biomass in traces, 
which mostly includes chlorophyll, fatty acids, lipids, pectin, polar 
waxes, resins, tannins, terpenoids and sterols [49]. Alkali and alkaline 
earth metals, minerals, phosphorous, as well as some essential 
inorganic elements are also present in the biomass to conduct water 
and metabolites throughout the plant body and lifecycle [61].

The polymeric chemistry of lignin makes it challenging to 
recover the sugars from cellulose and hemicellulose, which 
makes it indispensable for the biomass to undergo a hydrolytic 
pretreatment before bioconversion. Lignin is a naturally occurring 
amorphous, cross-linked and three-dimensional polymer that 
consists of guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) 
(phenylpropane) monomeric units (Figure 3). The precursors 
of the three phenylpropane units that produce lignin by the 
enzymatic dehydrogenative polymerization consist of three 
aromatic alcohols or monolignols such as coniferyl alcohol, 
sinapyl alcohol and p-coumaryl alcohol (Figure 4). Softwood lignin 
exclusively comprises of guaiacyl units along with small amounts of 
p-hydroxyphenyl units. In contrast, hardwood lignin is primarily 
composed of guaiacyl and syringyl lignin units along with small 
quantities of p-hydroxyphenyl units. Furthermore, lignin extracted 
from grasses and agricultural wastes consists of all three lignin units 
(i.e. G, S and H) and p-hydroxycinnamic acids, namely p-coumaric 
acid, ferulic acid and sinapic acid [62]. 

The heating value of lignin is typically in the range of 23.3-25.6 MJ/
kg, which is nearly 30% greater than that of holocellulose (i.e. cellulose 
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Figure 2: Lignocellulosic configuration inside a plant cell wall.

Biomass Cellulose Hemicellulose Lignin Extractives Reference
Almond shell 50.7 28.9 20.4 2.5 [43]
Apricot stone 22.4 20.8 51.4 5.2 [44]
Bagasse 41.3 22.6 18.3 13.7 [45]
Bamboo 42.4 27.9 23.1 4.4 [46]
Barley straw 42.0 21.9 19.4 6.8 [47]
Cashewnut shell 36.2 16.4 18.3 8.4 [45]
Coconut coir 47.7 25.9 17.8 6.8 [45]
Coconut shell 36.3 25.1 28.7 8.3 [45]
Coir pith 28.6 15.3 31.2 15.8 [45]
Corn cob 45.0 35.0 15.0 15.4 [45]
Corn stalk 42.7 23.6 17.5 9.8 [45]
Eucalyptus wood 48.0 14.0 29.0 2.0 [48]
Flax straw 28.7 26.8 22.5 19.5 [49]
Groundnut shell 35.7 18.7 30.2 10.3 [45]
Hazelnut shell 25.2 28.2 42.1 3.1 [50]
Legume straw 28.1 34.1 34.0 2.0 [44]
Millet husk 33.3 26.9 14.0 10.8 [45]
Oat straw 39.6 22.4 18.2 10.1 [47]
Olive husk 24.0 23.6 48.4 9.4 [43]
Pine cone 32.7 37.6 24.9 4.8 [51]
Pinewood 38.8 23.6 20.4 15.7 [42]
Rice husk 31.3 24.3 14.3 8.4 [45]
Spurce wood 43.0 29.4 27.6 1.7 [50]
Sunflower shell 48.4 34.6 17.0 2.7 [43]
Tobacco stalk 21.3 32.9 30.2 5.8 [44]
Timothy grass 34.2 30.1 18.1 16.5 [42]
Walnut shell 25.6 28.9 52.3 2.8 [43]
Water hyacinth 18.2 48.7 3.5 13.3 [52]
Wheat straw 39.1 24.1 16.3 19.2 [42]

Table 2: Composition of cellulose, hemicellulose and lignin in some lignocellulosic biomasses.
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and hemicellulose together) [63]. Holocellulose is made up of sugar 
units, which have a high degree of oxidation in contrast to lignin [43]. 
Therefore, holocellulose tends to have a lower calorific value and 
energy density than lignin. Lignocellulosic materials can essentially 
contain as high as 10-30 wt% of lignin and in some exceptional cases, 
the content can go as high as ~ 45 wt% [64]. The ash content of lignin 
can be as high as 15 wt%, which is due to the presence alkali metals 
such as sodium, calcium, potassium, magnesium, phosphorous and 
a few others as mentioned earlier. These inorganic impurities can be 
removed by washing lignin with sulfuric acid and hydrochloric acid 
[65,66]. 

Biomass Pretreatment
Chemically, lignin is hydrophobic and is found to be covalently 

linked to the structures of hemicellulose. It acts like cement filling 
in the voids that exist in the cell wall as a cross link between 
hemicellulose and cellulose [55,67]. This distinct cellular structure 
imparts mechanical strength to the plant and avoids collapsing of 
the water-conducting elements in plant cells. Lignin also functions 
as the barrier for carbohydrate fraction of lignocellulose to get access 
to enzymes. Therefore, highly lignified plants (e.g. higher plant and 
evergreen trees) are resistant to attack by insects, pests and parasites. 
The mechanisms that outline the protective action of lignin to 
prevent hydrolysis of enzymes are still not completely understood. 
The enzymes tend to bind to the structure of lignin and this causes a 
loss in the activity of these bonded enzymes due to their hydrophobic 
interactions with lignin [68]. 

