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Abstract

Generating Knowledge Graph Embeddings (KGEs) to represent 
entities (nodes) and relations (edges) in large scale knowledge 
graph datasets has been a challenging problem in representation 
learning. This is primarily because the embeddings/vector 
representations that are required to encode the full scope 
of data in a large heterogeneous graph needs to have a high 
dimensionality. The orientation of a large number of vectors 
requires a lot of space which is achieved by projecting the 
embeddings to higher dimensions. This is not a scalable solution 
especially when we expect the knowledge graph to grow in size 
in order to incorporate more data. Any efforts to constrain the 
embeddings to lower number of dimensions could be problematic 
as insufficient space to spatially orient the large number of 
embeddings/vector representations within limited number of 
dimensions could lead to poor inferencing on downstream tasks 
such as link prediction which leverage these embeddings to 
predict the likelihood of existence of a link between two or more 
entities in a knowledge graph. This is especially the case with 
large biomedical knowledge graphs which relate several diverse 
entities such as genes, diseases, signaling pathways, biological 
functions etc. that are clinically relevant for the application of 
KGs to drug discovery. The sizes of the biomedical knowledge 
graphs are therefore much larger compared to typical benchmark 
knowledge graph datasets. This poses a huge challenge in 
generating embeddings/vector representations of good quality to 
represent the latent semantic structure of the graph. Attempts 
to circumvent this challenge by increasing the dimensionality of 

the embeddings often render hardware limitations as generating 
high dimensional embedding is computationally expensive and 
often times infeasible. To practically deal with representing the 
latent structure of such large scale Knowledge Graphs (KGs), 
our work proposes an ensemble learning model in which the full 
knowledge graph is sampled into several smaller subgraphs and 
KGE models generate embedding for each individual subgraph. 
The results of link prediction from the KGE models trained on 
each subgraph are then aggregated to generate a consolidated 
set of link predictions across the full knowledge graph. The 
experimental results demonstrated significant improvement in 
rank-based evaluation metrics on task specific link predictions as 
well as general link predictions on four open-sourced biomedical 
knowledge graph datasets.
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Introduction
A Knowledge Graph (KG) is a collection of known facts in the 

form of a directed labeled heterogeneous graph, where in each node 
represents an entity and each edge represents a relation between the 
entities. Each fact is represented as a triple of the form (head entity, 
relation, tail entity); for example, the fact that Berlin is the capital of 
Germany can be stored as the triple (‘Berlin’, ‘capital of Germany’). The 
categories or classes of entities and relations in the knowledge graph 
are standardized to a closed set. Knowledge graphs were initially 
utilized for graph based structured data storage and retrieval of facts 
via computationally simple graph traversal algorithms but recently 
the task of predicting missing links between entities in the graph has 
become an active area of research due to the potential of identifying 
novel relationship between entities while predicting the missing links 
in the graph.

While many approaches for knowledge graph link prediction have 
been explored, knowledge graph embedding has gained much traction 
recently [1]. Knowledge Graph Embedding (KGE) models with an 
optimization strategy can generate embeddings/vector representations 
which capture latent properties of the entities and relations in the 
graph [2]. These embeddings can then be used in downstream machine 
learning tasks such as node classification, community detection, and 
in our case link prediction [3,4]. In general, the likelihood of existence 
of a missing link between two entities in the KG can be predicted by 
computing the proximity of a head entity embedding and relation 
embedding with that of a tail entity embedding by passing them as 
inputs to model-specific scoring functions as shown in Table 1 and 
computing a plausibility/confidence score for the existence of a link 
between the two entities [5].
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 Embedding model Score function
 Translational Distance 
Models

TransE F (h, r, t)=−∥ h + r −′ t ∥
ComplEx F (h, r, t)=Re(<h, r, t>)
RotatE F (h, r, t)=∥ −h·r−t ∥

Semantic Matching 
Models

RESCAL F (h, r, t)= hT Wrt
DistMult F (h, r, t) ≤ h, r, t>

Table 2: Scoring functions of standard knowledge graph embedding models 
given the head entity vector representation h, tail entity vector representation t 
and relation vector representation r.

Even though these embedding models have demonstrated 
robust performance on benchmark datasets [6-8]; previous work has 
shown that biomedical knowledge graphs have a distinct topological 
structure, are very large in size and incorporate various categories of 
information in their nodes and edges compared to typical benchmark 
graphs such as Freebase FB15 k and Wordnet WN18 that have about 
600,000 and 150,000 triples respectively and incorporate fewer 
categories of nodes and edges to represent heterogeneous information 
[9]. Smaller biomedical knowledge graph datasets such as BioKG and 
Hetionet have approximately 2 M and 2.2 M triples respectively [10-12] 
and larger biomedical knowledge graphs such as Drug Repurposing 
Knowledge Graph (DRKG) and Integrated Biomedical Knowledge 
Hub (iBKH) have approximately 6 M and 50 M triplets respectively 
[13,14]. Datasets of this size could still be tenable for training, given 
a high-performance computing infrastructure with multiple GPUs. 
However, as additional triples are added to further augment the 
knowledge base, these graphs may grow too enormous. Therefore 
the task of generating low dimensional robust representations for the 
entities and relations in such a knowledge graph becomes complicated 
as the model can only incorporate a limited number of entity and 
relation embeddings within a given number of dimensions while still 
avoiding congestion of the embedding vectors and maintaining the 
semantic meaning conveyed by the graph. Moreover, tackling this 
problem by allocating more computational resources is neither a cost-
effective nor scalable solution.

