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Abstract
Fault Localization or debugging is one of the major aspects when 
it comes to testing activity. In this   criterion a fault is located 
and removed when a failure occurs during test. Many types 
of techniques were proposed before Spectrum-based Fault 
Localization (SFL) techniques was proposed in order to address 
the problem of fault localization, which point out program elements 
which have susceptibility of containing faults. In this article we will 
apply three different techniques to the different SBFL formulas. 
The two techniques are uniqueness and slicing. The third one is 
the combination of these two techniques. We will compare the 
efficiency and effectiveness of each of the technique on different 
Spectrum based Fault Localization techniques which will be applied 
on seven siemens suite programs.
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Introduction
According to Araki [1], one of the earliest debugging practices 

constitutes of developing the code with print statements inserted 
in between to find out the state of variables. With the advent of 
advancement, there have been little changes in fault localization in 
practice over time. The techniques proposed in the 1960s [2, 3] and 
used in today’s world by developers, and earlier debugging tools 
originate from the late 1950s [4]. The idea of this tool was based on 
moving the debugging program to the computer’s memory, which 
helps in verification and modification during the execution. A tool 
called EXtendable Debugging and Monitoring System (EXDAMS) 
[5] was presented by Balzer, which was capable of navigating both 
backward or forward navigation through the code. The visualization 
technique of this tool uses graphics to provide control-flow and data-
flow information, which can be like tree structure of execution at 
some point of interest.

Software fault localization is found to be one of the most time 
consuming, tedious and expensive activity in debugging of different 
programs. Leading to a great demand for automatic fault localization 
techniques that can help and suggest ways to programmers to locate 
faults, with minimum amount of human intervention. So, there is 
development of different methods, which makes the fault localization 
process more effective as well as efficient. The complexity of software 
and its scale has rapidly increased due to this ongoing trend. So, this 
increase in complexity of software has led to increase in software bugs 

which have resulted in huge losses [6,7,8].

The different techniques used to automate fault localisation are 
i) Spectrum Based Techniques ii) Machine Learning Techniques iii) 
Slicing Techniques

Weiser [9] proposed the Program Slicing technique. On applying 
this technique, the fault in the program is confined only in a small 
region, which is, a relevant slice. Program slicing technique are of 
two type- static and dynamic. In a program the flow of control and 
data are analysed statically by means of static program slicing [10,11] 
(statically) which helps in reduction of search space for locating fault. 
But due to high conservative nature of static slicing technique, the 
precision of locating fault is very small. In static program slicing 
technique, dynamic technique [12,13] the search domain of faults 
is reduced and therefore we get more precise slicing criterion. The 
statements in which the value of a variable is influenced for a particular 
program input are generally considered in a dynamic program slice 
[12,13]. There are some drawbacks of slicing also, which include- i) 
Static Slicing considers all possible executions. ii)  The current test 
case that reveals the fault is not taken into account. Although, it is 
used for gaining debugging information. iii) Static slices comprise too 
many statements (for a certain test case) iv) Dynamic slicing may not 
contain the faulty statement.

Behavioural patterns which are associated with the different 
faults, are identified by the machine techniques. Some of the faults 
like variable not initialized in programs can be easily identified 
using machine learning techniques. Some of the machine learning 
techniques are SVM (Support Vector Machine), Neural Network 
Based Techniques, BPNN [14] (Back Propagation Neural Network), 
RBFNN [15] (Radial Based Function Neural Networks), DNN [16] 
(Deep Neural Networks). Support vector machines are one of the 
supervised learning models of machine learning. In this learning 
algorithms classification and regression analysis are used to analyse 
data. 

Machine learning literature include neural networks as a class of 
model.  The development of neural networks was a kind of revolution 
in the field of machine learning. Their specific algorithms   are 
inspired from the biological neural networks and are found to be 
quite efficient and effective in solving most of the machine learning 
problems. Neural Networks are dealt with those Machine Learning 
problem where the problem is about learning a complex mapping 
from the input to the output space because they are basically complex 
function approximations. Hence the fault localization techniques are 
greatly modified to give better results by using neural networks. 