Compared to starchy biomass, lignocellulosic feedstocks 
are relatively more recalcitrant. The factors contributing to the 
recalcitrance of lignocellulosic biomasses include (i) degree of 

lignification and polymerization, (ii) crystallinity of cellulose, 
(iii) specific surface area of cellulose, (iv) content of acetylated 
hemicelluloses, and (v) biomass pore volume [69]. The presence of 
lignin is a barrier against saccharification of lignocellulosic materials 
to release fermentable sugars from cellulose and hemicellulose for 
biofuel production. Therefore, it is desirable to denature and remove 
the polymeric lignin from the biomass to ease the access of chemicals 
and enzymes to cellulose and hemicellulose for hydrolysis. 

Several physical, chemical and biological pretreatments are 
required for the breakdown the intricate polymeric framework 
in lignocellulosic biomass and release the monomeric sugars 
for fermentation to alcohols. A few pretreatments studied for 
lignocellulosic biomass include dilute acid, alkaline, ammonia fiber 
explosion, steam explosion, organic solvents, ozonolysis, pulse 
electrical field, ionic liquids, supercritical fluids and hydrolytic 
enzymes (e.g. cellulase, xylanase and β-glucosidase) [2,9,70]. An 
effective bioconversion of lignocellulosic biomass to alcohols requires 
a series of steps, which includes: (i) delignification of biomass to 
degrade the lignin network for releasing cellulose and hemicellulose, 
(ii) depolymerization of the polysaccharide to liberate sugar 
monomers, and (iii) fermentation of monomeric sugars monomers 
to alcohols. 

Dilute sulfuric acid is the most widely used pretreatment agent 
for lignocellulosic biomass such as Bermuda grass [71], reed canary 
grass [72], silver grass, switch grass [73], Timothy grass [74], corn 
stover [75], corn fiber [76], rice straw [77,78], wheat straw [74,79], 
pinewood [74,80] and sugarcane bagasse [81,82]. Owing to the 
hydrophobicity, reticulation and three-dimensional polymerization, 
lignin is usually insoluble in hot water, acids and solvents. As lignin is 

Figure 3: The monomers of lignin.

Figure 4: The monolignol precursors of lignin.
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resistant to organic solvents and acids, the dilute acid pretreatments 
have less impact on lignin removal [83]. The fraction of acid-soluble 
lignin is only up to 0.5 wt% in softwood and 5 wt% in hardwood 
[84]. However, alkaline treatments involving NaOH [54], NaCl [85] 
and acidified NaClO2 [55,86] are found to be efficient in the removal 
of lignin from the biomass. The degradation of lignin in alkaline 
solution results due to: (i) alkali-mediated cleavage of the ferulic acid 
cross-link between lignin and hemicelluloses, and (ii) alteration in 
polyelectrolyte properties of lignin induced by free carboxy1 groups 
of phenolic acids ethers [87].

Although delignification helps in lignin removal and acid 
pretreatment releases hemicellulose and amorphous cellulose, 
the hydrolysates often result in the generation of some chemical 
byproducts that are inhibitory to microbial growth and fermentation. 
Some of such inhibitors include furfural, hydroxymethylfurfural, 
acetic acid, ferulic acid, glucuronic acid, coumaric acid and phenolic 
compounds [88]. Hence, for a sustainable alcoholic fermentation, it 
is crucial to remove these inhibitors from the biomass hydrolysate. 
Qureshi et al. [89,90] suggested that over-liming the acidic 
hydrolysates could help in reducing the toxicity imparted by 
inhibitors. Over-liming involves raising the pH of the hydrolysate to 
10 with the addition of Ca(OH)2 and 1 g/L Na2SO4 followed by boiling 
it to 90°C for 30 min and neutralizing the final pH to 7 with H2SO4.

Biological Conversion of Lignin
Biological conversion of lignin has diverse impacts on the 

quality of the soil. The conversion of plant debris with the help of 
microorganisms leads to the formation of humus through lignolysis 
that releases aromatic contents of humus from the residues to the 
soil. These ingredients primarily include degenerated lignin, terpenes, 
flavonoids, lignans and condensed tannins [91-93]. The major factors 
that inhibit the natural decomposition of highly lignified (lignin-rich) 
biomass could diversify depending on the geographic and climatic 
factors such as humidity, pH, oxygen, etc. High humidity, warm 
temperatures, high oxygen content and readily available biomass 
are favorable for microbial action in biological degradation of lignin. 
Moisture level exceeding the Fiber Saturation Point of biomass 
promotes fungal colonization and activity. 

