
a S c i T e c h n o l j o u r n a lResearch Article

Journal of Computer
Engineering & Information

Technology

All articles published in Journal of Computer Engineering & Information Technology are the property of SciTechnol, and is
protected by copyright laws. Copyright © 2021, SciTechnol, All Rights Reserved.International Publisher of Science,

Technology and Medicine

A Study on Spectrum Based
Fault Localization Techniques
Saksham Sahai Srivastava

Abstract
Fault Localization or debugging is one of the major aspects when
it comes to testing activity. In this criterion a fault is located
and removed when a failure occurs during test. Many types
of techniques were proposed before Spectrum-based Fault
Localization (SFL) techniques was proposed in order to address
the problem of fault localization, which point out program elements
which have susceptibility of containing faults. In this article we will
apply three different techniques to the different SBFL formulas.
The two techniques are uniqueness and slicing. The third one is
the combination of these two techniques. We will compare the
efficiency and effectiveness of each of the technique on different
Spectrum based Fault Localization techniques which will be applied
on seven siemens suite programs.

Keywords:

Fault localization; Slicing, unique.

*Corresponding author: Saksham Sahai Srivastava, Department of
Chemical Engineering, Indian Institute of Technology Kharagpur, India, E-mail:
sakshamsahai4796@iitkgp.ac.in

Received: March 24, 2021 Accepted: April 08, 2021 Published: April 15, 2021

Introduction
According to Araki [1], one of the earliest debugging practices

constitutes of developing the code with print statements inserted
in between to find out the state of variables. With the advent of
advancement, there have been little changes in fault localization in
practice over time. The techniques proposed in the 1960s [2, 3] and
used in today’s world by developers, and earlier debugging tools
originate from the late 1950s [4]. The idea of this tool was based on
moving the debugging program to the computer’s memory, which
helps in verification and modification during the execution. A tool
called EXtendable Debugging and Monitoring System (EXDAMS)
[5] was presented by Balzer, which was capable of navigating both
backward or forward navigation through the code. The visualization
technique of this tool uses graphics to provide control-flow and data-
flow information, which can be like tree structure of execution at
some point of interest.

Software fault localization is found to be one of the most time
consuming, tedious and expensive activity in debugging of different
programs. Leading to a great demand for automatic fault localization
techniques that can help and suggest ways to programmers to locate
faults, with minimum amount of human intervention. So, there is
development of different methods, which makes the fault localization
process more effective as well as efficient. The complexity of software
and its scale has rapidly increased due to this ongoing trend. So, this
increase in complexity of software has led to increase in software bugs

which have resulted in huge losses [6,7,8].

The different techniques used to automate fault localisation are
i) Spectrum Based Techniques ii) Machine Learning Techniques iii)
Slicing Techniques

Weiser [9] proposed the Program Slicing technique. On applying
this technique, the fault in the program is confined only in a small
region, which is, a relevant slice. Program slicing technique are of
two type- static and dynamic. In a program the flow of control and
data are analysed statically by means of static program slicing [10,11]
(statically) which helps in reduction of search space for locating fault.
But due to high conservative nature of static slicing technique, the
precision of locating fault is very small. In static program slicing
technique, dynamic technique [12,13] the search domain of faults
is reduced and therefore we get more precise slicing criterion. The
statements in which the value of a variable is influenced for a particular
program input are generally considered in a dynamic program slice
[12,13]. There are some drawbacks of slicing also, which include- i)
Static Slicing considers all possible executions. ii) The current test
case that reveals the fault is not taken into account. Although, it is
used for gaining debugging information. iii) Static slices comprise too
many statements (for a certain test case) iv) Dynamic slicing may not
contain the faulty statement.

Behavioural patterns which are associated with the different
faults, are identified by the machine techniques. Some of the faults
like variable not initialized in programs can be easily identified
using machine learning techniques. Some of the machine learning
techniques are SVM (Support Vector Machine), Neural Network
Based Techniques, BPNN [14] (Back Propagation Neural Network),
RBFNN [15] (Radial Based Function Neural Networks), DNN [16]
(Deep Neural Networks). Support vector machines are one of the
supervised learning models of machine learning. In this learning
algorithms classification and regression analysis are used to analyse
data.

