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Abstract

Hydrological modeling is an important tool for water resources 
planning, and calibration and validation are one of the main steps 
for the right use of models. The intrinsic characteristics of the 
tropical region, such as temperature, precipitation and soils, require 
special attention in the modeling processes to increase simulation 
accuracy of physically based distributed models. In this paper we 
describe and analyze calibration and validation steps of these 
models to understand the challenges of hydrological modeling 
in the tropical region. A catchment located in the tropical region 
was used for the calibration and validation of a physically based 
distributed hydrological model (Mike SHE). The results showed 
that the saturated zone has a fundamental role in the hydrological 
responses, mainly for the minimum flow simulations; however, the 
land use parameters results in low influence on the annual flow. 
Adjustments of maximum flow in tropical regions seem to be more 
influenced by intensity of precipitation. Therefore, the results suggest 
that the strategy of fitting the base flow followed by the adjustment 
of the maximum flow and the evapotranspiration and transpiration 
processes is an efficient procedure to calibrate the model.
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and input information, which increases the time of parameterization 
stage for these models [8,9].

It has been argued that calibration and validation of such models 
require particular attention when used in tropical systems [10,11], as 
critical hydrological process interactions may differ significantly from 
those in temperate regions, where most of the models are structured 
[12,13].

In terms of these process/response differences, perhaps the most 
significant are high precipitation, high temperatures, and highly 
weathered soils [14]. Precipitation is far higher, both in volume and 
intensity, than in temperate zones; up to 40% of events may be classified 
as high intensity, whereas in temperate areas they represent only 5% 
[15]. Tropical soils also have different characteristics, as a function 
of the precipitation regime and high temperatures, vegetation type, 
organic matter content, among other factors, resulting in accelerated 
physical and biological processes in soils [13,16]. Thus, in the tropical 
zone, it is common to find soils with a high degree of weathering, which 
results in greater soil depth and a higher proportion of clay [17]. The 
intrinsic characteristics of the region can modify the processes and the 
way the models simulate them in other systems [18].

We argue that to understand the hydrological functioning of 
tropical systems and to model the dynamics of land use in these 
systems, physically based distributed hydrological models are an 
important research tool. Thus, the objectives of this study were to 
describe and analyze the calibration and validation steps of a physically 
based distributed hydrological model and understand the uncertainties 
and challenges of the modeling process in the tropical region.

Materials and Methods
Study area

Calibration and validation (C&V) of the hydrological model 
was performed in a catchment (2,194.8 ha) located in the tropical 
region, in the state of São Paulo, Brazil (Figure 1). The local climate 
is Cwa with rainfall concentrated in the summer and dry winter 
[19], characterizing a high seasonality of precipitation and elevated 
temperatures.

Precipitation (P) was measured with two rain gauges located in 
the catchment. The streamflow (Q) and precipitation datasets used in 
this study correspond to the period from 1999 (P=1219 mm, Q=469.5 
mm) to 2000 (P=1296 mm, Q=405.7 mm). Although two year could 
be a short period for calibration and validation processes, it was used a 
hot start period of three months before calibration period for warn-up 
the model [20,21]. Reference evapotranspiration was calculated using 
the FAO modified Penman-Monteith method [22]. The land use class 
was divided into: sugar cane, (1,273.9 ha, 58%); pasture (731 ha, 33%); 
and native vegetation (186.5 ha, 9%). The soil type characterization 
used was obtained on a 1:20.000 scale [23,24] and categorized by 
texture: clay (42%), clay loam (21%), sandy clay (1%), loam (6%), 
sandy (7%) and sandy loam (23%).

The calibration and validation present (1999 and 2000) 
represents typical years considering precipitation, streamflow and 
evapotranspiration variables.

Introduction
Hydrological models are important tools to assist the management 

of water resources [1] and for land use planning when the goal is to 
quantify the availability of hydrological services [2,3], by simulating 
hydrological indicators based on future scenarios [4,5]. However, the 
reliability of simulation information depends on an important step in 
the modeling processes: the calibration and validation of the models 
with data observed in the field.

The aim of model calibration and validation is to increase the 
accuracy between observed and simulated data, and, consequently, 
decrease the errors and prediction uncertainties [6,7]. Physically based 
distributed hydrological models require a high number of parameters 

;
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Model code and parameterization

In this work, the C&V process was carried out using the physically 
based distributed hydrological model MIKE SHE [25,26]. A detailed 
description of the modeling methods can be found in Abbott et al. 
[25,27] and DHI [28,29].