In order to generate embeddings/vector representations for the 
entities and relations in a large knowledge graph while ensuring that 
the embeddings effectively represent the latent semantic properties 
of the graph in lower dimensions; this paper proposes an ensemble 
approach for performing KGE model training on subgraphs (localized 
view of full data) sampled from the full graph and aggregating 
plausibility scores for link predictions obtained from each subgraph 
to generate a consolidated set of link predictions across the full KG.

More specifically, in order to avoid the very high dimensional 
embeddings required for representing latent properties of a large scale 
knowledge graph, we propose a stochastic sampling approach in which 
few random seed nodes are chosen first, then Breadth-First Search 
(BFS) is performed to add other nodes and edges that are connected 
to the chosen seed nodes to the subgraph until each generated 
subgraph reaches a specific size that is determined by the number of 
triples contained in the subgraph [15]. Each of these subgraphs can be 
considered as a localized view space of the full scope of the KG. KGE 
models are trained individually on each subgraph wherein each triple 
(h, r, t) is assigned a plausibility/confidence score based on the scoring 
function of the corresponding subgraph’s embedding model. The 
ranked-triples/link predictions along with their respective plausibility 
scores from each subgraph are then aggregated to yield a consolidated 
set of ranked-triples/link predictions across the full KG. In order to 
generate the ranking for a triple/link-prediction in the context of the 
full KG using the ensemble learner; for a particular triple T that exists 
in multiple subgraphs the plausibility scores for all the triples in those 
individual subgraphs are firstly normalized before aggregating the 

plausibility score for triple T across all those subgraphs using a simple 
average of its normalized plausibility scores from every subgraph 
in which it is present. The averaged plausibility score is considered 
the final score assigned to the triple T in the full KG. Similarly 
aggregated plausibility scores are computed for the remaining triples 
for generating the consolidated set of ranked-triples/link predictions 
across the full KG.

Experimental results generated on typical benchmark biomedical 
KG datasets showed that our ensemble approach yielded significantly 
better performance for link prediction on large biomedical KGs while 
consuming lesser GPU memory footprint compared to the traditional 
approach of training a KGE model on the full knowledge graph.

Literature Review
Knowledge graph embedding models represent entities 

and relations as low-dimensional vectors to use in downstream 
applications, including node classification and link prediction. 
Specifically, link prediction task leverages these latent representations 
as inputs to a scoring function to compute the plausibility of a link 
existing between a particular pair of nodes/entities in the KG. Various 
scoring functions have been proposed in recent years, including 
distance-based scoring functions used by translational distance 
models such as TransE, ComplEx, RotatE etc. and similarity-based 
scoring functions used by semantic-matching models such as 
RECSAL, Dist Mult etc. [7,16-20]. Below in Table 1, we list a few well-
known knowledge graph embedding models and their corresponding 
scoring functions [21].

In Table 1; the function F (h, r, t) represents the scoring function 
of the embedding model that is used to rank the likelihood of the 
existence of a link between a head-tail entity pair. h represents 
the vector representation of the head entity, t represents the vector 
representation of the tail entity and r represents the vector representation 
of relation connecting the head entity h with the tail entity t.

There have been some previous studies that have explored the 
possibility of generating vector representations for a local view 
space (subgraphs) instead of a global view space (full KG) so as to 
circumvent the challenges arising due to the high dimensionality of 
embeddings required to represent entities and relations in the global 
view space. The primary idea behind doing this has been that the full 
scope of the KG is not required to generate vector representations/
embeddings for any given node/edge in the graph and only the 
nodes and edges present in the neighborhood of a particular node 
or edge impact its embeddings. Therefore; any kind of downstream 
inferencing will also require only a small subset of nodes and edges 
that lie within the neighborhood of a particular node/edge involved 
in the inferencing task. Some of these approaches include inductive 
embeddings, graph embeddings, utilizing non-euclidean embedding 
spaces and ensembling multiple embedding spaces (Table 1).

Inductive embeddings approach

Apart from graph compression approaches, few recent works have 
explored avenues for training large-scale knowledge graphs using 
inductive embedding models [22]. The knowledge graph embedding 
models mentioned in Table 1. Are transductive embedding models 
which require full scope of the KG in order to generate vector 
representations for the nodes and edges in the KG. On the other 
hand, inductive embedding models create vector representations for 
any node or edge in the knowledge graph using just a few nodes and 
edges in the knowledge graph which are in the neighborhood of a 
given node or edge for which the vector representations are already 
computed. Several inductive embedding techniques have been 
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the euclidean space. Euclidean manifolds have zero curvature and 
therefore the amount of space to represent data in any dimension is 
limited. Therefore we often end up with high dimensionality when 
trying to get vector representations for large amounts of data in 
the euclidean space. However, Reimmanian manifolds have been 
explored before to represent large amounts of data in lesser number 
of dimensions [34,35]. Hyperbolic manifold is one such example of a 
Reimmanian manifold. Hyperbolic manifolds have constant negative 
curvature and can contain a large number of vector representations 
in any given dimension. Therefore, large amounts of data can be 
represented in lesser dimensions. This is simply done by projecting 
vectors from euclidean space to hyperbolic space by applying a 
hyperbolic norm to the vectors. The poincare ball model is one 
such model proposed by Maximilian Nickel and Douwe Kiela that 
creates vector representations/embeddings of the nodes and edges 
from a large scale graph in the hyperbolic space [36,37]. This model 
is successful in creating low dimensional embeddings for large scale 
graph datasets but is not inductive in nature and cannot be applied to 
unseen nodes as the graph grows in size.