Machine learning literature include neural networks as a class of
model. The development of neural networks was a kind of revolution
in the field of machine learning. Their specific algorithms are
inspired from the biological neural networks and are found to be
quite efficient and effective in solving most of the machine learning
problems. Neural Networks are dealt with those Machine Learning
problem where the problem is about learning a complex mapping
from the input to the output space because they are basically complex
function approximations. Hence the fault localization techniques are
greatly modified to give better results by using neural networks.

A BP neural network [14] is basically a feed forward neural
network. This network has neurons organized in layers, and each
neuron in this layer are connected to the neurons in the next layer.
This means that directed cycles do not exist in such a network. A
complicated nonlinear input-output function generated from a set of
sample data which includes inputs and the corresponding expected
outputs is used to train a Back Propagation neural network. The data
flow in a BP neural network [14] is delivered from the input layer,
through hidden layer(s), to the output layer, without any feedback.
This algorithm is an iterative algorithm which adjusts the weights of

Srivastava, J Comput Eng Inf Technol 2021, 10:5

Citation: Srivastava SS (2021) A Study on Spectrum Based Fault Localization Techniques. J Comput Eng Inf Technol 10:4.

• Page 2 of 8 •

the network in such a manner that it completely fits the training data.
But overtraining the algorithm with a particular set of data may result
in over-fitting.

When there are more than one layer of hidden units between
the inputs and outputs of the artificial neural network which is feed
forward then it is known as deep neural network or DNN [16]. The
hidden unit uses the logistic function (the closely related hyperbolic
tangent is also often used and any function with a well-behaved
derivative can be used) to map its total input from the layer below.
DNNs can be discriminatively trained (DT) by backpropagating
derivatives of a cost function that measures the discrepancy between
the target outputs and the actual outputs produced for each training
case [17]. Moreover, they have also largely contributed to present
studies and research on fault localization and have proposed methods
of locating faults with minimal cost.

Although machine learning techniques also have some
disadvantages. There can also be times where they must wait for
new data to be generated. This means that additional computer
power requirement is there. Interpreting the results generated by the
algorithms accurately is another major challenge. The algorithms to
perform the operation should also be chosen wisely. It also needs
massive resources to function. If we train the algorithm with small
data set then we may end up with biased predictions coming from
a biased training set. This leads to irrelevant advertisements being
displayed to customers.

Many strategies were proposed in spectrum-based fault
localization in order to locate buggy portion of the code. These
techniques use ranking metrics or statistical techniques to generate
suspiciousness score of each of the program entity. Tarantula [18] was
one of the first techniques proposed for SFL. Program dependencies,
execution graphs, and clustering of program entities are sometimes
used by many SFL techniques. Tarantula calculates the frequency in
which a program entity is executed in all failing test cases, divided
by the frequency in which this program entity is executed in all
failing and passing test cases. The results were further improved and
DStar [19] formula was developed which is the present state of art.
Souza [20] showed a survey which discusses the state-of-the-art of
SFL, including the different techniques that have been proposed,
the type and number of faults they address, the types of spectra they
use, the programs they utilize in their validation, the testing data
that support them, and their use at industrial settings. But there are
some drawbacks of SFL techniques as well, the ranking position may
sometimes not be determined exactly, as it can happen that multiple
ranked elements share the exact same suspiciousness. In such a
situation all elements with the same suspiciousness are randomly
ordered. Thus, we will have a best case and a worst case in the final
ranking when multiple program elements have same suspiciousness
score. In the best case, the faulty element is the first element of all
elements with the same suspiciousness to be checked for bug. In the
worst case, the faulty element is the last element of all elements with
the same suspiciousness to be checked for bug. Whereas the greatest
advantage of SFL technique is that they are both effective as well
efficient.

This article is divided into various sections.

The section about basic concepts and the preliminaries also
include the formulae and general information of the different SBFL
techniques used in the article.

The methodology developed by us in order to modify the
technique and generate better results are further explained in a
Section, also contains the results generated.

Then next Sections consist of the related work and conclusion of
this article.

Basic Concepts and Preliminaries
Spectrum based fault localization technique originated with the

basic formula of Tarantula [18] which is basically derived from the
most basic theorem of probability which is Baye’s theorem. It basically
the pass/fail information about each test case, and also information of
execution of different source code program segments which include
statements, branches and methods for each and every test case. The
main intuition behind Tarantula [18] is that entities in a program like
statements, branches and methods that are executed by failed test
cases are more expected to be faulty than those that are executed by
passed test cases. On further research we come across a conclusion
that this tolerance often provides for more effective fault localization.