Highly lignified biomass needs specific microorganisms 
to convert them to useful products. Although lignin repels the 
conversion by most microorganisms, its microbial denaturation is 
majorly dependent on fungi such as basidiomycetes, white-rot fungi 
and brown-rot fungi. Lignicolous fungi are a group of fungi that have 
the capability to cause the decay or rotting of wood by permeating 
the fibrous structures into the wood fibers. This often results in an 
increased mass of the microbial cell along with high ligninolytic 
enzyme formation. The lignin-degrading enzymes generated by 
white-rot fungi include lignin peroxidase, manganese-dependent 
peroxidase, versatile peroxidase and laccase. Several accessory 
enzymes that enhance the biological lignin degradation include 
glyoxal oxidase, aryl alcohol oxidase, pyranose 2-oxidase, cellobiose/
quinone oxidoreductase and cellobiose dehydrogenase [94]. Table 
3 summarizes a few significant fungal species and their enzymes 
responsible for lignin degradation.

A few white-rot fungi that are able to degrade lignin-rich biomass 
include Ceriporiopsis subvermispora, Heterobasidion annosum, Irpex 
lacteus, Phellinus pini, Phlebia spp., Pleurotus spp. and Trametes 
versicolor [94]. White-rot fungi are more effective on deciduous 
woods (angiosperms), whereas brown-rot fungi grow primarily on 
conifers woods (gymnosperms). The rotting activity by white-rot 
fungi is characterized by pale color due to oxidative bleaching and 
removal of lignin retaining a fibrous texture of crude polysaccharides. 
In contrast, the degradation by brown-rot fungi is characterized by 
brown color due to primarily degradation of wood carbohydrates 
and residual oxidized lignin. Some notable brown-rot fungi include 
Gloeophyllum trabeum, Laetiporus portentosus, Piptoporus betulinus, 
Postia placenta, Rhodofomitopsis lilacinogilva and Serpula lacrymans 
[94]. The white-rot fungi utilize a group of extracellular oxidative 
enzymes that can degrade lignin by penetrating its branched polymers, 
which include lignin peroxidases, manganese peroxidases, versatile 
peroxidases and dye-decolorizing peroxidases. The depolymerization 
is triggered by radical chemistry as these oxidative peroxidases 
contain heme co-factor. 

Fungi can efficiently convert lignocellulosic biomass owing 
to their high enzymatic activity when compared to bacterial 
counterparts. The two types of enzymatic systems that are present in 

Fungus Fungus group and type Hydrolytic enzymes
Aspergillus niger Ascomycota (Brown-rot) Xylanases, Cellulases
Bjerkandera adusta Basidiomycota (White-rot) Lignin peroxidase, Manganese peroxidase

Clonostachys rosea Ascomycota (White-rot)

Endopolygalacturonases, Galactosidase
Endo-xylanase, Cellulases,
Arabinofuranosidase, Acetylesterase,
Xylosidase, Galactosidase

Fomitopsis palustris Basidiomycota (Brown-rot) Cellulases (Exo-glucanases,
Endo-glucanases, β-Glucosidase)

Fusarium merismoides Ascomycota (Brown-rot) Endo-xylanase, Cellulases,
Arabinofuranosidase, Acetylesterase, Xylosidase

Fusarium oxysporum Ascomycota (Brown-rot) Endopolygalacturonases galactosidase

Penicillium sp. Ascomycota (White-rot) Endo-xylanase, Cellulases,
Arabinofuranosidase, Acetylesterase, Xylosidase

Phanerochaete chrysosporium Basidiomycota (White-rot) Lignin peroxidase, Manganese peroxidase
Pleurotus ostreatus Basidiomycota (White-rot) Xylanases, Cellulases, Laccase, MnP

Pleurotus pulmonarius Basidiomycota (White-rot) Endoglucanase, Cellobiohydrolase,
Laccase, Manganese peroxidase

Pycnoporus cinnabarinus Basidiomycota (White-rot) Laccase, Lignin peroxidase, Manganese peroxidase
Strobilurus ohshimae Basidiomycota (White-rot) Lignin peroxidase, Manganese peroxidase
Trametes versicolor Basidiomycota (white-rot) Laccase

Table 3: A few notable ligninolytic fungi and related enzymes [5].
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fungi are hydrolytic system and extracellular ligninolytic system. The 
hydrolytic system helps in the production of hydrolases (responsible 
for the conversion and degradation of polysaccharide), whereas 
the extracellular ligninolytic system functions towards degrading 
lignin and opening the phenyl rings. The research on enzymatic 
conversion of lignin is gaining attention over the past few years. The 
fungal enzymes that have been used for bioconversion of lignin are 
mostly lignin peroxidase, alkyl aryl etherase, manganese peroxidase 
and laccase. The two prominent enzymes expressed extracellularly 
by white-rot fungi are peroxidases and laccase. Mostly, during 
bioconversion, microorganisms show preferences towards lignin in 
the lignocellulosic degradation. It is found that most of these enzymes 
do not work independently towards lignin bioconversion but their 
respective content is the crucial factor for lignin conversion. There 
have been investigations towards the use of a soluble polymeric 
substrate that was derived from milled-wood lignin to see its 
applicability in the next-generation lignin-depolymerization.