Methodology
We have leveraged an ensemble learning approach that aggregates 

link predictions generated from embeddings trained on multiple 
localized view spaces (subgraphs) to come up with a consolidated 
set of link predictions for the full KG. This is a divide and conquer 
algorithm where we divide the big KG into multiple smaller subgraphs 
of equivalent size and then train KGE models on those individual 
subgraphs to generate relevant ranked triples/link predictions per 
subgraph which is then combined using an aggregation strategy to 
produce link predictions for the full KG.

1.	 The broader overview of the steps that we have adopted in 
our approach have been depicted in Figure 1 as well as listed 
below:

2.	 Creating multiple subgraphs from the full knowledge graph 
dataset.

3.	 Train knowledge graph embedding model on each individual 
view/subgraph.

4.	 Evaluate the performance on link prediction tasks from each 
individual subgraph.

5.	 Aggregate the link predictions results from multiple 
subgraphs.

Algorithmic description

The inputs that are required for executing our algorithm are 
the full scope of the knowledge graph G, number of subgraphs to 
be sampled from G and the upper, lower bounds for the number of 
triples that can be present per sampled subgraph. Our algorithm 
scales well for large knowledge graphs and therefore we recommend 
having several million triples in the full KG so as to distinguish and 
compare the results of our approach shown in Algorithm 1 and Figure 
2 against the traditional approach of training KGEs on full graph G 
shown in Figure 2. The primary steps involved in this algorithm are 
to select a random seed triple Tj from the full knowledge graph G 
to get started with and then continuously add neighboring triples 
to this seed triple based on the adjacency matrix of G (using BFS) 
while ensuring that the subgraph being generated obeys the upper 
and lower bound constraints for the number of triples that can exist 
per subgraph. This is done to generate subgraphs of equivalent sizes. 
Once the bound limits are reached; we finish the process of sampling 
one subgraph as shown in Figure 3. Thereafter we train embedding 
models to generate vector representations for the entities and relations 

proposed to help generate scalable vector representations on large 
graphs [23,24]. Notably, Hamilton, et al. introduced an inductive 
framework that leverages a graph convolutional network and learns 
feature aggregator functions to generate node embeddings [25]. 
Since this framework can generalize to unseen nodes for a large 
knowledge graph, this method can theoretically be trained using a 
smaller subgraph and applied on the remainder of the full graph for 
subsequent embedding generation and link prediction. However, this 
framework assumes that the unseen nodes are surrounded by known 
entities/nodes. Therefore; the training subgraph still needs to be of 
sufficient size to be able to produce robust results.

Graph embeddings approach

To address training on very large-scale graphs, a divide-and-
conquer approach can be applied. One possible direction that has 
been explored previously involves dividing the full knowledge graph 
into smaller subgraphs and performing inferencing on each subgraph. 
However, this requires an aggregation scheme to combine results 
from each subgraph and consolidate. Graph embedding methods 
that encode individual subgraphs in entirety (instead of encoding 
nodes and edges within the graphs) as low-dimensional vectors 
offers a potential solution [26,27], where these subgraph vector 
representations can then be fed into a classification framework to 
determine whether each subgraph is suitable to perform a particular 
link prediction task. Teru, et al. proposed a task-specific inferencing 
approach in which a subgraph that encloses the specific target entities 
is extracted from the full knowledge graph and a graph neural 
network is used to score the likelihood of a specific triple given the 
extracted structure of the subgraph [28]. Another Graph Neural 
Network (GNN) based approach is to train the GNN using subgraphs 
as mini-batches instead of training a GNN on the full original graph. 
This method achieved robust performance with less training time and 
memory resource requirements [29].

Ensemble approach

Previous publications have worked with ensemble methods 
to reduce variance and improve performance on knowledge 
graph completion. Wan, et al. proposed an ensemble approach 
to extract multiple subgraphs of approximately 70% the size of the 
original knowledge graphs and perform representation learning 
on each subgraph before applying adaptive averaging on the entity 
embeddings in order to denoise embedding models for the full graph 
[30]. Despite the improvement in evaluation metrics, this method 
did not consider cases in which the learned node embedding are 
vastly different between subgraphs (due to low overlap between 
subgraphs or different random seeds) and embedding vectors cannot 
be averaged. On the other hand, instead of averaging the embedding 
vectors, Xu et al. performed ensemble aggregation by averaging the 
scores for each triple calculated from different score functions for 
each embedding model (Table 1) [31]. Similarly, Tay et al. introduced 
puTransE which trains on multiple embedding spaces, each with 
constrained selection of triplets from the original graph; the final 
score of each triple is the maximum Trans score function out of all 
subgraphs [32]. However, these approaches do not consider the case 
in which the score distributions for each subgraph training can be 
vastly different in ranges and scales. To correct this, Krompass et al. 
proposed score standardization to a (0, 1) range using a Platt scaler to 
demonstrate better performance using an ensemble model compared 
to an individual model [33].

Non-euclidean embedding spaces

The traditional knowledge graph embedding models operate in 
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within the sampled subgraph and perform link prediction using the 
embeddings of the subgraph.

The same process is iteratively repeated for generating remaining 
subgraphs from G, training embedding models on the subgraphs and 
consequently generating separate sets of link predictions from each 
of the subgraph.