Modification of the Kulczynski coefficient proposed a very
effective and efficient fault localization technique called as D * which
is the present state of art. Effectiveness of D* is evaluated across 21
programs and compared to 16 different fault localization techniques.
Testing the technique of DStar [11] with various test cases it was found
out that D * generates better suspiciousness score of different statements
in a program and is thus more effective technique than the other methods.
Moreover different values of * have different impact on the effectiveness
of D* method. Different values in the range of 2 to 50 with a difference
of 0.5 (* = 2.0, 2.5, 3.0, ..., 50.0) were examined to locate bugs and it was
observed that the total number of statements examined to locate all the
bugs in the siemens suite programs declines as the value of the * increases
from 2 to 33, and after that the number remains almost the same. Hence
the method DStar [11] is the present state of art.

(Metric Formulas)

Proposed Methodology
In this article, initially we will apply unique technique on different

faulty versions. On applying the uniqueness technique, we will get rid
of redundant test cases. Hence, the cardinality of test cases reduces
and thereafter the technique is improved. The algorithm for the
unique technique is as follows in Algorithm 1

Here the matrix ‘Matrix 1’ contains the information of pass/fail
of all the test cases and also the information of which all statements
are invoked or not invoked for each and every test case. The matrix
‘Matrix 2’ is generated such that it contains only the unique test cases.
The rows of the matrix represent different test cases and the columns
represent different statements of the program. Let us assume the
‘Matrix 1’ be as follows:

(Assume that the program has 20 statements and has 10 test cases):

Here 1’s in the statement column represent that the particular
statement has been invoked while 0’s represent that the statement has
not been invoked, and in the result column 0 represents that the test
case has passed and 1 represents that the test case has failed.)

Now, here the result for test cases 1,2,3,5,7 are exactly same for
4,10,8,6,9 respectively. Hence test cases 4,10,8,6,9 are redundant and
do not contribute to modify the result and are therefore removed.

Hence, the further operations are performed on this reduced
matrix.

Volume 10 • Issue 5 • 1000266

Citation: Srivastava SS (2021) A Study on Spectrum Based Fault Localization Techniques. J Comput Eng Inf Technol 10:4.

• Page 3 of 8 •

Algorithm 1: The algorithm for the unique technique.

Algorithm 2: The algorithm for slicing.

In the next part we shall apply slicing technique on different
faulty version of siemens suite programs. In this technique we look
for suspiciousness in those statements which are invoked if that
particular test case fails and therefore those statements are sliced out
which are not executed for a failing test case. The algorithm for slicing
is as follows in Algorithm 2

In the above algorithm if the value of flag becomes 0 then that
particular statement is assigned a suspiciousness score of -1 and is
thus sliced out of the search space. Let’s consider the example of
test case 3 in the Matrix 1. Here the statements 5,8,12,13,15,17 are
assigned a suspiciousness score of -1 and are thus ranked last thereby
making the applied SBFL technique more effective.

Lastly, we perform the unique-slicing technique which is a
combination of the above two techniques. In this technique we
perform slicing on the matrix reduced after implementing uniqueness
technique on the matrix, for example Matrix 2 in the above case.

Experimental Results
In this section we will discuss about the experimental setup, the

data-set used in the experiment, the evaluation-metric which was
used to obtain results and finally the results which were obtained.

Set-up

The experiments are performed on a 64-bit Ubuntu 18.04.3 LTS
machine with 16 GB RAM and Intel R Core-TM processor. The input
programs considered for our study are written in ANSI-C format. The
input programs were compiled using GCC-7.5.0 compiler. Statement
coverage information of the program was generated usingGCOV
[26] tool. Python was used as a scripting language to develop all the
modules.

