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Abstract
It is proved that the shape of equations obtained after transformation 
of real (x, y) into normalised (u, v) variables enables to present 
polynomial and rational functions in a unified form. In terms of 
normalised variables, the equations applicable for calibration curves 
are analogous to ones obtained for standard addition method. It 
enables to apply a common criterion adaptable for both methods of 
chemical analysis.
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Introduction
The instruments used in chemical laboratories require prior 

calibration before they are used to produce relevant analytical data. 
Calibration [1-8] is defined as the sequence of operations that enables 
to establish, under specified conditions, the functional relationship 
between values of the measurable signal y (output quantity, e.g. 
absorbance) indicated by a measuring device and the corresponding 
values of variable x (input quantity or property, e.g. concentration) 
realised by standards of an analyte X, under defined conditions 
assumed. If the calibration is performed incorrectly, the results of 
analyses will be unreliable [1,5]. 

We consider polynomial and rational, monotonically increasing 
functions y=y(x), i.e., dy/dx>0 within defined x-range. For the 
monotonic function y=y(x), there is an inverse relation x=x(y) within 
the specified y-range. The model y=y(x) will be applied to the set of 
arranged experimental data (xj, yj), j=1, ..., N, where yj ≤ yj+1 at xj ≤ xj+1.

The linear relationship y=a+b⋅x is applicable only within a limited 

(narrowed down) range for x. For a more extended range of the 
variable x, the non-linear (parabolic, hyperbolic) models seem to be 
more adaptable. They are represented by equations: 

2y = a + a x + a x0 1 2⋅ ⋅               (1)

c + c x0 1y =
1+ c x2

⋅

⋅
                (2)

for parabola (1), and hyperbola (2). Equation 2 is a particular case of 
rational function [9,10]
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∑ == =
∑

⋅

+ = ⋅
a b                 (3)

where a=[a0, ..., an]T, b=[b1, ..., bm]T, ai, bj ∈ ℜ. A particular case are there 
the functions of the Padé type [11-14]; some of them (with m=n+1) 
were applied [15] to semi-empirical modelling purposes. In a common 
opinion, rational functions have greater approximative power than 
polynomial functions – in the sense that, with the same number of 
parameters involved, they enable to get better approximation. The 
modified rational function (3) where a0=0, i.e.,

in
1

m
1
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⋅

⋅
a b              (4)

is applicable for standard addition method [16,17]. 

Equations (1) and (2) assume linear form at a2 = c2 = 0. The model (2) 
and its simpler form, with c0 = 0,  proved to be applicable in analyses 
made with use of AAS method [9] and in potentiometric acid-base 
titration curves, where generalised Simms constants [15,18,19] are 
involved.

Numerous examples testifying in favour of hyperbolic 
approximations are provided in [20-24] where the approximation 

x
ln(1+ x)

1+ x / 2
≅                (5)

has been applied against the approximation 

ln(1+ x) x≅                  (6)

referred to the Gran I method, and the approximation ln(1+x) ≅ 
x – x2/2. The validity of the approximations is clearly visible in 
Table 1, [22]. The divergences are, for example: 0.02% in Equation 
6 and 2.5% in Equation 7 at x=0.05; 0.27% in Equation 6 and 9.8% 
in Equation 7 at x=0.20; 3.8% in Equation 6, and 44% in Equation 
7 at x=1.00. 

Standard addition method (SAM)
Let us introduce a new variable z, involved in relation 

x=x0+z                  (7)

where x0 is the initial concentration of an analyte X in the sample 
tested. Let y0 be the signal related to x=x0 (i.e., z=z0=0) and N be the 
number of standard additions, i.e., N+1 experimental points {(zj, yj) | 
j=0,1, ..., N} are registered. 

From Equation (1) we get 
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* 2y = y + a z + a z0 1 2⋅ ⋅                  (8)

where: 
y0 = a0 + a1⋅x0 + a2⋅x0

2                (9) 
2y = a + a x + a x0 0 1 0 2 0⋅ ⋅                                   (10)

*a a 2 a x1 1 2 0= ⋅+ ⋅  → a1 = *a1  − 2⋅a2⋅x0               (11)

At a0=0 in Equation (9), from Equations (9)–(11) we have, by 
turns:

2 *a x a x  y 02 0 1 0 0⋅ ⋅− + =             (12)

* * 2× (a - (a ) - 4×a y ) / a1X  = 0.5 ×2 010 2                 (13)

where y0, 
*a1  and a2 are determined from Equation (8), according to 

LSM.