Supplementary material

Here we present all the parameters used in calibration and 
validation stages discussed in the paper. Soil parameters values 
measured in the field (Table 1); land use parameters (Table 2); surface 
roughness and river bed resistance (Manning’s number) (Table 3); 
evapotranspiration actual and overland flow processes (Table 4).

The values of the soil water retention curve and saturated 
hydraulic conductivity (K0) was measured in the field [30] and are 
presented in Table 1. Previous studies were used to characterize the 
three land uses present in the catchment. Vegetation parameters such 
as Leaf Area Index (LAI), Root Depth (RD) and crop coefficient (Kc) 
were distributed over time (Table 2). The surface roughness (M) was 
distributed in terms of land use and soil type (Table 3). Detention 
storage (S) and the evapotranspiration parameters (interception 

coefficient – Cint, C1, C2, C3 and AROOT) were distributed according 
to land use (Table 4).

The water flux between the Saturated Zone (SZ) and river depends 

Table 1: Soil parameters values for soil classes in two layers (A=surface and 
B=subsurface); K0=saturated hydraulic conductivity; α, m and n are van 
Genutchen parameters [31]; and l=shape factor.

Soil texture
Area K0 α m n l

ha % mm h-1 1 cm-1 - - -
Clay A

909,2 42,0
7,3 0,018 0,413 1,703 0,5

Clay B 7,3 0,018 0,413 1,703 0,5
Clay loam A

439,7 20,3
33,2 0,024 0,459 1,853 0,5

Clay loam B 11,6 0,024 0,448 1,811 0,5
Sandy clay A

23,4 1,1
74,2 0,049 0,449 1,816 0,5

Sandy clay B 17,3 0,017 0,414 1,705 0,5
Loam A

137,9 6,4
20,4 0,033 0,389 1,641 0,5

Loam B 20,4 0,033 0,389 1,641 0,5
Sandy A

160,1 7,4
6,0 0,009 0,398 1,661 0,5

Sandy B 6,0 0,009 0,398 1,661 0,5
Sandy loam A

496,7 22,9
16,4 0,022 0,449 1,816 0,5

Sandy loam B 5,7 0,016 0,370 1,587 0,5

Figure 1: (a) Location of the study area in the tropical region, Cwa climate [19] (b) Land use and location of the gauged point and rain gauges (adapted 
from Pires Fernandes ) (c) soil classes (Silva)  (d) digital elevation model.
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on the leakage coefficient (LeakCoef) [28], and was given an initial 
value of 1.10-3 s-1 that corresponds to minimum flow in the catchment 
(Q99). 

Horizontal and vertical hydraulic conductivity was measured in 
the field [30], and its value (9.44E-8 m s-1) was considered uniform. In 
the same way, uniform values of specific yields (SY=0,2) and specific 
storage (SS=1.10-4 L-1) were used. Efficiency criteria used to evaluate 
the C&V performance was presented in Table 5.

Calibration and validation procedure

Calibration steps: The sensitivity analysis (SA) was carried out 

(hydrological indicators derived from the flow duration curve): 
annual streamflow (Q), maximum flow (Q5), and minimum 
flow (Q70-99). Thirteen parameters were selected to quantify the 
sensitivity: horizontal hydraulic conductivity (Kx), vertical hydraulic 

Land use Soil classes
M

m-1/3 s-1

Native vegetation1

Oxisols 7
Ultisols 15

Inceptisols 25
Entisols 32

Pasture1

Oxisols 13
Ultisols 24

Inceptisols 34
Entisols 42

Sugar cane1

Oxisols 7
Ultisols 17

Inceptisols 27
Entisols 34

River bed resistance2 28
Note: (1) [30]; (2) [37]

 Table 3: Parameter values of Manning’s number (M).
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Table 5: Efficiency criteria indexes (n: number of days; Qobs: observed flow; Qsim: simulated flow; µ: average flow; σ: stand deviation). Adapted from [42–44].

Table 2: Parameters value used to characterize land use in catchment study. LAI: 
Leaf Area Index; Kc: Crop Coefficient; RD: Root Depth.