Data-Set Used

We have considered siemens suite programs to evaluate the
effectiveness and efficiency of our proposed technique. The tcas program
is used in traffic collision avoidance system, tot_info program is used for
information measure, replace program in used for pattern replacement,
printtokens and printtokens2 programs are used as lexical analyzer and
schedule and schedule2 programs are used as priority schedulers. Below

Evaluation Metric

We use the EXAM Score metric to evaluate the effectiveness of
our proposed technique. It represents the percentage of statements
that are to be examined to localize the faulty line in the program.
EXAM Score is mathematically defined as follows:

 *100examined

total

S
EXAM Score

S
=

where Sexamined and Stotal are sets which contain the statements that
are examined to localize the fault and the total number of executable
statements present in the program respectively. For example, if we
have a faulty program P and the EXAM Score of FL technique1 is
lesser than FL technique2, then FL technique1 is more effective than
FL technique 2.

Results Obtained

We present the effect of unique and slicing techniques when
superimposed on Tarantula [18], Jaccard, Ochiai [22] and DStar [19]
SBFL methods.

technique the line of code executed are reduced to a great extend in

Volume 10 • Issue 5 • 1000266

From (Table 1), we can observe that on applying the slicing

given, (Table 0) shows programs characteristics.

Citation: Srivastava SS (2021) A Study on Spectrum Based Fault Localization Techniques. J Comput Eng Inf Technol 10:4.

• Page 4 of 8 •

Ranking Metric Formula

Tarantula

ef

ef nf

ef ep

ef nf ep np

c
c c

c c
c c c c

+

+
+ +

Jaccard
ef

ef nf ep

c
c c c+ +

Kulczynski2
1
2

ef ef

ef nf ef ep

c c
c c c c

 
+  + + 

McCon ()()
2
ef nf ep

ef nf ef ep

c c c
c c c c

−

+ +

Minus

1

1 1

ef ef

ef nf ef nf

ef ep ef ep

ef nf ep np ef nf ep np

c c
c c c c

c c c c
c c c c c c c c

−
+ +

−
+ − + −

+ + + +

Ochiai ()()
ef

ef nf ef ep

c

c c c c+ +

DStar

*
ef

nf ep

c
c c+

Zoltar 1000*
ef

nf ep
ef nf ep

ef

c
c c

c c c
c

+ + +

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 R
1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0
2 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1
3 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1
4 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0
5 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 0
6 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 0
7 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0
8 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1
9 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0
10 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1

Matrix 1

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Re
1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0
2 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1
3 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1
4 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 0
5 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0

Matrix 2

Volume 10 • Issue 5 • 1000266

Citation: Srivastava SS (2021) A Study on Spectrum Based Fault Localization Techniques. J Comput Eng Inf Technol 10:4.

• Page 5 of 8 •

Table 1: Percentage Reduction in Total Number of Lines executed after applying slicing technique.

Program Name No. of lines executed before slicing No. of lines executed after slicing
(Average)

% reduction in total no. of lines
executed

tcas 65 49 24.615
totinfo 122 59 51.639
replace 244 70 71.311
Printtokens 195 79 59.487
Printtokens2 200 111 44.5
Schedule 152 106 30.263
Schedule2 128 97 24.218

S.No Program Name No. of Faulty Versions LOC No. of Functions No. of Executable LOC No. of Test Cases
1 Print_Tokens 7 565 18 195 4130
2 Print_Tokens2 10 510 19 200 4115
3 Schedule 9 412 18 152 2650
4 Schedule2 10 307 16 128 2710
5 Tot_info 23 406 7 122 1052
6 Replace 32 563 21 244 5542
7 Tcas 41 173 9 65 1608

Table 0: Programs characteristics.

all the seven siemens suite program cases. Hence by applying this
technique our search space reduces which in turn reduces the cost
and time of execution of the program.

technique we get an average 43.719% reduction in the total no. of
lines executed.

technique we get rid of all the redundant test cases which do not
contribute to any significant change in the ranking of the statements

test cases. Thus, the time and cost of computation of suspiciousness
score for different test cases is reduced significantly. The first column
of this table describes the average number of passed test cases for all
the versions of different siemens suite programs. The second column
describes the average number of failed test cases for all the versions
of different siemens suite programs. The third column describes the
average number of passed test cases for all the versions of different
siemens suite programs after unique technique is applied and lastly
the fourth column describes the average number of failed test cases
for all versions of different siemens suite programs after unique
technique is applied.

lines of code executed (if all the relevant versions of the seven siemens
suite programs are included) in order to reach the buggy line before
and after slicing in the best and the worst case scenarios.