Certain bacteria can also anaerobically digest the aromatics in 
lignin following the β-ketoadipate pathway [95]. When compared 
with fungi, bacteria do not retain the regular peroxidases for lignin 
degradation. This is because of the genetic limitations in the bacterial 
metabolic pathways that restrict the expression of these composite 
proteins that are glycosylated and contain disulfide bonds including 
calcium ions and a heme co-factor [96]. Although some bacterial 
lignin-degrading enzymes such as dye-decolorizing peroxidases 
have been discovered, they have lower lignin-oxidizing ability than 
fungi. Bacteria such as Acinetobacter baylyi [97,98], Nocardia [99], 
Rhodococcus opacus [100] and Streptomyces coelicolor [101,102] have 
gained popularity over other traditionally used strains due to their 
high lignin to lipid conversion along with properties of high lipid 
accumulation as well as excellent cloning mechanism [98,103]. The 
bacterial strains belonging to actinomycetes group are categorized as 
oleaginous species that have characteristic lipid accumulation of over 
20%. 

Kosa and Ragauskas [104] have studied the conversion to 
lignin model compounds to triacylglycerols (neutral lipids) using 
Rhodococcus opacus DSM 1069 and PD630 strains and nitrogen as the 
limiting parameter. The lignin model compounds that served as the 
sole carbon sources were 4-hydroxybenzoic acid and vanillic acid. It 
was found that the microbial cells not only proliferated but also began 
lipid accumulation to oleaginicity levels. The lipids formed were 
extracted for transesterification and fatty acid methyl esters (FAME) 
analyses. The results showed potential conversion to biodiesel and 
the microbial strains used depicted discrete substrate metabolism 
along with characteristic product profiles. Kosa and Ragauskas [105] 
also suggested a metabolic pathway for lignin bioconversion to lipids 
that would prove innovative for an integrated lignin conversion. The 
two forms of lignin-based feedstocks used in the study were ethanol 
organosolv lignin and ultrasonicated ethanol organosolv lignin that 
employed Rhodococcus opacus for bioconversion. Both the lignin 
feedstocks were found to be potential sources and the maximum lipid 
yield obtained was 4.1%. 

There have been further studies by Wells et al. [106] using 
Rhodococcus opacus DSM 1069 that utilized pinecone pretreatment 
effluent as the only source of energy and carbon for a duration of 
120 h with 1.5 w/v% of solid concentration. The oils formed were a 
mixture of oleic acid, stearic acid, fatty acid and palmitic acid. This 
study paved the way for the use of lignocellulosic pretreatment waste 
as the feedstock for its conversion to biodiesel using microorganisms. 

Certain lignocellulosic biomass can contain as high as 17.5% of 
lignin and 67% of carbohydrates trapped in their cell walls, such 
as Saccharum spontaneum. Degradation of lignin in Saccharum 
spontaneum (a grass indigenous to Indian subcontinent) with the 
help of laccase was accomplished by Rajaka and Banerjee [107] to 
avail this bountiful source of carbohydrates that can be hydrolyzed 
for potential use. The process parameters were optimization using 
response surface method (RSM). Maximum delignification (~ 84.7%) 
of biomass with an initial lignin content of 17.5% was attained after 
6.2 h. 

Kateava et al. [108] showed the ability of anaerobic bacterium 
Caldicellulosiruptor bescii to simultaneously convert lignin and 
carbohydrates in unpretreated switchgrass to aromatic compounds. 
Another interesting outcome was that the microorganisms could 
produce enzymes that affect the significant content of the biomass 
cell wall such as xyloglucans, pectin and rhamnogalacturonan. The 
enzymes produced by thermophilic microorganisms can act towards 
the simultaneous bioconversion of hemicellulose, cellulose and 
lignin, which can prove significant to the industrial bioconversion of 
lignocellulosic biomass. 

Genetic modifications of the feedstock to produce better results 
have also been considered. Fu et al. [109] reported that modification 
in switchgrass caffeic acid O-methyltransferase gene could increase 
the ethanol yields by reducing the lignin content. These modified 
grass species do not require very severe pretreatment conditions and 
approximately 300% less cellulase dose for an equivalent yield of the 
product with the help of saccharification and yeast fermentation. 
Additionally, it was found that the fermentation of the acid-pretreated 
and genetically modified switchgrass in its dilute form with the help 
of Clostridium thermocellum gave better yields without adding any 
enzyme than the yields for unmodified switchgrass. 

Lignin bioconversion depends on its source and chemical 
properties as much as other factors. Therefore, it is essential to highlight 
the categories of lignin that will inhibit its biological conversion. In 
this context, pseudo-lignin has been highlighted. Pseudo-lignin can 
be defined as an aromatic material that produces positive Klason 
lignin, which is not extracted from native lignin. The pseudo-lignin is 
formed during the dilute acid pretreatment of holocellulose (cellulose 
and hemicellulose) and causes hindrance in lignin conversion. Nanda 
et al. [55] performed a comparative evaluation of the structural 
chemistry of pinewood, wheat straw and Timothy grass treated 
with liquid hot water and acidified sodium chlorite. They found that 
because of hot aqueous treatment, hemicellulose was removed from 
the biomass, as it is hydrophilic and easy to hydrolyze. On the other 
hand, pseudo-lignin was found as spherical droplets deposited on the 
surface of biomass fibers through re-polymerization in hydrothermal 
pretreatment (Figure 5). The deposition of pseudo-lignin on the cell 
surface of pretreated biomasses has also been reported by several 
other authors [86,110,111].