A BP neural network [14] is basically a feed forward neural 
network. This network has neurons organized in layers, and each 
neuron in this layer are connected to the neurons in the next layer. 
This means that directed cycles do not exist in such a network. A 
complicated nonlinear input-output function generated from a set of 
sample data which includes inputs and the corresponding expected 
outputs is used to train a Back Propagation neural network. The data 
flow in a BP neural network [14] is delivered from the input layer, 
through hidden layer(s), to the output layer, without any feedback. 
This algorithm is an iterative algorithm which adjusts the weights of 

Srivastava, J Comput Eng Inf Technol 2021, 10:5



Citation: Srivastava SS (2021) A Study on Spectrum Based Fault Localization Techniques. J Comput Eng Inf Technol 10:4.

• Page 2 of 8 •

the network in such a manner that it completely fits the training data. 
But overtraining the algorithm with a particular set of data may result 
in over-fitting. 

When there are more than one layer of hidden units between 
the inputs and outputs of the artificial neural network which is feed 
forward then it is known as deep neural network or DNN [16]. The 
hidden unit uses the logistic function (the closely related hyperbolic 
tangent is also often used and any function with a well-behaved 
derivative can be used) to map its total input from the layer below. 
DNNs can be discriminatively trained (DT) by backpropagating 
derivatives of a cost function that measures the discrepancy between 
the target outputs and the actual outputs produced for each training 
case [17]. Moreover, they have also largely contributed to present 
studies and research on fault localization and have proposed methods 
of locating faults with minimal cost.

Although machine learning techniques also have some 
disadvantages. There can also be times where they must wait for 
new data to be generated. This means that additional computer 
power requirement is there. Interpreting the results generated by the 
algorithms accurately is another major challenge. The algorithms to 
perform the operation should also be chosen wisely.  It also needs 
massive resources to function. If we train the algorithm with small 
data set then we may end up with biased predictions coming from 
a biased training set. This leads to irrelevant advertisements being 
displayed to customers. 

Many strategies were proposed in spectrum-based fault 
localization in order to locate buggy portion of the code. These 
techniques use ranking metrics or statistical techniques to generate 
suspiciousness score of each of the program entity. Tarantula [18] was 
one of the first techniques proposed for SFL. Program dependencies, 
execution graphs, and clustering of program entities are sometimes 
used by many SFL techniques. Tarantula calculates the frequency in 
which a program entity is executed in all failing test cases, divided 
by the frequency in which this program entity is executed in all 
failing and passing test cases. The results were further improved and 
DStar [19] formula was developed which is the present state of art. 
Souza [20] showed a survey which discusses the state-of-the-art of 
SFL, including the different techniques that have been proposed, 
the type and number of faults they address, the types of spectra they 
use, the programs they utilize in their validation, the testing data 
that support them, and their use at industrial settings. But there are 
some drawbacks of SFL techniques as well, the ranking position may 
sometimes not be determined exactly, as it can happen that multiple 
ranked elements share the exact same suspiciousness. In such a 
situation all elements with the same suspiciousness are randomly 
ordered.  Thus, we will have a best case and a worst case in the final 
ranking when multiple program elements have same suspiciousness 
score. In the best case, the faulty element is the first element of all 
elements with the same suspiciousness to be checked for bug. In the 
worst case, the faulty element is the last element of all elements with 
the same suspiciousness to be checked for bug. Whereas the greatest 
advantage of SFL technique is that they are both effective as well 
efficient.

This article is divided into various sections. 

The section about basic concepts and the preliminaries also 
include the formulae and general information of the different SBFL 
techniques used in the article. 

The methodology developed by us in order to modify the 
technique and generate better results are further explained in a 
Section, also contains the results generated. 