From Equation (2) we have, by turns,
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Before application of the LSM, Equation (14) should be rewritten 
into the form 

*y = y + d z - c y z0 1 2⋅ ⋅ ⋅             (16)

where:
* *d = c + c y1 1 2 0⋅                              (17)

At c0=0, from Equation (15) we have, by turns,

( ) *c21+ x0*1-c x2 0

y x0 0= x 1+ c x = x =0 2 0 0* *c 1- c x1 2 0
⋅

 
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⋅ ⋅ ⋅   →

y = x0 0
* *( )1 2 0c c y⋅⋅ +               (18)

and then from Equations (17) and (18) we have

 
y0x =0 d1

              (19)

Uniformity of Non-Linear Models
In order to compare the models applied within different ranges of 

concentrations and/or signals y registered, a uniformity (normality) 
procedure is necessary, i.e., both variables (x and y) should be 
normalised. Taking into account that nonlinear models are 
considered within different areas of chemical analysis, the resulting 
models should also be independent on the instrumental method 
applied for analytical purposes. The sensitivity of the method 
should also be considered. All the requirements are fulfilled 
when the normalised variables are introduced. The normalising 
procedure consists of two steps: (1°) calculation of parameters of 
the regression equation in its initial or transformed forms and (2°) 
formulation of the comparative criterion of fit of the modelling 
functions, in terms of normalised variables. The parameters of the 
functions are obtained by the least squares method (LSM). The 
functions considered will be related to the calibration curve and 
standard addition methods. 

CCM

Let x1, ..., xN be the set of N ordered reference values and y1, ..., 
yN be their respective test values. Then for the arranged set of over-
determined experimental data (xj, yj), j=1,...,N (xj ≤ xj+1, yj ≤ yj+1), we 
introduce the relations: 

u = (x–x1)/(xN–x1) = (x–x1)/∆x  → x=x1+u∙Δx         (20)

v = (y–y1)/(yN–y1) = (y–y1)/∆y  → y=y1+v∙Δy           (21)

where u ∈ <0,1>, v ∈ <0,1>. Applying Equations (20) and (21) in 
Equations (1) and (2), we get the formulas: 

v=α⋅u + (1–α)⋅u2                 (22)

u
v

1 ( 1) u

γ ⋅
=

+ γ − ⋅
                (23)

where: v = 0 for u = 0, and v = 1 for u = 1

α = (a1 + 2⋅a2⋅x1)/s 

γ = [(c1 – c0⋅c2)/(1 + c2⋅x1)
2]/s 

and s=∆y/∆x is the mean sensitivity of the CCM; the s value is affected 
– to some degree – by the range <x1, xN> of the variable x chosen 
to plot the related calibration curve. The straight line connecting the 
points (0, 0) and (1, 1) in the co-ordinates (u, v) has the form 

v=u                  (24)

SAM

Introducing:

v* = (y–y0)/(yN–y0) = (y–y0)/∆y*   →      y = y0 + v*∙Δy*                        (25)

w* = (z–z0)/(zN–z0) = z/zN = z/∆z* →  z = w*∙Δz* (at z0 = 0)        (26)

into Equations (1) and (2), we have, in terms of normalised variables 
(w*, v*): 

v* = α*⋅w* + (1–α*)⋅(w*)2              (27)

1 x 0.05000 0.10000 0.20000 0.25000 0.50000 0.75000 1.00000
2 ln(1+x) 0.04879 0.09531 0.18232 0.22314 0.40547 0.55962 0.69315
3 x – x2/2 0.04875 0.09500 0.18000 0.21875 0.37500 0.46875 0.50000
4 x/(1+x/2) 0.04878 0.09524 0.18182 0.22222 0.40000 0.54545 0.66667

Table 1: The ln(1+x) values and their approximations.
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Figure 1: The exemplary plot v=v(u) [9] and the line v=u (Equation 24). 

where v*=0 at w*=0 and v*=1 at w*=1. Applying Equations (25) and 
(26) in Equation 14, we have