Hu et al. [110] studied the chemistry of the formation of pseudo-
lignin from α-cellulose and poplar holocellulose after pretreatment 
with dilute acid. The molecular weights and chemical structures 
(e.g. aromatic, carbonyl, carboxylic and methoxy) of pseudo-lignin 
from holocellulose were found to be the similar using different 
pretreatment conditions. The study supported that the presence and 
structural formation of pseudo-lignin significantly inhibit lignin 
bioconversion through enzymatic hydrolysis. The high the severity 
of pretreatment conditions higher was the Klason lignin formation. 
Thus, pretreatments that were catalyzed using acids led to the 



Citation: Rana R, Nanda S, Meda V, Dalai AK, Kozinski JA (2018) A Review of Lignin Chemistry and its Biorefining Conversion Technologies. J Biochem 
Eng Bioprocess Technol 1:2.

• Page 8 of 14 •Volume 1 • Issue 2 • 1000105

formation of pseudo-lignin with high Klason lignin content that 
proved detrimental to the enzymatic bioconversion of lignin [112]. 

Thermochemical Conversion of Lignin
Pyrolysis

Pyrolysis is a well-established thermochemical technology that 
leads to biomass-to-liquid fuel products. The thermal degradation 
of lignin advocates fast pyrolysis as an effective route to obtaining 
bio-oils that can be used for synthesizing valued polymers, resins 
and adhesives. The pyrolytic product contents can vary depending 
on the composition and properties of lignin, pyrolysis conditions 
(temperature and catalyst) and the reactor design [17]. The pyrolysis 
of lignin is a two-step mechanism, which involves thermal cracking 
and re-oligomerization. The cracking at high temperatures is subjected 
to the macromolecules of lignin followed by vapor condensation 
that lead to the formation of monomeric phenol vapors. During 
the second step, the monomers formed undergo re-oligomerization 
leads to the formation of pyrolysis oil predominantly comprising of 
dimeric and oligomeric products [113].

A few studies on pyrolysis of lignin have been carried out since 
the last two decades with focus on bio-oil, biochar and producer gas 
[114-116]. The gas yields are reported to increase with an increase in 
pyrolysis temperature. However, the high heating rates hinder CH4 
formation [115]. According to Ferdous et al. [115], lignin pyrolysis 
can yield H2 as high as 25 mol%, which increases with rising pyrolysis 
temperature. Syngas, which is composed of H2 and CO, can be further 
converted to green diesel, ethanol, butanol and other hydrocarbons 
through Fischer-Tropsch catalysis, which is a mature gas-to-liquid 
(GTL) technology. Syngas can also be converted to bioethanol 
through syngas fermentation using Clostridium spp. [2,57]. 

Limited work has been done towards understanding the 
physicochemical properties of chars obtained from lignin pyrolysis. 
The char is reported to have an extremely condensed aromatic structure 
that keeps ~ 50% biomass energy entrapped in it [116]. The increase in 
pyrolysis temperature reduces the char yields as more product gases 
are formed at increased temperatures due to the cleavage of hydroxyl, 
aliphatic, methoxyl and carbonyl groups [117,118]. During pyrolysis 

Figure 5: Scanning electron microscopy image of pseudo-lignin deposits 
on the surface of wheat straw after hydrothermal pretreatment at 121°C 
for 1 h. Experimental details are described elsewhere [55].

of lignin, methoxyl group is a major contributor to char formation. 
Chu et al. [119] studied the pyrolysis of the β-O-4 type lignin model 
compound and reported that polymerization reaction resulted in 
char formation. The smaller radicals underwent polymerization 
mechanism during pyrolysis of the β-O-4 type lignin model polymer 
at 250-550°C. The side functional groups (i.e. methoxyl and hydroxyl 
groups) when eliminated led to char formation after the termination 
of polymerization.

The liquid products from lignin pyrolysis include guaiacyl 
derivatives, coniferyl alcohol, coniferaldehyde, syringaldehyde, 
sinapyl alcohol, p-vinylphenol depending on the type of lignin 
(hardwood or softwood) [116,120-122]. The impact of pyrolysis 
temperature and heating rates on product yield and distribution has 
been reported elsewhere [123,124]. They performed slow pyrolysis 
(2°C/min for 30 min) and fast pyrolysis (450°C/min for 30 s) of 
pinewood, wheat straw and Timothy grass in a wire-mesh fixed-bed 
tubular reactor. The slow pyrolysis led to 18-24 wt% bio-oil yield and 
41-44 wt% biochar yield, whereas fast pyrolysis resulted in 40-48 wt% 
bio-oil yield and 21-24 wt% biochar yield. Furthermore, oxygenates 
and nitrogenous compounds were predominantly found in slow 
pyrolysis bio-oil, while fast pyrolysis bio-oil contained aliphatics, 
monoaromatics and polyaromatics and demonstrated high heating 
value [124]. From a laser micro-pyrolysis gas chromatography-mass 
spectrometer (GC-MS) study on pyrolyzed Douglas fir and water 
oak lignin, 4-methyl-guaiacol, guaiacol, vinyl guaiacol, vanillin and 
eugenol were the major components obtained [125]. 