Day
LAI(1) Kc(2) RD(3) LAI(1) Kc(4) RD(4) LAI(1) Kc(4) RD(5)

m2 m-2 - mm m² m-2 - mm m2 m-2 - mm
Sugar cane Pasture Native vegetation

31 1,61 1,13 1.914 1,7 0,75 1 3,8 1,0 7
61 1,71 1,15 2.471 1,6 0,75 1 4,1 1,0 7
92 1,76 1,17 3.029 2,2 0,75 1 3,4 1,0 7
122 1,77 1,18 3.586 1,5 0,75 1 3,0 1,0 7
153 1,89 1,20 4.143 1,8 0,75 1 2,8 1,0 7
184 2,15 0,95 4.7 1,9 0,75 1 2,5 1,0 7
212 0,00 0,00 0 1,5 0,75 1 3,0 1,0 7
243 0,33 0,50 200 0,9 0,75 1 2,3 1,0 7
273 0,66 0,80 300 1,1 0,75 1 2,4 1,0 7
304 0,59 1,00 500 1,0 0,75 1 2,8 1,0 7
334 0,87 1,10 800 0,9 0,75 1 3,7 1,0 7
365 1,38 1,12 1.357 1,3 0,75 1 3,9 1,0 7

Note: (1) [32]; (2) [33]; (3) [34]; (4) [35]; (5) [36]

Table 4: Parameters values used to model evapotranspiration actual and 
overland flow processes (CINT: canopy interception storage; C1, C2 e C3: 
Evapotranspiration coefficients of [38]; AROOT: root distribution; S: detention 
storage).

Process Parameters Unit
Land use

Uniform Native 
vegetation Pasture Sugar 

cane

Ev
ap

ot
ra

ns
pi

ra
tio

n 
ac

tu
al CINT mm 0,5 - - -

C1 - 0,3(1) - - -
C2 - 0,2(1) - - -
C3 mm day-1 30(4) - - -

AROOT 1 m-1 0,1(1) - - -

O
ve

rla
nd

 
flo

w S mm - 5(2) 2(3) 2(3)

Note:(1) [28]; (2) [39]; (3) [40]; (4) [41]

as the maximum absolute ratio of variation  of three variables 
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conductivity (Ky), saturated hydraulic conductivity (K0), surface 
retention (S), Manning’s number (M); Manning’s number for channel 
(M_channel), leakage coefficient (LeakCoef), interception coefficient 
(Cint), Leaf Area Index (LAI), evapotranspiration coefficients (C1, C2 
and C3) and root distribution (AROOT) .

The C&V process was based on the manual method. Regarding 
the parameter adjustment stage, we proposed a three-part approach: 
optimization of minimum flow, optimization of maximum flow and 
optimization of the hydrological process (actual evapotranspiration 
ETR and interception-INT).

Comparative analyses

The efficiency of C&V performance was evaluated in three ways: 
visual (analysis of flow duration curves – FDC), relative (relationship 
between observed and simulated data) [42,44] and by efficiency 
criteria: Nash-Sutcliffe (NSE), Nash-Sutcliffe for minimum flows 

(NSE_base); modified Kling-Gupta (KGE’); and percent bias (PBIAS). 
Details of the efficiency criteria functions can be found in Table 5-SM.

Results
Calibration steps 

The sensitivity analysis (SA) results showed that horizontal 
hydraulic conductivity (Kx) had large influence on annual flow (Q) 
and minimum flow (Q70-99) (34.4% and 134.4%, respectively), 
while the LeakCoef had a sensitivity of 0.2% for Q70-99. Saturated 
hydraulic conductivity (K0) and M-Channel were highlighted as the 
most sensitive to maximum flow (Q5), followed by M, S and Ky. Looking 
at the ETR and INT process, the Cint influenced the annual flow by 0.8%. 

The steps used in minimum and maximum flow optimization and 
hydrological processes followed the framework proposed in Figure 2, 
where the phases for the C&V of a model are described, considering 

Figure 2: Proposed framework for calibration and validation of a physically based distributed hydrological model in the tropical region. Horizontal 
hydraulic conductivity (Kx), vertical hydraulic conductivity (Ky), saturated hydraulic conductivity (K0), surface retention (S), interception coefficient (Cint), 
evapotranspiration coefficients (C1 and C2), observed flow (Qobs), simulated flow (Qsim), actual evapotranspiration (ETr) and interception (INT).

Table 6: Results of efficiency indexes and total flow for calibration (year 1999) and validation (year 2000).