* * *c w z* * 1v  * * *1 c w z2
y

⋅ ⋅ ∆

⋅
=

+
⋅ ∆

⋅ ∆
 → 
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⋅ ⋅

⋅+ +⋅
=

∆ ⋅
=      (28)

Assuming that the curve passes through the points (w*, v*) = (0, 0) 
and (1,1), we get * * 11γ γ= − , and then we have the relation

* *w*
* *1 ( 1) w

v
γ

=
+ γ − ⋅

⋅                (29)

where: α* = a1*/s*, γ* = c1*/s* = [(c1 – c0⋅c2)/(1 + c2⋅x0)
2]/s* and s* = 

∆y*/∆z*. 

Some remarks

Note that the formulas for SAM with asterisked data (α*, γ*, s*, 
w* and v*) involve x0, not x1. The x1 enters the formulas for α, γ, s, 
u and v, referred to CCM. Similarities between the formulas: (22) 
and (27) or (23) and (29) are the basis for application of identical 
criteria for CCM and SAM; these formulas are in close relevance to 
the homotopy problem [25], considered within topology.

Applying equidistant values for zj, i.e., zj+1 – zj = Δz for j=0, ..., 
N-1, we get zj = (j/N)⋅∆z*. Similarly, at xj+1 – xj=Δx, for j=1, ..., N-1, 
we have xj = x1 + (j–1)/(N–1)⋅∆x. Then the external parameters of the 
corresponding regression equations can be calculated with use of the 
following formulas: 

( ) ( )( )

( ) ( )

; ;

;

N NN N 1 N N 1 2 12j  j  1 26 6j 1 j 1
2N N 3 3 123 4j  j  1 2 5j 1 j 1

N

N N
s s

+ + +
= = σ = = σ∑ ∑

= =

+ −
= =∑ ∑

=
⋅

=

                  (30)

A nonlinearity criterion of the model 

As the criterion of the nonlinearity one can assume the area 
between the lines (5)–(7) and straight line (Equation 8) in the 
normalised variables (u, v) [9] (Figure 1). This integral criterion is 
expressed by 

( )
1 12{ u 1 u u} du1 60

F
α −

= α ⋅ + − α ⋅ − ⋅ =∫  
              (31)

( )
( )

1 1 ln 1
{ u} du2 21 ( 1) 20 1

u
F

u

γ

γ

γ ⋅ γ − − γ⋅
= − ⋅ = −∫ + − ⋅ γ −

                       (32)

When referring to standard addition, the parameters α, β, γ 
should be replaced by α*, β*, γ*. Setting lnγ=ln (1+γ–1) and applying 
the approximation (5), from Equation (32) we get 

1
2 2 ( 1)

F
γ

γ

−
≅

⋅ +
                                  (33)

The area between the line v=v(u) and the line v=u, plotted in the 
normalized coordinates (u, v), is the measure of nonlinearity of any 
monotonic relationship obtained on the basis of experimental points 
(xj, yj)|j=1, ..., N}, compare with Figure 1. This area is expressed as 
follows

1
v u du

0
Ω = − ⋅∫                 (34)

More complex rational functions y=y(x) (Equations 3 and 4) were 

also considered in references [9,16,17], e.g. the function 

2
43

2
210

xaxa1
xaxaay

⋅+⋅+

⋅+⋅+
=                (35)

is expressed, in normalized variables, by the relation v=v(u) 

2
2

2

2
2

u u d 1v ln u u
1 u u 2 du

11 12 u u

   α ⋅ + β ⋅ β β α γ γ
= = + ⋅ − ⋅ + ⋅ +   + γ ⋅ + η⋅ η η β η η η   

  β γ α γ
− ⋅ ⋅ − + ⋅   γη β η   + ⋅ +

η η

          (36)

2

2

u uv
1 u ( 1 ) u

α ⋅ + β ⋅
=

+ γ ⋅ + α + β − − γ ⋅
           (37)

For the function (36), illustrated by Figure 1, we have v ≥ u within 
u ∈< 0, 1 >. 