From (Table 3), we observe that 15.87% statements are executed
on an average by the SBFL methods before slicing, while only 11.79%
statements need to be executed on an average by the SBFL methods
after slicing.

lines of code executed (if all the relevant versions of the seven siemens
suite programs are included) in order to reach the buggy line before
and after the unique technique was applied in the best and the worst
case Scenarios.

on an average by the SBFL methods before unique technique, while

only 14.412% statements need to be executed on an average by the
SBFL methods after unique technique.

lines of code executed (if all the relevant versions of the seven siemens
suite programs are included) in order to reach the buggy line before
and after both the unique and slicing technique were applied in the
best and the worst-case scenarios.

on an average by the SBFL methods before applying unique-slicing
technique, while only 12.038% statements need to be executed on an
average by the SBFL methods after applying unique-slicing technique.
Thus, from the above four results table it is quite clear that slicing
technique enhances the effectiveness of the SBFL methods in the best
way.

In this section we will further discuss upon the time taken by
different SFL technique when unique and slicing techniques are
applied on the siemens suite programs.

versions of all siemens suite programs).

From the above table it is clearly visible that our proposed
techniques are quite time efficient. For the slicing technique we find
that the time required for complete execution of SBFL methods
for all the faulty versions reduces by 73.391% on an average. For
unique technique the reduction in total execution time was observed
as 19.723% while for unique-slicing technique it was observed as
55.907%. Thus, we can say out of the three techniques, slicing comes
out to be most time efficient.

The graphical representation of our results has also been provided
Figure 1-8.

The method Ochiai [22] is derived from the base method
Tarantula [18], but it gives better results than Tarantula [18].

From the comparison graph of all the four SBFL methods (Figure
1-8). we can observe that the slicing curve is above of all the remaining
curves which shows that slicing enhances the effectiveness of a SBFL
technique to the greatest. The unique-slicing technique curve (Figure

Volume 10 • Issue 5 • 1000266

So, from (Table 1) we can observe that by applying slicing

From (Table 2) , it is clearly visible that on applying the unique

according to their suspiciousness, hence we are left with only relevant

The (Table 3) shows a comparison between the total number of

The (Table 4) shows a comparison between the total number of

From (Table 4), we observe that 15.87% statements are executed

The (Table 5) shows a comparison between the total number of

From (Table 5), we observe that 15.87% statements are executed

In (Table 6) we have calculated total time for all the relevant

Citation: Srivastava SS (2021) A Study on Spectrum Based Fault Localization Techniques. J Comput Eng Inf Technol 10:4.

• Page 6 of 8 •

Table 2: Reduction in number of test cases after applying unique technique.

Program Name Passed Test cases before
unique (Average)

Failed Test Cases before
unique (Average)

Passed test cases after
unique (Average)

Failed test cases after unique
(Average)

tcas 1551 57 8 2
totinfo 943 81 138 33
replace 5476 66 1265 25
Printtokens 4076 76 1800 49
Printtokens2 3900 218 1534 202
Schedule 2391 259 457 23
Schedule2 2674 36 648 16

Table 3: Comparison of percentage of statements executed to reach the buggy line before and after slicing technique.

Method % of statements executed in
Best Case before Slicing

% of statements executed in
Worst Case before slicing

% of statements executed in
Best Case after slicing

% of statements executed in
Worst Case after slicing

Tarantula 14.304 20.817 8.414 15.235
Jaccard 13.488 20.048 8.414 15.235
Ochiai 11.011 17.551 8.414 15.235
DStar 11.312 18.428 8.153 15.215

Table 4: Comparison of percentage of statements executed to reach the buggy line before and after unique technique.

Method % of statements ececuted in
Best Case before unique

% of statements executed in
Worst Case before unique

% of statements executed in
Best Rank after unique

% of statements executed in
Worst Case after unique

Tarantula 14.304 20.817 13.079 19.867
Jaccard 13.488 20.048 11.854 18.675
Ochiai 11.011 17.551 9.706 16.306
DStar 11.312 18.428 9.572 16.232

Table 5: Comparison of percentage of statements executed to reach the buggy line before and after unique slicing technique.