These link predictions are generated along with their respective 
plausibility scores based on the scoring function adopted by the 
embedding model as given in Table 1. This plausibility score is used 
for creating an aggregated set of link predictions across the full graph. 
The plausibility scores for the link predictions are normalized for each 
subgraph and then aggregated by applying median, max or mean 
operation over the normalized plausibility scores for generating the 
link predictions across the full graph. Finally we output the aggregated 
set of link predictions by sorting them based on the aggregated 
plausibility scores.

Creating multiple subgraphs from the knowledge graph

The subgraph sampling strategy aims at creating clusters of 
connected nodes/subgraphs from the complete knowledge graph. In 
order to ensure subgraph sizes are equivalent, we specify the upper 
and lower bounds for the total number of triples that could exist 
within each subgraph. For a general link prediction task, the strategy 
for creating each subgraph is as follows:

Algorithm 1 Ensemble learning for link prediction on large scale 
knowledge graphs-A divide and conquer approach:

Require: A knowledge graph G with triples, Lower Limit (LL) and 
Upper Limit (UL) for numtriples sampled per subgraph Sj, number 
of subgraphs numsubgraphs and head entity h, relation r for which 
we want to get the tail prediction. Numtriples in G preferably ≥ 5 M.

2UL M←

1LL M←
10subgraphsnum ←

[]listSubgraph ←

Figure 1: Flowchart showcasing the broader level overview of the steps 
involved in data preprocessing, training and evaluation of our ensemble 
learner.

Figure 2: Architecture diagram of the traditional approach of training a 
knowledge graph-embedding model on the full knowledge graph to generate 
link predictions. Here, E1, E2, E3 etc. are the entities of the knowledge graph. 
T4, T5, T6 etc. represent the tail entities with the highest plausibility scores 
corresponding to the likelihood of existence of a link with a given head entity.

Figure 3: Illustration of the stochastic sampling approach adopted to create 
a single subgraph S1 from a full knowledge graph G. E1, E2, E3 etc. are the 
entities of G. We start with a random seed entity E1 and then add all the 
neighboring triples of the entities which are connected to our seed entity 
from the full knowledge graph G until we reach the specified bounds and 
only keep the largest connected component of the network to create the 
resultant subgraph S1.
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taken to ensure that the final subgraph size still remained within the 
limits specified by the upper and lower bounds after adding all the 
task-specific entities that belong to the same category as E1 and E2.

Training knowledge graph embedding models on each 
individual subgraph

After generating all subgraphs; the next step is to train KGE 
models on each individual subgraph and generate embeddings for 
multiple local view spaces. These embeddings are then leveraged by 
the KGE’s scoring function to obtain link predictions from individual 
subgraphs. For the individual subgraph learners we use traditional 
knowledge graph embedding models listed in Table 1.

Some of the crucial hyper parameters that we optimize here are 
the number of sampled subgraphs, size of each sampled subgraph 
(i.e. the number of triples per subgraph), embedding dimension size 
for KGEs trained on each subgraph, number of negative triples per 
positive triple in each subgraph, the margin for Margin Ranking 
Loss (also known as pairwise hinge loss) which is the loss function 
used by the individual subgraph learners and lastly the regularization 
coefficient.

Margin Ranking Loss is a linear learning-to-rank loss which 
is utilized for maximum-margin classification and can be used in 
pairwise settings to distinguish between the positive triples T+ and 
negative triples T− in the subgraphs with the goal being to maximize 
the difference between the plausibility scores assigned to T+ and T− 
by a good margin λ [38,39]. The margin ranking loss/pairwise hinge 
loss is given by:

( ) ( )hinge
X T x T

l f x f xλ
+ − −

− +
=

∈ ∈
 ∑ ∑ + + +   ……….. (1)

In equation 1 the objective is to optimize the loss function 
ℓhinge towards generating embeddings that satisfies the condition 
∀x∈T+∀x−∈T−f (x)>f(x−). Here, f (h, r, t) is the scoring function of 
the KGE used for generating embeddings for each subgraph, x is an 
instance of a positive triple T+, x− is an instance of a negative triple 
T− and λ is the margin used to maximize the difference between the 
plausibility scores assigned to T+ and T− which has to be selected by 
fine-tuning.

The margin for the loss function, number of negative triples 
per positive triple, embedding dimension size and regularization 
coefficient are hyperparameters that influence the optimization of 
the individual subgraph learners. The other hyperparameters such 
as number of sampled subgraphs and size of each sampled subgraph 
influence the optimization of the ensemble learner which is the 
net effect of combining link predictions from individual subgraph 
learners.

Apart from the hyperparameters specific to individual 
subgraph learners such as margin for the loss function; the other 
hyperparameters that are specific to the ensemble learner also need 
to be selected carefully by fine-tuning as they have significant impact 
on the performance of our ensemble learner. For example; a very large 
subgraph size leads to poor generalizability of the embeddings to 
the downstream link prediction task. This is because the entity and 
relation embeddings get affected by a lot of excessive information that 
serves as noise while computing the embeddings for a given entity/
relation in the KG. A very small subgraph size leads to the generation 
of substandard embeddings due to insufficient data in the graph to 
create good vector representations for the entities and relations in the 
graph. Therefore, size of individual subgraphs is one of the crucial 
hyperparameters for our model that needs to be selected carefully.
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S ←
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Link predictions append Preds
end for

←

←

Aggregate the link predictions in the Link-predictions list across 
all subgraphs in the Subgraph list by applying either max(), min() or 
mean() operation over the link prediction’s plausibility score followed 
by sorting the predictions based on the aggregated plausibility score 
for the full knowledge graph G.