Liquefaction

Liquefaction typically operates at pressure and temperature ranges 
of 1-20 MPa and 250°C-450°C, respectively [48]. While pyrolysis 
results in highly oxygenated and hydrated bio-crude oil, liquefaction 
produces less oxygenated and relatively dehydrated bio-crude oil. The 
low oxygen and moisture contents in liquefaction-derived bio-oils 
reduce the necessity of upgrading techniques such as hydrotreating 
and hydrodeoxygenation [2,57]. The high heat of vaporization in 
biomass due to its high-water content makes the pyrolysis treatment 
challenging and limits the potential of biomass as a feedstock. The 
high moisture content in biomass leads to the high-water content in 
the aqueous phase of the pyrolysis oil. This necessitates water removal 
from the feedstock and bio-oil, which could otherwise influence 
the overall economy of the process. The application of pyrolysis 
requires biomass pretreatment to avoid moisture-related problems. 
Atmospheric drying, followed by mechanical drying and/or solar 
drying are usually considered for reducing the moisture content of 
biomass. On the contrary, biomass liquefaction is one of the most 
efficient methods of yielding bio-oil with lower water content. 

Another analog to liquefaction is hydrothermal liquefaction, 
which results in better biomass conversion rates and yields relatively 
pure products. At hydrothermal conditions, fluid in biomass can 
possess high solvation power and they attain suitable properties such 
as high heat, high density and good mass transfer capabilities [126]. 
Liquefaction is an environmentally benign process because it does 
not emit any obnoxious gases such as ammonia and nitrous oxides. 
During hydrothermal oxidation, the heteroatoms are converted to 
byproducts that do not pose any threat to the environment. Moreover, 
the medium of liquefaction is water, a green solvent in its liquid state, 
as well as subcritical and supercritical states [127-129]. 

Hydrothermal liquefaction results in the hydrolysis and 
subsequent denaturation of biomass macromolecules into smaller 
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molecules. Most of the fragmented molecules are usually unstable 
and reactive, hence they tend to re-polymerize into larger compounds 
[130]. This process leads to the removal of oxygen from biomass 
through deoxygenation, dehydration and decarboxylation. Therefore, 
the bio-oil that is produced from the liquefaction of dehydrated 
biomass contains less oxygen and moisture.

In case of direct liquefaction, the biomass is completely 
transformed to liquid fuel without undergoing gasification. 
Kobayashi et al. [131] have studied the liquefaction of steamed lignin, 
alkali lignin and their mixtures with cellulose powder in the presence 
of polyhydric alcohol. The liquefaction of wood led to the formation 
of products like N, N-dimethylformamide. Li et al. [132] studied the 
selective liquefaction of lignin that was extracted from the residue 
from bio-ethanol production. It has been reported that liquefaction 
process has a great selectivity towards lignin. Liquefaction of lignin 
using polyethylene glycol has led to the formation of polyether polyol 
[133].

Gasification 

The thermochemical process that involves the conversion of 
carbonaceous solids such as biomass, char, coal etc. or liquids (oil, 
tar etc.) on their reaction with steam or air to yield gaseous products 
(e.g. H2, CO, CO2, CH4 and C2+) is called gasification. In simple words, 
gasification is a biomass-to-gas conversion technology that can use 
air, inert gas, steam or water as the reaction medium. The product 
gas from gasification is usually termed as producer gas or synthetic 
gas (syngas) based on the reaction medium. For instance, the high-
pressure gasification of steam yields syngas, whereas producer 
gas is a gaseous product when the gasification is carried out in the 
presence of air. High levels of N2 in the producer gas as compared to 
H2, CO2 and CO make it suitable for heat or electricity generation. 
On the other hand, syngas is composed of H2, CO, CH4, and CO2 
can be used as a gaseous fuel and a precursor for generating higher 
alcohols and long-chains hydrocarbons. As mentioned earlier, syngas 
can be converted to alcohols, hydrocarbons and green diesel through 
Fischer-Tropsch catalysis [134]. Fermentation of syngas by specific 
bacteria (Clostridium spp.) is also a biological means to produce 
bioethanol from syngas [135].

Hydrothermal gasification involves the application of subcritical 
or supercritical water as the reaction medium, reactant and catalyst. 
Subcritical water has its temperature (T) <374°C and pressure 
(P) <22.1 MPa, whereas supercritical water is characterized by 
T >374°C and P >22.1 MPa [136]. Hydrothermal gasification is 
advantageous over thermochemical gasification in many aspects, a 
few of which include: (i) rapid biomass hydrolysis and degradation 
of macromolecules, (ii) relatively low temperature requirement, 
(iii) high reaction rates, (iv) enhanced biomass solubility in aqueous 
medium, (v) abridged char and tar formation, (vi) lower chances of 
re-polymerization of reactive components [137]. Since the medium 
of gasification is water, high-moisture containing biomass can be 
used, which can reduce the cost of biomass drying like hydrothermal 
liquefaction. Cellulose, hemicellulose and lignin in biomass are found 
to be highly soluble in hydrothermal gasification resulting in high 
yields of H2-rich syngas [138]. 