Steps
Modified parameters Efficiency index

Kx LeakCoef S Cint
NSE NSE_BASE KGE' PBIAS

m s-1 s-1 mm mm
Calibration 4.7 × 10-7 10-Sep 1.5 1.5 0.56 0.66 0.76 2.21
Validation 4.7 × 10-7 10-Sep 1.5 1.5 0.6 0.64 0.78 4.71

Abbreviations: Kx: horizontal hydraulic conductivity parameter; LeakCoef: Leakage Coefficient; S: surface retention parameter; Cint: Interception Coefficient; NSE: 
Nash-Sutcliffe Efficiency Index; NSE_BASE: Adaptation of Nash-Sutcliffe Efficiency Index for Base Flow; KGE’: modified Kling-Gupta Efficiency index; PBIAS: Bias 
of Data in Percentage.

[45].
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the better approach to obtain the efficiency indexes required for 
adjustments.

Warm-up and hot start

In the early stages of C&V process, a hot start of three months 
was obtained for warm up of the model aiming to avoid biased 
results. The base simulation, with initial parameters and a hot start, 
overestimated the annual flow by 17.4% compared to observed data, 
and the minimum flows were the most overestimated (582%). 

Optimization of minimum and maximum flows 

The parameters Kx (4.7 × 10-7 m s-1) and LeakCoef (10-9 s-1) were 
modified for adjustments in minimum flows, and these changes 
showed lower differences between observed and simulated data for 
Q90 (difference of 13.8%). Besides, the efficiency indexes NSE_BASE 
(0.65) and KGE’ (0.76) reached the minimum suitable values for 
model calibration after these changes. Once the best fit for minimum 
flow is obtained, the values of calibrated parameters were maintained 
until the final step of calibration. 

After the adjustments of minimum flows, the Q5 was 
underestimated by 6.3%. The initial value of the S parameter (1.5 mm) 
was reduced and the initial value of M_Channel (43 m-¹/3 s-¹) was 
increased aiming to raise the speed and volume of surface runoff. The 
changes in S value decrease to 5.2% the difference between observed 
and simulated maximum flows, and to 0.7% the relative difference 
between annual flows. The efficiency indexes remained equal, except 
PBIAS, which decreased to 0.71%. 

Optimization of the hydrological processes

After the adjustments of maximum and minimum flows, the ETR 
was 67% of the annual precipitation, and the interception process was 
about 6.1%. The parameter Cint (1.5 mm) was modified aiming to 
increase the interception. This change increased the interception to 
13.3%, while the results of evapotranspiration showed a slight increase 
(from 67% to 68%). However, when analyzed for each soil use, we 
can see that the larger percentages of ETR follow the differences in 
land use (native vegetation=86%; sugarcane=67%; pasture=58%). 
Therefore, this new value of Cint was maintained in the model for 
future simulations. 

Calibration and validation processes

With all adjustments completed, the calibration (year 1999) and 
validation (year 2000) indexes were obtained (Table 6). The simulated 
flow was underestimated both in calibration and in validation (-2.2% 
and -4.7%, respectively). Corroborating these data, the efficiency 
indexes were within the accepted range to consider the model efficient 
in predicting scenarios, with errors at 2% in calibration and 5% in 
validation.

Discussion
Calibration and validation process

With respect to the first research question, sensitivity analysis 
(SA), the changes in the Kx parameter resulted in the highest 
sensitivity of the annual flow (34.4% sensitivity), which may be related 
to the importance of the saturated zone in the distributed models [25]. 
The influence of Kx on minimum flows was observed in the current 

study, highlighting the importance of this parameter in the C&V steps 
[46]. It was found that there is a direct relationship between the Kx 
parameter and the annual flow and flow base in the tropical region. 

On the other hand, Q5 did not show high sensitivity to changes 
in Kx (2.5% of sensitivity) as occurs in the temperate region [47]. This 
result may be explained by the characteristics of tropical soils [48]: 
deeper soils can reduce the influence of the saturated zone on the 
peak flow because water table in these soils is deeper. Therefore, the 
variable Q5 could be more influenced by the intensity of precipitation 
than by the proximity of the water table.