Let us start with a random seed triple (h, r, t) where h is the head 
entity, t is the tail entity and r is the relation connecting them together. 
The nodes and edges in the seed triple are the first components that 
are added while creating a subgraph. Thereafter; neighboring nodes 
and edges of h and t are continuously added to the subgraph using 
BFS until the number of triples in the subgraph is within the size limits 
specified by the upper and lower bounds. Addition of neighbors is 
done in batches to improve efficiency of the sampling process. Finally, 
only the largest connected component is kept and an individual 
subgraph is hence sampled as shown in Figure 3. The same process is 
repeated to sample the remaining subgraphs.

A lot of times, knowledge graph completion aim at predicting 
links for a specific task, (e.g) a drug repurposing task requires 
predicting novel links between drug and disease entities in the graph. 
To incorporate such task-specific needs, the subgraph creation process 
is slightly modified. For a specific link prediction task between the 
head entity E1 and the tail entity E2, all entities of the same type/
category as E1 and E2 are also added into a subgraph after the process 
explained in Figure 3 has sampled the subgraph. This strategy ensures 
that each subgraph contains all the necessary entities that are required 
by the model for a specific link prediction task. Due diligence was 
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( )( ), ,
, ,T

h r t
rank h r t

MR
T

=
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 …….. (6)
and Hits@k is calculated using equation 7:

( ){ } ( ), , . , , t
@

h r t T rank h r k
Hits k

T
∈ ≤

=
 …….. (7)

Influence of graph size on evaluation metrics
Here, we show that the rank-based evaluation metrics are 

influenced by graph size for a non-ideal knowledge graph embedding 
model. For illustrating the influence of the graph size on rank-based 
evaluation metrics, we use a toy example, where we only consider 
the right-side evaluation rank of triples and compute two rank based 
evaluation metrics: M R and hits@1.

Let us consider a full knowledge graph G which has a set of entities 
EG={e1, e2, e3, e4, e5}. We sample a subgraph G′ from G with a smaller 
set of entities EG′={e1, e2, e3}. In this toy example, we assume that the 
scoring function F () assigns different plausibility scores for every pair 
of triples and no candidate triple in C={(h, r, t′) | t′ ϵ EG} is filtered out 
during the evaluation process. Assuming we have a large test set T for 
our example; the first element in T is (h, r, t=e1), the second element 
in T is (h, r, t=e2), the third element in T is (h, r, t=e3) and so on.

For an ideal embedding model, the score function F () will always 
have the property.

( ) ( ) ( ) ( ), r, t, t , , r, t , r, t , r, t¿ , r, t .Fh G F h h h G and h G′ ′ ′∀ ∈ ∈ ∉

Thus, F () will always assign a higher plausibility score for a true 
triple compared to a false triple. Therefore, in both the full graph G 
and subgraph G′, the rank of a ground-truth triple (h, r, t=e1) is rank 
(h, r, t=e1)=1. For the full test set T ; if this ideality held for every test 
triple, then the evaluation metrics will be MR=1 and hits@1=1.0 for 
both G and G′.

However, for a non-ideal embedding model in which the above 
property does not hold for the scoring function F(); we consider the 
worst case scenario in which F () performs no better than a random 
number generator. In this case, for the full graph G with say 5 
candidate triples, the probability of a ground-truth triple (h, r, t=e1) 
to be ranked in the top 1 is P (rank(h, r, t=e1)=1)=1/|G|=1/5=0.20. On 
the other hand, for the subgraph G′ with only 3 candidate triples, the 
probability of a ground-truth triple (h, r, t=e1) to be ranked in the top 
1 is P (rank (h, r, t=e1)=1)=1/|G′ |=1/3=0.33. For the large test set T, 
in the case of the full graph G with 5 candidate triples the evaluation 
metrics will converge to the following values that are also shown in 
Table 2:

[ ] 1 5 1
3

2 2
E

MR E M R
+ +

= = = =

(( ) )1@1 , , 1 0.20hits P rank h r t e= = = =

For the large test set T, in the case of the subgraph G′ with 3 
candidate triples the evaluation metrics will converge to the following 
values that are also shown in Table 2:

[ ] 1 3 1
2

2 2
E

MR E M R
+ +

= = = =

(( ) )1@1 , , 1 0.33hits P rank h r t e= = = =

As illustrated by our toy example, for a realistic non-ideal 
embedding model, smaller graph sizes can yield a lower M R and 

Number of subgraphs upon which the knowledge graph 
embedding models are trained also needs to be diligently selected. 
The more the agreement between rankings of the triples in multiple 
subgraphs; the higher is the ranking of those triples while aggregating 
the link prediction results across all those subgraphs.

The embedding dimension size is another crucial hyper parameter 
in our model. The goal that our model seeks to accomplish is to reduce 
dimensionality of the embeddings across these subgraphs in order to 
produce good vector representations and make the computation of 
the node and edge embedding’s feasible. Embedding dimension size 
will be a function of the size of individual subgraphs as it is directly 
proportional to the size of individual subgraphs sampled from the KG.