Method
% of statements executed
in Best Case before unique
slicing

% of statements executed in
Worst Case before unique
slicing

% of statements executed
in Best Case after unique
slicing

% of statements executed
in Worst Case after unique
slicing

Tarantula 14.304 20.817 8.655 15.536
Jaccard 13.488 20.048 8.655 15.536
Ochiai 11.011 17.551 8.655 15.536
DStar 11.312 18.428 8.213 15.516

Method Time taken without applying
any technique (in seconds)

Time taken after applying
unique technique (in
seconds)

Time taken after applying
slicing technique (in
seconds)

Time taken after applying
unique slicing technique (in
seconds)

Tarantula 21.017686 18.104703 6.964918 13.546188
Jaccard 20.946931 17.42287 5.940318 6.95054
Ochiai 21.190692 16.832766 5.374688 9.468757
DStar 27.614273 19.980458 5.405468 9.40428

Table 6: Total time taken after implementing different techniques on different SBFL Methods.

1-8) overlaps approximately with the slicing curve, hence we can say
that this technique offers approximately same effectiveness but is less
time efficient as compared to slicing technique.

Related Work
Program bugs are located by some of the slicing based techniques.

Weiser [10] proposed static slicing technique which is one of these.
The debugging search domain is reduced through the method of
slicing and is based on the idea that a test case which failed due to
an incorrect value stored in a variable at a statement, then that defect
will be found in the static slice associated with that variable-statement
pair. This means that instead of tracing the entire program [10] we
only have to search in very limited region which is bounded by the
slice. A program dice technique was developed by Lyle and Weiser
in which the difference between sets of two groups of static slices

was developed which further reduced the search domain for possible
locations of a fault. Static slice-based fault localization methods were
further improved by development of dynamic slicing and execution
slicing. Debroy [23] proposed a grouping-based technique. This
technique uses the strategy in which program components were
grouped based on the number of failed tests that execute that
component and ranks the group that contains components that
have been executed by more failed tests. So, the grouping was
done with group order as the first priority and suspiciousness as
the second priority, which then computed by fault localization
techniques. Then spectrum-based multiple fault localization
was also introduced. Mayer and Stumptner [24] explained
techniques which used source code to automatically generate
program models. They proved that one of best accuracy providing
model was generated by means of abstract interpretation [25]. So

Volume 10 • Issue 5 • 1000266

Citation: Srivastava SS (2021) A Study on Spectrum Based Fault Localization Techniques. J Comput Eng Inf Technol 10:4.

• Page 7 of 8 •

Tarantula Best Case:

Tarantula Worst Case:

Ochiai Best Case : Ochiai Worst Case :

Jaccard Best Case : Jaccard Worst Case :

Dstar Best Case: Dstar Worst Case:

Figure 1: Graphs of SBFL techniques.

Volume 10 • Issue 5 • 1000266

Citation: Srivastava SS (2021) A Study on Spectrum Based Fault Localization Techniques. J Comput Eng Inf Technol 10:4.

• Page 8 of 8 •

Author Affiliation 				 Top

Department of Chemical Engineering, Indian Institute of Technology Kharagpur,
India

there are many Model-based approaches developed by Mayer,
Wotawa, Stumptner, Yilmaz and Williams. Although model-
based approaches are generally used for multiple faults but they
can be used for single fault case also which occurs during software
debugging. The techniques developed from 1977 to November
2014 [26] were fully compiled and presented by Wong et al in a
survey of fault localization [27]. In that survey he classified the
techniques in eight categories: program slicing, spectrum-based,
statistics, program state, machine learning, data mining, model-
based debugging, and additional techniques. The latest tools
developed for fault localization was also presented at their survey.

Conclusion
In this paper, we have presented the details of our slicing

technique, unique technique as well as unique-slicing technique that
are an assist in fault localization. Based on the results of executing
a test suite for a faulty program, the slicing technique reduces the
search space (as the total number of lines of code to be executed are
reduced), the unique technique removes all the redundant test cases
(only relevant test cases are executed) and lastly as the name suggests
the unique slicing technique performs both the operations. To
provide the visual mapping, different colours have been used on the
plot to distinguish between the applied techniques. The results show
(Figure 1-8) that our technique is very effective as well as efficient for
helping locate suspicious statements that may be faulty and suggest
some directions for future work.

References

1.	 Araki K, Furukawa Z, Cheng J, (1991) A general framework for debugging
IEEE Software, 8(3): 14–20.

Volume 10 • Issue 5 • 1000266

2. Thomas G, Evans D, Lucille D, (1966) On-line debugging techniques: A
survey. In Proceedings of the Fall Joint Computer Conference, 66,37-50.