Then next Sections consist of the related work and conclusion of 
this article.

Basic Concepts and Preliminaries
Spectrum based fault localization technique originated with the 

basic formula of Tarantula [18] which is basically derived from the 
most basic theorem of probability which is Baye’s theorem. It basically 
the pass/fail information about each test case, and also information of 
execution of different source code program segments which include 
statements, branches and methods for each and every test case. The 
main intuition behind Tarantula [18] is that entities in a program like 
statements, branches and methods that are executed by failed test 
cases are more expected to be faulty than those that are executed by 
passed test cases. On further research we come across a conclusion 
that this tolerance often provides for more effective fault localization.

Modification of the Kulczynski coefficient proposed a very 
effective and efficient fault localization technique called as D * which 
is the present state of art. Effectiveness of D* is evaluated across 21 
programs and compared to 16 different fault localization techniques. 
Testing the technique of DStar [11] with various test cases it was found 
out that D * generates better suspiciousness score of different statements 
in a program and is thus more effective technique than the other methods. 
Moreover different values of * have different impact on the effectiveness 
of D* method. Different values in the range of 2 to 50 with a difference 
of 0.5 (* = 2.0, 2.5, 3.0, ..., 50.0) were examined to locate bugs and it was 
observed that the total number of statements examined to locate all the 
bugs in the siemens suite programs declines as the value of the * increases 
from 2 to 33, and after that the number remains almost the same. Hence 
the method DStar [11] is the present state of art.

(Metric Formulas)

Proposed Methodology
In this article, initially we will apply unique technique on different 

faulty versions. On applying the uniqueness technique, we will get rid 
of redundant test cases. Hence, the cardinality of test cases reduces 
and thereafter the technique is improved. The algorithm for the 
unique technique is as follows in Algorithm 1

Here the matrix ‘Matrix 1’ contains the information of pass/fail 
of all the test cases and also the information of which all statements 
are invoked or not invoked for each and every test case. The matrix 
‘Matrix 2’ is generated such that it contains only the unique test cases. 
The rows of the matrix represent different test cases and the columns 
represent different statements of the program. Let us assume the 
‘Matrix 1’ be as follows:

(Assume that the program has 20 statements and has 10 test cases):

Here 1’s in the statement column represent that the particular 
statement has been invoked while 0’s represent that the statement has 
not been invoked, and in the result column 0 represents that the test 
case has passed and 1 represents that the test case has failed.)

Now, here the result for test cases 1,2,3,5,7 are exactly same for 
4,10,8,6,9 respectively. Hence test cases 4,10,8,6,9 are redundant and 
do not contribute to modify the result and are therefore removed.

Hence, the further operations are performed on this reduced 
matrix.
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Algorithm 1: The algorithm for the unique technique.

Algorithm 2: The algorithm for slicing.

In the next part we shall apply slicing technique on different 
faulty version of siemens suite programs. In this technique we look 
for suspiciousness in those statements which are invoked if that 
particular test case fails and therefore those statements are sliced out 
which are not executed for a failing test case. The algorithm for slicing 
is as follows in Algorithm 2

In the above algorithm if the value of flag becomes 0 then that 
particular statement is assigned a suspiciousness score of -1 and is 
thus sliced out of the search space. Let’s consider the example of 
test case 3 in the Matrix 1. Here the statements 5,8,12,13,15,17 are 
assigned a suspiciousness score of -1 and are thus ranked last thereby 
making the applied SBFL technique more effective.

Lastly, we perform the unique-slicing technique which is a 
combination of the above two techniques. In this technique we 
perform slicing on the matrix reduced after implementing uniqueness 
technique on the matrix, for example Matrix 2 in the above case.

Experimental Results
In this section we will discuss about the experimental setup, the 

data-set used in the experiment, the evaluation-metric which was 
used to obtain results and finally the results which were obtained.