Oxygen in trace amounts can be added to the gasification 
reactants to help the exothermic oxidation heat towards steam-
reforming reaction, which is endothermic in nature. The other 
advantage of adding oxygen is to reduce catalyst deactivation due 
to coking as oxygen can help to burn coke. As biomass has higher 

oxygen content than coal, it forms an excellent gasification feedstock 
at lower temperatures [139]. Catalytic biomass gasification is a very 
popular and extensively studied conversion technique. 

Lignin gasification with 4-propylphenol in the presence of 
supported metal catalyst was carried out at supercritical water 
conditions. Lignin gasification could be divided into two steps: (i) 
lignin decomposition, and (ii) gasification of low molecular weight 
compounds. The rate of lignin gasification was found to be impacted 
by water density [140]. There are several studies conducted to 
produce hydrogen from lignin gasification using metal catalysts [140-
145]. Furusawa et al. [144] produced H2 from lignin gasification using 
Ni/MgO catalyst. The 10 wt% Ni/MgO catalyst at 600°C gave the best 
catalytic activity and carbon yield (30 wt%). Ni/MgO was found to 
be a promising catalyst for lignin gasification in supercritical water. 
Osada et al. [142] reported 30% gas yield from the gasification of 
lignin and cellulose at a low temperature (400°C) using Ru catalyst. 
The major gas product was CH4 with low char formation. Other 
uses of lignin gasification have also been explored such as producing 
activated carbon from CO2 partial gasification of kraft lignin [146]. 
There are comprehensive reviews available on activated carbon, 
adsorbents, fine chemicals and other industrially relevant products 
from lignin gasification [65,147,148].

Supercritical water gasification of lignin results in the generation 
of phenolics, which are catalyzed by the dissociated ionic components 
of water i.e. H+ and OH– ions. Because of hydrolysis and dealkylation, 
lignin also produces phenols, formaldehyde and reactive low 
molecular weight compounds [2]. The reactive low molecular weight 
compounds with formaldehyde undergo cross-linking to yield 
high molecular weight compounds. The ether-based components 
produced from lignin hydrolysis result in the organic phase of the 
oil. Hydrolysis and dealkylation of guaiacols and syringols produce 
methanol and catechols that result in the aqueous phase of the liquid 
products. The intermediates and degraded components could re-
polymerize at high temperatures and longer residence time to form 
phenolic char [149]. Amendment of phenol during supercritical 
water gasification of lignin is found to improve lignin degradation by 
considerably inhibiting the re-polymerization of the highly reactive 
components [150]. Because of phenol addition, the higher and 
substituted phenols such as catechols, cresols and guaiacols deform 
to form stable phenolic compounds.

The phenolic char is highly aromatic and carbonaceous, which 
are also formed by the reaction between denatured phenolics and 
aldehydes. The non-condensable components of lignin gasification 
end up in the gas phase that is mostly combustible due to the presence 
of H2, CO, CH4 and C2+. Hydrothermal gasification of lignin in near-
critical water generates significant amounts of CO2. Hydrothermal 
gasification of lignin at a high feed concentration also decreases 
H2 and CO yields, while increasing CH4 levels due to methanation 
and hydrogenation. However, H2 yields can be enhanced at high 
gasification temperature, while also reduced CO concentration due 
to water-gas shift reaction [136].

Microwave-Assisted Conversion of Lignin
Microwaves are electromagnetic waves formed within a frequency 

band between 300 MHz and 300 GHz [151]. The mechanism of 
microwave-assisted heating depends on conduction, dipolar or 
orientation polarization and interfacial polarization. Microwave 
irradiation causes the electromagnetic waves to oscillate rapidly 
leading to the alignment of polar molecules in the radiation field. 
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Moreover, dipolar polarization leads to the continuous alignment of 
the polar molecules inside the material, which generates heat energy 
[152,153]. In microwave irradiation, the wave interactions within 
the exposed material lead to the heat transfer and a higher energy 
yield compared to the conventional ovens, which transmit heat by 
the conduction and convention mechanisms. In conventional heating 
techniques, the heat energy is transferred from the exposed material’s 
surface toward its center by conduction and convention, whereas 
microwave irradiation converts electromagnetic energy into thermal 
energy rather than only heating. 

Compared to conventional heating technologies, the advantages of 
microwave heating include shorter residence time, efficient and faster 
heat transfer, precise and controlled heating, easier operations, less 
maintenance and environmentally friendly process [154]. However, 
microwave-assisted heating has a few disadvantages, which include 
(i) poor distribution of microwave radiation owing to the exposed 
material’s non-homogeneity, (ii) non-uniform heating, and (iii) 
poor penetration of microwave radiation in bulk and highly-dense 
materials [155-157]. One of the key determinants associated with the 
adoption of microwave pretreatment technology is its operating cost. 

Microwave pretreatment of lignocellulosic biomass is a very 
effective technique that can be used independently or coupled with 
other thermochemical conversion technologies to transform lignin 
to many useful products. Microwave-assisted alkali pretreatment can 
efficiently penetrate the biomass and vibrate its molecules. The rapid 
vibration and oscillation of polar molecules can lead to heating and 
disruption of the lignocellulosic structure. Microwave pretreatment 
has a potential to selectively remove lignin consequently improving 
the access of cellulolytic enzyme to degrade cellulose and increase 
sugar yields. 

