

Journal of Genetic **Disorders** & Genetic Reports

a SciTechnol journal

Commentary

Aging: A Little (Oxidative) Stress is Good for You

Terrance J. Kubiseski*

Department of Biology and Department of Neuroscience. York University. . Canada

Corresponding author: Terrance J. Kubiseski, PhD, Department of Biology and Department of Neuroscience, York University, Toronto, Ontario, M3J 1P3, Canada, E-mail: tkubises@yorku.ca

Received Date: January 02, 2021 Accepted Date: February 16, 2021 Published Date: February 23, 2021

Commentary

individually all the problems of aging, since through modifying a understand the aging process. regulatory gene or signaling network is sufficient to induce longevity along with the postponement of age related diseases. One of the prevalent theories regarding a causal agent for aging involves free radicals, which are molecules containing unpaired, highly reactive electrons.

Harman postulated that damage to macromolecules by free radical production in aerobic organism is a major determinant of life span. It was later discovered that normal aerobic metabolism naturally produces superoxide (O2-) and hydroxyl (OH-) byproducts (known collectively as reactive oxygen species or ROS) that can adversely modify lipids, proteins and DNA. ROS have been implicated in aging and in many age related diseases including Alzheimer's, Parkinson's and Cancer.

Signaling pathways become activated in cells to limit the insult from ROS by generating antioxidant proteins (e.g. Superoxide Dismutase SOD) and Glutathione S-Transferase (GST) proteins) that remove high levels of ROS, induce cell survival or increase cell death and senescence. Levels of reduced glutathione are lower in Parkinson Disease brains indicating oxidative stress. In humans, there are a Heightened interest in the aging process by the public and scientific number of stress-activated pathways, such as the nuclear factor community has occurred due to the increase in percentage of elderly erythroid-2-related factor 2 (Nrf2) pathways that plays a prominent role in the population and the increase in health care expenditures in oxidative stress response. The Nrf2 pathway induces the expression committed to the elderly. Due to this increased interest, current of antioxidant and cytoprotective enzymes suggesting that increasing research into aging demonstrates it as a complex process that is the activity of this pathway would potentially be useful for the treatment of result of interplay between naturally occurring processes, such as age related diseases such as Alzheimer's and Parkinson Disease. changes in hormonal levels and gene transcription that occur during However, theories regarding the precise role of ROS in influencing the biological timeline of human development, and the exposure of aging are still debatable. Recent data has demonstrated that small our body's systems to environmental damage. At a physiological amounts of ROS in worms increase lifespan although large amounts level, aging is the functional decay overtime of cells, organs and may still be harmful. The increase in lifespan upon low exposure of tissues, specifically through chemical damage of the cellular ROS may be due to induction of stress response pathways that promote components proteins, DNA and lipids. The problems of aging longevity when active. Although these findings do not dismiss the include issues such as declining muscle tone and mass, wrinkled theory that molecular damage causes aging, they do suggest that ROS skin and mutant mitochondria. What is noteworthy with studies done can act as a protective signal and, at the very least, demonstrate that a on laboratory animals is that it is not necessary to combat thorough study of stress response pathways is necessary to properly