Equations 2, 3, 4 and 5 showcase the effect of hyper parameters 
relevant to the optimization of the ensemble learner:

( )) (N, Z,dimOPT ensemble learner F− = …….. (2)
dim Zα 	 …….. (3)
dim ( )H Z=  ……..4)

( )) (N, Z,H(Z)OPT ensemble learner F− = …….. (5)
where OP T (ensemble-learner) denotes the optimization of the 

ensemble learner as a function F () of the number of sampled subgraphs 
N, size of individual subgraphs Z and embedding dimension size dim 
(hyperparamter for the individual subgraph-learner) which in turn is 
a function H() of the size of individual subgraphs Z i.e. H(Z).

Evaluating the performance on link prediction tasks from each 
individual subgraph

Evaluation of link predictions from individual subgraphs is 
performed on the test set which is created prior to the graph sampling 
process. Evaluation metrics include hits@k, mean rank MR and 
adjusted mean rank AMR [40].

One notable issue with evaluating each subgraph separately is 
the influence of subgraph sizes on ranking metrics. Previous work 
has shown that these metrics are dependent on test set sizes [41]. 
Here, using a toy example, we showcase that ranking metrics are also 
affected by subgraph sizes.

Calculation of rank-based evaluation metrics

Let us consider a knowledge graph G with a set of entities E, a set 
of relations R, and an embedding scoring function F(). Evaluation of a 
test triple (hE, rR, tE ) ϵ T, includes both right-side as well as left-side 
evaluations which are analogous to each other and can be exchanged 
without loss of generality.

To perform right-side evaluation of (h, r, t), a set of candidate 
triples C={(h, r, t′)-t′ ϵ E} and a set of plausibility scores for each 
candidate triple S={F (h, r, t′)-t′ ϵ E} are generated using the scoring 
function of the embedding model F (h, r, t′) and to perform left-side 
evaluation of (h, r, t), a set of candidate triples C={(h′, r, t)-h′ ϵ E} and 
a set of plausibility scores for each candidate triple S={F (h′, r, t)-h′ ϵ 
E} are generated using the scoring function of the embedding model 
F (h′, r, t). We need to keep in mind that the ground-truth triple (h, r, 
t) ϵ C. S is then sorted in descending order based on the plausibility 
score allotted to each triple in S by the scoring function F (h, r, t). The 
ranking of the ground-truth triple i.e. rank (h, r, t) is computed as 
the index of F (h, r, t) in the sorted set S. The evaluation metrics are 
calculated as follows, with |T | being the cardinality of the test-set T.

Mean rank is calculated using equation 6:



Citation: Prabhakar V, Vu C, Crawford J, Waite J, Liu K (2023) An Ensemble Learning Approach to Perform Link Prediction on Large Scale Biomedical 
Knowledge Graphs for Drug Repurposing and Discovery.  J Pharm Drug Deliv Res 12:3.

• Page 7 of 16 •Volume 12 • Issue 3 • 100148

Min/Max Scaler (): rescale plausibility scores to minimum of 0 
and maximum of 1.

Both normalizers require the distribution of the plausibility scores 
in each subgraph. Since knowledge graphs are usually very large, even 
though we have reduced the graph size by our stochastic sampling 
approach, each subgraph still contains a large number of possible 
triple combinations, of the order of O (|R||E|2) where R represents the 
number of relations in a given subgraph and E represents the number 
of entities in the same subgraph. Therefore, we can only sample a 
portion of the triples for learning the distribution of the plausibility 
scores.

Instead of performing random sampling, we propose to learn the 
distribution of the plausibility scores by leveraging the concept of a 
negative sampler for the knowledge graph [42]. Assuming an effective 
scoring function F() and a closed-world graph, we expect the scores 
to be normally-distributed with true triples lying in the higher range 
of the distribution and false/corrupted triples lying in the lower range 
of the distribution as shown in Figures 4 and 5. True triples can be 
drawn from the training data whereas false triples can be synthesized 
using a Bernoulli negative sampler [17], which receives a true triple 
as input and probabilistically corrupts its head or tail entity to yield a 
corrupted/false triple as the output.

higher hits@k, thus leading to a bias in our link prediction evaluations. 
Therefore, this confounder prevents a fair and direct comparison 
between the rank-based metrics of a full knowledge graph and our 
smaller sampled subgraphs.

 MR Hits@1

G 3 0.20

G′ 2 0.33

Table 2: The below table shows the computed mean rank MR and Hits@1 for 
our toy example. These are two of the rank-based evaluation metrics that we 
use to explain the confounding effect of graph size that prevents a fair and direct 
comparison between these rank-based evaluation metrics achieved on the full 
KG and our smaller sampled subgraphs.

Size-independent evaluation metrics

There are a few evaluation metrics that are less dependent on the 
size of the graph. Notably, the Adjusted Mean Rank (AMR) corrects 
the MR metric according to the graph size [41].

In equation 8 MR represents the mean rank of the link predictions, 
E (MR) represents the expected mean rank and AMR is the adjusted 
mean rank metric. AMR ranges in the interval (0,2). In order to make 
adjusted mean rank metric more intuitive we define another metric 
called adjusted mean rank index AMRI=1-AMR that ranges in the 
interval (-1,1) where a value closer to 1 indicates good performance 
on link prediction and a value closer to -1 indicates poor performance 
on link prediction. AMRI is one of the size independent evaluation 
metrics that we use to evaluate the link predictions yielded by our 
subgraph-learners.