During microwave-assisted conversion of lignin, there is a direct 
interaction amidst the microwave radiations and the particles of the 
compressed material. This consequently converts the electromagnetic 
energy to the heat transfer within the dielectric substances. Unlike 
other forms of heating, in microwave-assisted biomass conversion, 
the irradiations are not conducted into the substance from a source 
that is external, which leads to instant bulk heating. This non-contact 
technique of heating the substance with the help of electromagnetic 
radiations can avoid challenges related to direct heating via convection. 
Moreover, through microwave treatment, a large amount of heat can 
be transferred to the interior of the substance without generating a 
thermal gradient. Thus, microwave conversions are quick and more 
effective than any other technique enabling the conversion at lower 
temperatures and less reaction time. 

Many reports suggest that the microwave-assisted lignin 
conversion is highly promising as a next-generation biomass 
pretreatment technology [158-163]. Sequeiros et al. [158] performed 
microwave-assisted liquefaction of pruned lignin derived from the 
olive tree at varying conditions of temperature, catalyst concentration 
and reaction time. The organosolv lignin feedstock and product 
polyols were characterized using various methods. Microwave 
conversion is found to be more effective than the traditional method 
of lignin refluxing. Gassara et al. [159] quantified lignin present in the 
residues of apple pomace through microwave conversion technique. 
The microwaves assisted in the cleavage of the bonds between lignin 
and carbohydrates. Statistical technique (response surface method) 
was used to optimize the process parameters. The optimal conditions 
for lignin digestion were reported to be 3 MPa, 15 min and 170°C.

Dong et al. [164] reported their observations on the microwave-
assisted conversion of black liquor lignin with formic acid. The 
product, comprising a mixture of two bio-oils, achieved 64.1% yield 
after 30 min of reaction at 160°C. Various characterization techniques 
were used to identify the properties of the liquid product along with 
the solid residue. A reaction mechanism was predicted based on the 
obtained results, which focused on the microwave conversion of 
lignin using acid and highlighted the kinetics of the primary cracking 
and re-polymerization of oligomeric substances and formation of 
char. 

Toledano et al. [165] studied the microwave-assisted lignin 
conversion using the de-polymerization route to smaller aromatics. 
Different loadings of metal nanoparticles (e.g. Ni, Pt, Pd and Ru) were 
doped on mesoporous Al-SBA-15 to synthesize the catalyst for an 
efficient lignin conversion. The products obtained were categorized 
as bio-oil, biochar and unconverted lignin. The ultimate objective of 
the study was to maximize the production of bio-oil using different 
catalysts. The results demonstrated a significant role of metal 
nanoparticles in the hydrogenolysis reaction of lignin. Along with 
other products, the phenolic compounds from lignin such as mesitol, 
syringaldehyde, desaspidinol and aspidinol were obtained. The bio-
oil comprised of monomers, dimers and trimers. Among most of the 
metals used, nickel was reported to have the best results for lignin 
depolymerization.

Conclusions
Lignocellulosic wastes from forestry, agricultural residues 

and energy crop systems are abundantly available and considered 
potential feedstocks for biofuel production through thermochemical 
and biological conversion. There are some challenges towards the 
efficient disposal of the accumulated lignocellulosic residues. Several 
studies have been conducted towards understanding the physical 
and chemical nature of lignin and the biological and chemical 
routes of lignin conversion. Lignin is certainly one of the most 
significant biomass that can be utilized to produce fuel as well as 
other biomaterials. However, lignin appears to hinder the hydrolysis 
of lignocellulosic biomass as it glues cellulose and hemicellulose 
together in a firm biopolymeric framework. Except for alkalis, lignin 
is relatively insoluble in hot water, acids and solvents. Therefore, a 
delignification step is extremely crucial to remove the branched 
polymeric lignin from the biomass followed by pretreatment and 
enzymatic hydrolysis to release the fermentable polysaccharides. 

The use of ligninolytic fungi and their enzymes have been 
identified as a low-cost route for enzymatic hydrolysis of lignin-rich 
substrates. Several valued products can be obtained from ligneous 
biomass, a few of which include fuels, organic acids, polysaccharides, 
nutraceuticals, etc. The thermochemical conversion of lignin-rich 
materials chiefly yields biofuels in the form of bio-oils, biodiesel 
and syngas, as well as aromatic char. The biochar that is generated 
as a byproduct of pyrolysis and gasification of lignin can be used as 
a precursor to produce several carbon-based engineered materials 
such as activated carbon, carbon nanotubes, carbon nanohorns, 
etc. Lignin or its derivatives can also be used as biocomposite, 
binder or precursor for bioplastics, pesticides, insecticides and other 
industrially relevant materials. Lignin is an attractive bioresource for 
biological and thermochemical conversion, therefore more research 
in improving the existing conversion technologies or developing 
new processes could help deploy this valuable material. The notion 
of utilizing lignocellulosic wastes to extract lignin and subsequently 
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converting it to biofuel, biomaterials and biochemicals can aid 
towards the escalating energy demands worldwide and help reduce 
the environmental concerns that are often raised while putting fossil 
fuels to use.
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