Warm-up and hot start

In this study, warming up the model to start the calibration 
process allowed initial soil conditions to become more similar to 
the observed ones, since model warm-up plays an important role in 
adjusting hydrological processes [49]. This adjustment is an important 
step in the modeling of tropical catchments, since in this region, there 
are soils with higher clay content [17] and deep soils [50]. Overall, it is 
important that the initial conditions were adjusted before the period 
considered for C&V.

Optimization of minimum flow 

In relation to the C&V processes for optimization of minimum 
flows, the first parameter adjusted was Kx, as it is an important 
parameter for the regulation of the saturated zone, and these results 
are in line with those of previous studies [51,52]. Modifying Kx was 
sufficient to reduce the relative difference in both the minimum 
flow index (from 582% to 191%) and the annual flow (from 17.4% 
to -0.8%). The decrease in leakage coefficient resulted in a lower 
minimum flow index and better NSE_BASE index (from 0.3 to 0.6). 
This improvement in the efficiency indexes showed that adjusting 
minimum flow is fundamental in the C&V process, since its 
adjustment allowed a considerable gain in the efficiency indexes.

This relation of leakage coefficient and minimum flows in the 
tropical region may be related to the importance of the saturated zone 
in this region, because of the characteristics of deeper soils, more 
intense rainfall and seasonality of rain [13]. These results highlight the 
saturated zone as an important compartment in the C&V processes.

Optimization of maximum flow

The change in the S parameters resulted in better efficiency 
indexes; however, in other C&V procedures carried out in temperate 
zone systems these gains had even better results in the calibration of 
the peak flow than those found in this study [53]. Adjusting the peak 
flow rates after the minimum flow rates was efficient in this case, since 
few changes occurred with changes in land use parameters.

The adjustment of peak flows seems to be directly related to the 
intensity of precipitation. In intense precipitation, changes in land use 
parameters show low sensitivities in C&V processes [54]. Thus, the 
intensity of precipitation seems to be a more important variable in 
modeling in the tropical region.

Optimization of hydrological processes

After the adjustments in the minimum and maximum flow 
index, the efficiency indexes had already reached a satisfactory 
C&V value. However, when analyzing the interception and actual 
evapotranspiration processes, adjustments were still necessary. The 
simulated interception was 6.1% and the values measured in this 
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catchment vary from 14% to 24% of the precipitation [55,56]. The 
need for adjusting the empirical parameters of hydrological process 
during calibration can be explained by the difference in climate 
and soil features between the region where methods are adjusted 
(temperate) and the region where we are simulating (tropical). For 
example, for a C&V process in temperate zone, the authors consider 
the influence of Cint parameters negligible on the final results [52], 
or without significant effect on the results [57]. On the other hand, 
a study in tropical zone shows that change in vegetation parameters 
(C1, C2 and Cint) produced better results [41]. 

Thus, especially when the focus is on the hydrological processes 
that are taking place in the scenarios, it is important to check not 
only the efficiency indexes of the models, but also the simulated 
hydrological processes, since the hydrological models were adjusted 
in regions with different characteristics of soil and precipitation.

Model limitation for tropical region

In this study, the C&V process was efficient to fit observed and 
simulated flows and could be considered acceptable; however, since it 
is a manual calibration, the interrelationships between the parameters 
remain as sources of options not fully explored, as they depend on an 
automatic calibration [58,59].

As it is one of the most important inputs, the quality of the 
precipitation data is proportional to the quality of the calibration 
[60,61], particularly in the tropical region with more intense and 
seasonal precipitation [62]. In the present study, the presence of 
only two rainfall gauges may not have been sufficient for accurately 
representing precipitation [58,63].

One of the greatest difficulties encountered was that our model 
consistently overestimated the minimum flow, and this model 
limitation has been reported in other studies [64]. This was more 
frequent in dry periods, in which the model often overestimated the 
minimum values [64-66].

Conclusion
The calibration and validation processes of a hydrological 

model in the tropical region show that the saturated zone has a 
predominant influence on this process, mainly on the responses 
of the minimum flows. Concerning peak flow adjustments 
in tropical regions, the intensity of precipitation plays a 
fundamental role. For a suitable calibration and validation step, 
it is necessary to adjust the simulated hydrological processes, 
such as evapotranspiration and interception. Due to this 
influence, the strategy of following a sequence of adjustments, 
starting from minimum flows, followed by maximum flows and 
hydrological processes, showed to be an efficient procedure to 
calibrate the model.

This work was supported by the Brazilian federal agency for support and 
evaluation of graduate education (CAPES).
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