Set-up

The experiments are performed on a 64-bit Ubuntu 18.04.3 LTS 
machine with 16 GB RAM and Intel R Core-TM processor. The input 
programs considered for our study are written in ANSI-C format. The 
input programs were compiled using GCC-7.5.0 compiler. Statement 
coverage information of the program was generated usingGCOV 
[26] tool. Python was used as a scripting language to develop all the 
modules.

Data-Set Used 

We have considered siemens suite programs to evaluate the 
effectiveness and efficiency of our proposed technique. The tcas program 
is used in traffic collision avoidance system, tot_info program is used for 
information measure, replace program in used for pattern replacement, 
printtokens and printtokens2 programs are used as lexical analyzer and 
schedule and schedule2 programs are used as priority schedulers. Below 

Evaluation Metric

We use the EXAM Score metric to evaluate the effectiveness of 
our proposed technique. It represents the percentage of statements 
that are to be examined to localize the faulty line in the program. 
EXAM Score is mathematically defined as follows:

 *100examined

total

S
EXAM Score

S
=

where Sexamined and Stotal are sets which contain the statements that 
are examined to localize the fault and the total number of executable 
statements present in the program respectively. For example, if we 
have a faulty program P and the EXAM Score of FL technique1 is 
lesser than FL technique2, then FL technique1 is more effective than 
FL technique 2.

Results Obtained

We present the effect of unique and slicing techniques when 
superimposed on Tarantula [18], Jaccard, Ochiai [22] and DStar [19] 
SBFL methods.

technique the line of code executed are reduced to a great extend in 
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Ranking Metric Formula
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No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 R
1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0
2 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1
3 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1
4 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0
5 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 0
6 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 0
7 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0
8 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1
9 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0
10 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1

Matrix 1

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Re
1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0
2 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1
3 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1
4 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 0
5 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0

Matrix 2
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Table 1: Percentage Reduction in Total Number of Lines executed after applying slicing technique.

Program Name No. of lines executed before slicing No. of lines executed after slicing 
(Average)

% reduction in total no. of lines 
executed

tcas 65 49 24.615
totinfo 122 59 51.639
replace 244 70 71.311
Printtokens 195 79 59.487
Printtokens2 200 111 44.5
Schedule 152 106 30.263
Schedule2 128 97 24.218

S.No Program Name No. of Faulty Versions LOC No. of Functions No. of Executable LOC No. of Test Cases
1 Print_Tokens 7 565 18 195 4130
2 Print_Tokens2 10 510 19 200 4115
3 Schedule 9 412 18 152 2650
4 Schedule2 10 307 16 128 2710
5 Tot_info 23 406 7 122 1052
6 Replace 32 563 21 244 5542
7 Tcas 41 173 9 65 1608

Table 0: Programs characteristics.

all the seven siemens suite program cases. Hence by applying this 
technique our search space reduces which in turn reduces the cost 
and time of execution of the program.

technique we get an average 43.719% reduction in the total no. of 
lines executed.

technique we get rid of all the redundant test cases which do not 
contribute to any significant change in the ranking of the statements 

test cases. Thus, the time and cost of computation of suspiciousness 
score for different test cases is reduced significantly. The first column 
of this table describes the average number of passed test cases for all 
the versions of different siemens suite programs. The second column 
describes the average number of failed test cases for all the versions 
of different siemens suite programs. The third column describes the 
average number of passed test cases for all the versions of different 
siemens suite programs after unique technique is applied and lastly 
the fourth column describes the average number of failed test cases 
for all versions of different siemens suite programs after unique 
technique is applied.

lines of code executed (if all the relevant versions of the seven siemens 
suite programs are included) in order to reach the buggy line before 
and after slicing in the best and the worst case scenarios.

