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Native microenvironment (NME) provides the 
mechanophysiological condition to the cells or tissues in their local 
microenvironment, where cells do grow, proliferate, differentiate, 
and migrate as well as undergo the natural apoptosis process. All the 
processes happen in cellular level to maintain a tissue or an organ 
homeostasis. In addition, NME controls a cell or a tissue function, for 
example secretion of bioactive molecules, deposition of extracellular 
matrix proteins (ECMs), organization of different kinds of cells, and 
hierarchical mechanisms on cell cross-talk networks [1-3]. NME is 
normal as in a normal tissue or abnormal as in a cancerous tissue. 
As in vivo, cells, their spatial arrangements, cell-cell interactions and 
cell-matrix interactions are indispensable to create and maintain the 
NME [4,5]. In other words, cells determine their NME and the NME 
controls the function of cells or vice versa. Generally, mesenchymal 
stem cells (MSCs), tissue specific stem cells, fibroblasts, immune 
cells, endothelial cells, lymphatic cells, adipocytes and migrating 
cells participate in the formation of NME, depending on the organ 
specificities. In tumor microenvironment (TME), presence of tumor 
cells and their control on other cells is vital for tumor growth and 
vasculogenesis [2,6].

Mimicking native-like microenvironment in in vitro system 
is a prime concern in tissue engineering and other studies. Many 
approaches have been attempted to provide a 3D spatial condition to 
cells, growing in in vitro system using various kinds of biomaterials 
that are biodegradable and biocompatible. Physical properties 
(e.g. topography, stiffness, and elasticity), chemical properties (e.g. 
hydrophilicity, and hydrophobicity), and presence of cell binding 
ligands of each biomaterial directly play the significant role in the cell 
attachment, proliferation, protein secretions and cell growth as well 
as differentiation. Synthetic biomaterials like polycaprolactone (PCL), 
poly(lactic co-glycolic acid) (PLGA), poly(ethylene glycol) (PEG), 
poly(vinyl chloride) (PVC) and poly(dimethyl silane) (PDMS), 
and natural biomaterials like chitosan, silk fibroin, starch, cellulose, 
alginate, gelatin, collagens, ECM and decellularized extracellular 
matrix (dECM) are popular in tissue engineering and biomedical 
applications [7-11]. Various blended forms from both synthetic 
and natural biomaterials have been used extensively in considering 
that composites or hybrid scaffolds can provide better native-like 
microenvironment to the cells compared to the individual biomaterial 

[12-15]. 

Biochemical and biophysical cues of synthetic biomaterial hydrogels 
can be temporally tuned to mimic the native-like extracellular matrix 
for the normal cellular process by modifying certain reactive groups 
such as thiols, NHS esters and azides under cytocompatible conditions 
through numerous reactions like azide alkyne cycloaddition and chain 
polymerization. Adhesiveness of synthetic biomaterials is increased 
by introduction of adhesive peptide sequences in the biomaterials 
such as binding of RGD peptide sequences in PEG by N-hydroxy 
succinamide ester on one end and acrylate functional group on 
other side [16,17]. Furthermore, some peptide units and different 
ECM components are incorporated in synthetic biomaterials to 
maintain the self-renewal of stem cells and to facilitate the interaction 
with cell surface glycans as a hybrid or composite hydrogels or 3D 
scaffolds, for instance incorporation of vitronectin-derived peptide 
units (GKKQRFRRHRNRKG) in polyacrylamide hydrogel [18,19]. 
Addition of functional groups, for example silk fibroin and curcumin 
in PCL demonstrated the better cell attachment. PCL scaffolds have 
been coated with cell-laid ECM, alginate or dECM to make hydrophilic 
and native mimicking NME to the cells [12,13]. Importantly, synthetic 
biomaterials or hybrid or composite hydrogels or scaffolds provide 
favorable condition and mechanical support to the cells. Though, they are 
excellent in providing the bioprinting hydrogels for precise scaffoldings 
with a control on size, shape and porosity through the 3D-bioprinting 
and conventional 3D scaffold systems, they are usually in limit providing 
a bioink, where cells are admixed with the hydrogels. The limitation in 
bioink formation is mainly because of their insolubility in water and 
solubility in organic solvents like chloroform or acid or alkalies, which 
harm the cells. 