3. Thomas G. Stockham, Jack B. Dennis, (1960) Flit - flexowriter interrogation
tape: A symbolic utility program for tx-o Memo 5001-5023.

4. John T, Gilmore, (1957) Tx-o direct input utility system. Memo 6M-5097,
Lincoln Laboratory, MIT.

5. Balzer. Exdams RM, (1960) extendable debugging and monitoring system.In

Proceedings of the Spring Joint Computer Conference, AFIPS’69,567–580.

6. Munson J, Khoshgoftaar TM, (1992) The detection of fault-prone programs,

IEEE Trans. Softw. Eng, 18(5): 423-433.

7. Pai GJ, Dugan JB, (2007) “Empirical analysis of software fault content and fault
proneness using Bayesian methods,” IEEE Trans. Softw. Eng, 33(10): 675-686.

8. Wright CS, Zia A (2011) “A quantitative analysis into the economics of
correcting software bugs,” in Proc. Int. Conf. Comput. Intell. Security Inf.Syst
Torremolinos, 198-205.

20. Higor A. de Souza, Marcos L. Chaim, and Fabio Kon , Spectrum-based Software
Fault Localization: A Survey of Techniques, Advances, and Challenges.

22. Naish L, Jie LJ, Kotagiri R (2011) “A model for spectra-based software diagnosis
ACM Transactions on Software Engineering and methodology 20(3), 1-32.

26. Wong WE, Debroy V, Gao R, Li Y, (2016) A survey on software fault localization.
IEEE Transactions on Reliability,42(8):707–740, 2016.

9. Weiser M, (1984) Program slicing. IEEE Transactions on Software
Engineering, 10(4): 352-357.

10. Weiser M, (1982) Programmers use slices when debugging. Communications
of the ACM, 25(7): 446-452.

11. Lyle JR, Weiser M, (1987) Automatic program bug location by program slicing.
In Proceedings of International Conference on Computers and Applications,
877–883.

12. Agrawal H, Horgan J (1990) Dynamic program slicing. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation, 246-256.

13. Agrawal H, DeMillo RA, Spafford EH, (1993) Debugging with dynamic slicing

and backtracking. Software – Practice Experience, 23(6): 589-616.

16. Zhang Z, Yan L, Qingping T, Xiaoguang M, Ping, et al. (2017) Deep
Learning Based Fault Localization with Contextual Information. IEICE
Transactions on Information and Systems, 100(12): 3027-3031.

15. Wong WE, Debroy V, Golden R, Xu X, Thuraisingham B, et al. (2012) Effective
software fault localization using RBF neural networkon Reliability,61(1): 149-169

14. Wong WE, Qi Y, (2009) BP neural network-based effective fault localization.
International Journal of Software Engineering and Knowledge Engineering,
19(4): 573-597.

17. Rumelhart DE, Hinton GE, Williams RJ, (1986) “Learning representations by
back-propagating errors,” Nature, 323(6088): 533-536.

18. Jones JA, Harrold MJ, (2005) Empirical Evaluation of the Tarantula Automatic
Fault Localization Technique. In Proceedings of the 20th IEEE/ACM
Conference on Automated Software Engineering, 273-282.

23. Debroy V, EricW, Xu X, Choi B, (2010) A grouping-based strategy to improve
the effectiveness of fault localization techniques, in Proceedings of the 10th
International Conference on Quality Software, Zhangjiajie, China, 13-22.

19. Eric W, Ruizhi G, Li Y, Abreu R, Franz W, (2016) A survey on software fault

localization. IEEE Transactions on Software Engineering, 42(8): 707-740.

24. Mayer W, Stumptner M, (2013) Evaluating models for modelbased

debugging. In Proceedings of International Conference on Automated
Software Engineering (ASE’08).

25. Mayer W, Stumptner M, (2020) Abstract interpretation of programs for model-
based debugging. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI’07).

21. https://man7.org/linux/man-pages/man1/gcov-tool.1.html

27. W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa-A Survey on

 Software Fault Localization.

Type your tex t

Type your tex t

Type your tex t

Type your tex t

https://doi.org/10.1109/52.88939
https://doi.org/10.1109/52.88939

	Title
	Corresponding author
	Abstract