From (Table 3), we observe that 15.87% statements are executed 
on an average by the SBFL methods before slicing, while only 11.79% 
statements need to be executed on an average by the SBFL methods 
after slicing.

lines of code executed (if all the relevant versions of the seven siemens 
suite programs are included) in order to reach the buggy line before 
and after the unique technique was applied in the best and the worst 
case Scenarios.

on an average by the SBFL methods before unique technique, while 

only 14.412% statements need to be executed on an average by the 
SBFL methods after unique technique.

lines of code executed (if all the relevant versions of the seven siemens 
suite programs are included) in order to reach the buggy line before 
and after both the unique and slicing technique were applied in the 
best and the worst-case scenarios.

on an average by the SBFL methods before applying unique-slicing 
technique, while only 12.038% statements need to be executed on an 
average by the SBFL methods after applying unique-slicing technique. 
Thus, from the above four results table it is quite clear that slicing 
technique enhances the effectiveness of the SBFL methods in the best 
way.

In this section we will further discuss upon the time taken by 
different SFL technique when unique and slicing techniques are 
applied on the siemens suite programs.

versions of all siemens suite programs).

From the above table it is clearly visible that our proposed 
techniques are quite time efficient. For the slicing technique we find 
that the time required for complete execution of SBFL methods 
for all the faulty versions reduces by 73.391% on an average. For 
unique technique the reduction in total execution time was observed 
as 19.723% while for unique-slicing technique it was observed as 
55.907%. Thus, we can say out of the three techniques, slicing comes 
out to be most time efficient. 

The graphical representation of our results has also been provided 
Figure 1-8.

The method Ochiai [22] is derived from the base method 
Tarantula [18], but it gives better results than Tarantula [18].

From the comparison graph of all the four SBFL methods (Figure 
1-8). we can observe that the slicing curve is above of all the remaining 
curves which shows that slicing enhances the effectiveness of a SBFL 
technique to the greatest. The unique-slicing technique curve (Figure 
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From (Table 2) , it is clearly visible that on applying the unique

according to their suspiciousness, hence we are left with only relevant
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The  (Table 4)  shows  a  comparison  between  the  total  number  of

From (Table 4), we observe that 15.87% statements are executed

The  (Table  5)  shows  a  comparison  between  the  total  number  of

From (Table 5), we observe that 15.87% statements are executed

In  (Table  6)  we  have  calculated  total  time  for  all  the  relevant
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Table 2: Reduction in number of test cases after applying unique technique.

Program Name Passed Test cases before 
unique (Average)

Failed Test Cases before 
unique (Average)

Passed test cases after 
unique (Average)

Failed test cases after unique 
(Average)

tcas 1551 57 8 2
totinfo 943 81 138 33
replace 5476 66 1265 25
Printtokens 4076 76 1800 49
Printtokens2 3900 218 1534 202
Schedule 2391 259 457 23
Schedule2 2674 36 648 16

Table 3: Comparison of percentage of statements executed to reach the buggy line before and after slicing technique.

Method % of statements executed in 
Best Case before Slicing

% of statements executed in 
Worst Case before slicing

% of statements executed in 
Best Case after slicing

% of statements executed in 
Worst Case after slicing

Tarantula 14.304 20.817 8.414 15.235
Jaccard 13.488 20.048 8.414 15.235
Ochiai 11.011 17.551 8.414 15.235
DStar 11.312 18.428 8.153 15.215

Table 4: Comparison of percentage of statements executed to reach the buggy line before and after unique technique.

Method % of statements ececuted in 
Best Case before unique

% of statements executed in 
Worst Case before unique

% of statements executed in 
Best Rank after unique

% of statements executed in 
Worst Case after unique

Tarantula 14.304 20.817 13.079 19.867
Jaccard 13.488 20.048 11.854 18.675
Ochiai 11.011 17.551 9.706 16.306
DStar 11.312 18.428 9.572 16.232

Table 5: Comparison of percentage of statements executed to reach the buggy line before and after unique slicing technique.