From the tables of elementary integrals [26,27] we find, among 
others,

1

2

2 2 btan for 0

1 2d for 0
a b c 2a b

1 2a bln for 0
2a b

−


ξ + ⋅ ∆ <
 −∆ −∆


−⋅ ξ = ∆ =
ξ + ξ + ξ +

 ξ + − ∆ ⋅ ∆ >
 ∆ ξ + + ∆

∫                     (38)

with Δ=b2 – 4ac. Setting a=1, b=γ/η, c=1/η and ξ=u in Equation (38), 
we get [9]

1 1

1

20

2 2tan tan for 0

1 1 1( ) .du 2 for 01 2u u
1 2ln for 0

2

− −
  η + γ γ
 ⋅ − ∆ < 

−∆ η⋅ −∆ η⋅ −∆  


 Ψ ∆ = = η⋅ − ∆ =  γ γ η + γ + +
η η 

η + γ − η⋅ ∆ γ + η⋅ ∆ ⋅ ⋅ ∆ >
 ∆ η + γ + η⋅ ∆ γ − η⋅ ∆

∫ (39)

where 
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2
4 γ

∆ = − η η 
               (40)

In particular, for Δ<0 we get the Ω value (Equation 34)

2

1 1ln 1 ln
2 2

á 1 ( )
2

    β β α γ γ
Ω = − + ⋅ − ⋅ + + + η    η η β η η η    

  β γ γ
− ⋅ ⋅ − + ⋅ Ψ ∆  η β η  

             (41)

Final Comments
Calibration is one of the basic activities realized within any 

analytical measurement. On the step of calibration, the functional 
relationship between the y-values indicated by measuring instrument 
and concentrations x of the standard samples (s) is established under 
strictly defined conditions of the calibration procedure.

In univariate calibration, with x as an independent variable, the 
linear regression is most frequently used and abused [28]. In some 
instances, however, a nonlinear model expressing a functional 
relationship y=y(x) between variables x and y within defined x-range 
provides better description of a relationship between x and y, under 
specified conditions. To obtain a valid model, the analyst must also 
subjectively decide on the boundaries of the system and on the 
attributes to be quantified in the model. 

The calibration enables, among others, to estimate the real value 
x0 of the measurand from the experimental value obtained in the 
measurement. The calibration provides an empirical relationship 
between the measured values. 

The nonlinear modelling is done both for analytical and 
physicochemical purposes [2,29]. The success of calibration 
(accuracy, precision) depends on interrelations within the “triplet”: 
dataset {(xj, yj)|j=1, ..., N}, model y=y(x) and the analytical method 
applied. When applying the least squares method to linear regression, 
it is assumed that each data–point in a given x–range has a constant 
absolute variation (homoscedasticity). If y=y(x) is not a linear model 
with respect to changes in analyte concentration, i.e., y(x) cannot 
be sufficiently modelled by a first order polynomial, a nonlinear 
calibration model must be employed [29]. The nonlinear model is also 
necessary when the unknown sample contains some species affecting the 
y value; otherwise, the prediction will be inaccurate [30]. An accurate, 
univariate calibration is prohibited, in most cases, by matrix effects. In 
such instances, an issue is the standard addition method. 

The uncertainty (errors) may also be the physical modifications 
(changes) taking place between the calibration and the measurement 
process using this curve. For example, if the temperature of the samples 
is not equal to the calibration temperature, then the results may be 
wrong. In flame AAS (FAAS), the change of temperature influences 
the surface tension of the liquid sample, and thus on the efficiency 
of nebulization preceding the sample atomization. The composition 
of the reference samples must be similar to the composition of the 
samples tested. This applies, in particular, to the sample matrix and the 
size of particles contained therein [31]. For example, analysis of blood 
serum samples for pesticide or drug residues should not be based 
on calibration curves based on measurement of signals for aqueous 
solutions of the respective reference substances [32]. Because the serum 
blood composition is not reproducible in calibration solutions, another 
method is required [33], especially the standard addition method. 

In this work we have shown that for CCM, as an extrapolation 
method and for SAM, as the interpolation method, we obtain formally 
identical functional relations in a normalized, dimensionless system 
of coordinates. Hence results the possibility of applying a unified 
criterion of nonlinearity of the appropriate results of analysis. This 
criterion is independent of the scale and range of concentrations 
covered by the measurements, and the indications and sensitivity of 
the measuring devices.
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