Another size independent evaluation metric that can be potentially 
considered for evaluating our approach is a percentile-based metric-
hits@k%, which represents the fraction of test triples that appears in 
the top kth percentile of link predictions. This concept is very similar 
to AMR, since it corrects the rank-based metric Hits@k according to 
the size of the graph.

Aggregating the results from the link prediction across 
multiple subgraphs

In addition to evaluating the individual subgraph-learners, 
the link predictions from each subgraph need to be aggregated for 
generating a consolidated set of link predictions across multiple 
sampled subgraphs. This paper proposes an ensemble method 
for aggregation of the plausibility scores for ranked triples/link 
predictions from subgraphs and explores the effects of ensembling 
from multiple subgraphs on reduction of variance and improvement 
in link predictions. The two steps involved in this aggregation strategy 
are:

1.	 Score normalization for individual subgraphs.
2.	 Score aggregation across multiple subgraphs.

Score normalization for individual subgraphs

Since each subgraph and the underlying scoring function F() for 
its corresponding learner are trained separately; for a given triple (h, 
r, t) in say subgraphs G1 and G2, the plausibility scores generated by 
scoring function F1 (h, r, t) for G1 and scoring function F2(h, r, t) for 
G2 are not directly comparable. In this paper, we utilize a normalizer 
norm () to standardize the plausibility scores assigned by the respective 
scoring functions of the subgraph-learners and we have explored two 
normalizers for the same purpose:

Standard Scaler (): rescale plausibility scores to mean of 0 and 
standard deviation of 1.

Figure 4: Architecture diagram of our Ensemble Learner for obtaining link 
predictions on large scale knowledge graphs. Here, E1, E2, E3 etc. are the 
entities of the large scale knowledge graph. T1, T2, T3, T4 etc. represent the tail 
entities with the highest plausibility scores corresponding to the likelihood of 
existence of a link with a given head entity in the knowledge graph.

Figure 5: Given a scoring function F () and a subgraph; the distribution of 
scores for the triples in the subgraph S is roughly normal where the true triples 
are in the higher range of the score distribution and the false/corrupted triples 
are in the lower range of the score distribution.
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two types of experiments that were conducted have been described 
below

1.	 Task specific link prediction on large biomedical knowledge 
graph datasets.

2.	 General link prediction on both large as well as relatively 
smaller biomedical knowledge graph datasets.

Normalizer used to normalize plausibility scores for ranked 
triples/link predictions from each subgraph: Min/Max Scaler()

Aggregator function used for aggregating the plausibility scores 
for triples across multiple subgraphs: Mean()

Hyperparameter optimization:
1.	 Embedding dimensions: (3000, 4000, 5000, 6000)
2.	 Number of negatives per positive triple: (1, 10, 100)
3.	 Margin for Margin Ranking Loss: (1, 4, 7, 10)
4.	 Regularization coefficients: (0.02, 0.06, 0.10)
Model: RotatE [7]-This embedding model was used to 

demonstrate the performance boost obtained by ensembling multiple 
individual instances of subgraph learners that use RotatE to generate 
embedding in the localized view space of the subgraphs. The reason 
for selecting this embedding model over the other KGE models is 
because it outperformed all the other KGE models on link prediction 
when they were trained on the full scope of the KG on all the four 
biomedical graph datasets. Further details regarding the reason for 
the selection of this embedding model for training the individual 
subgraph learners have been mentioned in Table 4 under the Results 
and Discussion section of this article.

To avoid overfitting the knowledge graph embedding models to 
any of the individual subgraphs we create a holdout validation set of 
triples and the validation loss that is obtained on this set is used for 
early stopping of the algorithm.

Results and Discussion
We conducted several experiments to observe the performance 

of our ensemble learner for link prediction on biomedical knowledge 
graph datasets and generated evaluation metrics to compare and 
quantify the performance of our ensemble learner with that of the 
traditional approach of training KGE models on full scope of the 
knowledge graph.

Firstly we trained standard knowledge graph embedding models 
on the full KG for all the four benchmark biomedical knowledge graph 
datasets namely Bio-KG, Hetionet, DRKG and iBKH to generate 
entity and relation embeddings. Then we evaluated the performance 
of these embeddings on link prediction tasks in the test set. Thereafter 
we computed evaluation metrics such as Mean rank MR, Arithmetic 
Mean rank index AMRI, Hits@3 and Hits@10 to understand which 
knowledge graph embedding model performed the best on the link 
prediction tasks across the four biomedical KG datasets that we 
considered. We used this experiment as the basis to select the KGE 
model that we used for training the individual subgraphs in our 
architecture and to further demonstrate the performance boost upon 
ensembling the individual subgraph learners that are trained using 
the very same embedding model.

As shown in Table 4; we have computed four different evaluation 
metrics for the link predictions generated by the standard KGE models 
on the full benchmark biomedical knowledge graph datasets namely:

•	 Mean Rank (MR)
•	 Adjusted Mean Rank Index (AMRI)

For each subgraph, a distribution of the scores can then be 
computed and fitted to a graph-specific norm (). During the 
aggregation phase, scores from each subgraph are transformed using 
the graph-specific norm () before being aggregated into the ensemble 
model.