Selection of biomaterials turns towards the natural materials, 
which are inert, biocompatible and biodegradable as the better 
alternatives for the synthetic biomaterials. Studies have shown 
that natural derived biomaterials like silk fibroin, ECM and dECM 
provide the better favorable condition to the cells compared to 
synthetic biomaterials. Every native biomaterial has its pros and 
cons as of synthetic biomaterial. The choice of biomaterials depends 
on the purpose of tissue engineering studies, for example chitosan 
is usually selected for hard tissue engineering whereas, alginate is 
for soft tissue regeneration [20,21]. Explanation of each biomaterial 
is beyond the scope of this editorial article. Introduction of collagen 
in tissue engineering has changed a lot of paradigms in research as 
the better ECM for tissue engineering since it is a product of native 
tissue [22]. The hope in getting the native-like microenvironment in in 
vitro system using only collagen as the scaffold has not been fulfilled. 
Collagen as a single type ECM protein, loss of native configuration, 
and loss of cell binding ligands during extraction and purification 
process may be some of the factors that hinder the collagen as an ideal 
scaffold. Because of collagen limitation in tissue engineering, dECM 
has been emerged as the ideal hydrogel for 3D scaffolding system. 
dECM contains almost all the ECM proteins that play the vital role 
in the formation of native like microenvironment [23,24]. Like other 
natural biomaterials, dECM has been used as the bioinks for different 
biomedical research. It has been using in versatile applications both 
in vitro and in vivo. Based on ECM constituents, dECM provides 
the excellent microenvironment to the cells compared to any other 
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biomaterial. Since studies have shown that cells behave differently in 
different dECM, specific dECM has been selected for specific tissue 
engineering for example skin dECM for skin regeneration [25]. 

dECM is generally prepared from native tissue by decellularization 
process, where different types of detergents, acids, alkalies, or 
enzymes are used. The purpose of using those chemicals is to remove 
the nuclear contents and DNA completely from the tissue [23,26]. 
But, during decellularization process, ECM proteins have lost their 
physical configurations and chemical constituents, resulting in 
the loss of binding ligands, hide or loss of active sites, and loss 
of native topographical properties [27,28]. Therefore, there is the 
variation in result outcomes from a single type of cells even if 
there is a use of same dECM materials that prepared from different 
decellularization approaches. Considering this limit, ECM tissue 
should be decellularized to make dECM that should exactly mimic 
the native ECM, keeping all the proteins as they are in native 
tissue. In spite of a clear understanding that dECM is only the 
best alternative scaffolding system till date, we are far behind for 
the fabrication of the 3D functional system using dECM through 
fabrication process like bioprinting. There is still a challenge to 
fabricate the porous scaffold using only dECM as a bioink because 
of weak mechanical strength of dECM and contractile nature of 
certain proteins like collagens present in dECM that cause not only 
the collapse of precise porosities required for the cell migration and 
nutrition diffusion, but hinder proper cell adhesion and migration 
[29,30]. Further, the constant change in ECM constituents and 
interconversion of natured and denatured state of proteins in live 
tissue for various regulatory functions will be the great concern 
for making native tissue environment for growing cells in in vitro 
system [31-33].

Successful in mimicking tissue like microenvironment in in vitro 
system not only depends on the scaffolding biomaterials, its nature 
and properties, but also relies on other most important factors for 
example, physiological conditions (e.g. pH, temperature, oxygen 
and carbon dioxide content, and metabolites), growth factors (e.g. 
cytokines, hormones, and minerals), and energy supply (e.g. ATP, 
and nutrients). Optimization of cultural condition depending on the 
tissue type is very important that should let multi-type cells grow 
in a way as they do in native tissue. The author hopes that, after 
fundamental improvement on native ECM isolations and preparation 
of fully functional dECM, there is a great prospect of making fully 
native 3D spatial in vitro environment dECM systems for the cells that 
support for any type of tissue engineering and cancer studies for better 
improvement of public health.
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