Method
% of statements executed 
in Best Case before unique 
slicing

% of statements executed in 
Worst Case before unique 
slicing

% of statements executed 
in Best Case after unique 
slicing

% of statements executed 
in Worst Case after unique 
slicing

Tarantula 14.304 20.817 8.655 15.536
Jaccard 13.488 20.048 8.655 15.536
Ochiai 11.011 17.551 8.655 15.536
DStar 11.312 18.428 8.213 15.516

Method Time taken without applying 
any technique (in seconds)

Time taken after applying 
unique technique (in 
seconds)

Time taken after applying 
slicing technique (in 
seconds)

Time taken after applying 
unique slicing technique (in 
seconds)

Tarantula 21.017686 18.104703 6.964918 13.546188
Jaccard 20.946931 17.42287 5.940318 6.95054
Ochiai 21.190692 16.832766 5.374688 9.468757
DStar 27.614273 19.980458 5.405468 9.40428

Table 6: Total time taken after implementing different techniques on different SBFL Methods.

1-8) overlaps approximately with the slicing curve, hence we can say 
that this technique offers approximately same effectiveness but is less 
time efficient as compared to slicing technique.

Related Work
Program bugs are located by some of the slicing based techniques. 

Weiser [10] proposed static slicing technique which is one of these. 
The debugging search domain is reduced through the method of 
slicing and is based on the idea that a test case which failed due to 
an incorrect value stored in a variable at a statement, then that defect 
will be found in the static slice associated with that variable-statement 
pair. This means that instead of tracing the entire program [10] we 
only have to search in very limited region which is bounded by the 
slice. A program dice technique was developed by Lyle and Weiser 
in which the difference between sets of two groups of static slices 

was developed which further reduced the search domain for possible 
locations of a fault. Static slice-based fault localization methods were 
further improved by development of dynamic slicing and execution 
slicing. Debroy [23] proposed a grouping-based technique. This 
technique uses the strategy in which program components were 
grouped based on the number of failed tests that execute that 
component and ranks the group that contains components that 
have been executed by more failed tests. So, the grouping was 
done with group order as the first priority and suspiciousness as 
the second priority, which then computed by fault localization 
techniques.  Then spectrum-based multiple fault localization 
was also introduced. Mayer and Stumptner [24] explained 
techniques which used source code to automatically generate 
program models. They proved that one of best accuracy providing 
model was generated by means of abstract interpretation [25]. So 
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Tarantula Best Case: 

 

Tarantula Worst Case: 

 

Ochiai Best Case :  Ochiai Worst Case :  

Jaccard Best Case : Jaccard Worst Case : 

Dstar Best Case: Dstar Worst Case: 

Figure 1: Graphs of SBFL techniques.
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there are many Model-based approaches developed by Mayer, 
Wotawa, Stumptner, Yilmaz and Williams. Although model-
based approaches are generally used for multiple faults but they 
can be used for single fault case also which occurs during software 
debugging. The techniques developed from 1977 to November 
2014 [26] were fully compiled and presented by Wong et al in a 
survey of fault localization [27]. In that survey he classified the 
techniques in eight categories: program slicing, spectrum-based, 
statistics, program state, machine learning, data mining, model-
based debugging, and additional techniques. The latest tools 
developed for fault localization was also presented at their survey.

Conclusion
In this paper, we have presented the details of our slicing 

technique, unique technique as well as unique-slicing technique that 
are an assist in fault localization. Based on the results of executing 
a test suite for a faulty program, the slicing technique reduces the 
search space (as the total number of lines of code to be executed are 
reduced), the unique technique removes all the redundant test cases 
(only relevant test cases are executed) and lastly as the name suggests 
the unique slicing technique performs both the operations. To 
provide the visual mapping, different colours have been used on the 
plot to distinguish between the applied techniques. The results show 
(Figure 1-8) that our technique is very effective as well as efficient for 
helping locate suspicious statements that may be faulty and suggest 
some directions for future work.
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