Score aggregation across multiple subgraphs

After normalizing the plausibility scores to the same range for the 
ranked triples/link predictions from each subgraph; the scores need 
to be aggregated for the full ensemble graph G ensemble whose set 
of triples is the same as the original full knowledge graph G, except F 
ensemble is an aggregation function agg() which combines plausibility 
scores from all the trained subgraph-learners. In this section, we 
explore various aggregation functions agg() that can be utilized to 
aggregate normalized plausibility scores from multiple subgraphs to 
come up with a consolidated set of link predictions for G ensemble:

•	 Mean()
•	 Median()
•	 Max()
We have used a toy example to illustrate the score aggregation 

process using two subgraphs G1 and G2, assuming ground-truth 
triple (h, r, t=e1), normalizer norm()=Min/Max Scaler() and 
aggregation function agg()=M ean(). The scores shown in Table 3 are 
for illustration purposes only.

(h, r, t=e1) (h, r, t=e2) (h, r, t=e3) (h, r, t=e4) (h, r, t=e5)

G1,norm 0.38 0.19 - 0.44 0.34

G2,norm 0.46 0.27 0.26 0.36  -

Gensemble 0.42 0.23 0.26 0.4 0.34
Table 3: Illustration of the score aggregation process using two toy subgraphs G1 
and G2. Triple (h, r, t=e3) is not a candidate triple in subgraph G1 since entity e3 ϵ 
G1. Triple (h, r, t=e5) is not a candidate triple in subgraph G2 since entity e5 ϵ G2. 
Gensemble is the mean() of the normalized plausibility scores of a triple (h, r, t) in 
G1,norm and G2,norm assuming that triple (h, r, t) ϵ G1andG2.

After aggregation of the normalized plausibility scores, the ranks of 
the triples in the test set are computed and standard evaluation metrics 
such as MR, AMR and hits@k are calculated for the consolidated set 
of link predictions that are generated as a result of this aggregation. 
The advantage of performing the evaluation on Gensemble instead 
of each individual subgraph is that both G and Gensemble are of the 
same size and therefore G and G ensemble have the same number of 
entities (|Eensemble|=|E|) and relations (|Rensemble|=|R|). So; graph 
size is eliminated as a confounder during evaluation. Therefore, direct 
comparison of the rank-based metrics between G and Gensemble is 
fair and warranted.

Experimental setup

The knowledge graph embedding models in the following 
experiments were trained using PyKEEN [43] on a high-performance 
computing cluster that used a V100 Volta GPU with 32 GB of memory 
on 4 biomedical KG datasets:

1.	 Drug Repurposing Knowledge Graph (DRKG) [13]
2.	 Integrated Biomedical Knowledge Hub (iBKH) [14]
3.	 Hetionet [11,12]
4.	 BioKG [10]
Two types of experiments were conducted and evaluation metrics 

were computed based on the performance of the ensemble learner in 
generating relevant link predictions in both of those experiments. The 
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as shown in Figure 3 and all the entities belonging to the drug and 
disease categories were added into the sampled subgraphs so that each 
subgraph-learner had all the context that it needed to come up with 
good link predictions for the (drug-disease) entity pairs. To start with 
we sampled 3 subgraphs from the full knowledge graph G. Structure 
and metadata of the full knowledge graph G as well as the 3 sampled 
subgraphs G1, G2 and G3 are shown in Table 5. Each subgraph contains 
3 M triples in the training set and 350 k triples in the validation set. 
The test set is the same across all the subgraphs and only contains 
7,857 triples since only triples of the type (drug, relation, disease) are 
kept and the rest are filtered out of the test set.

 Entities Relations Training Validation Testing

G 97,238 107 5,800 k 500 k 7,857

G1 36,440 97 3,127 k 348 k 7,857

G2 36,390 92 3,043 k 338 k 7,857

G3 37,760 95 3,187 k 354 k 7,857

Gensemble 97,238 107 3,800 k 500 k 7,857
Table 5: Structure of the full DRKG graph and the 3 subgraphs sampled from 
it. This example is to simply show how the triples are distributed per sampled 
subgraph. We generally sample more number of subgraphs before ensembling 
the link predictions from models trained on each of them so as to reduce the 
variance and obtain link predictions from more localized view spaces.

The evaluation metrics for this experiment have been shown in 
Table 6 for the RotatE model trained on the full knowledge graph G 
as well as the individual subgraphs G1,G2, G3 that were sampled from 
G and for the ensemble learner on the aggregated graph Gensemble. 
The model trained on the full knowledge graph G demonstrated 
better mean rank MR and adjusted mean rank index AMRI for the 
task-specific (drug, disease) link predictions compared to the model 
trained on the individual subgraphs G1,G2, G3 that were sampled 
from G but their respective Hits@k were almost similar. On the other 
hand, the consolidated task-specific (drug, disease) link predictions 
G ensemble showed better mean rank MR, adjusted mean rank index 
AMRI and Hits@k compared to the link predictions generated by the 
models trained on the individual subgraphs G1,G2 and G3 as well as 
the full knowledge graph G.

 MR AMRI Hits@1 Hits@3 Hits@10

G 746.1 0.985 0.034 0.075 0.154

G1 848.6 0.953 0.037 0.079 0.159

G2 939.3 0.948 0.035 0.075 0.16

G3 953.9 0.949 0.035 0.077 0.162

Gensemble 668.9 0.986 0.045 0.092 0.188
Table 6: Results of ensembling link predictions from 3 subgraphs and aggregating 
their respective plausibility scores. Gensemble is aggregated from 3 subgraphs 
G1, G2 and G3. Link predictions obtained from Gensemble perform better than the 
link predictions obtained from the full DRKG knowledge graph G.

Instead of only ensembling link predictions from 3 subgraphs, 
we adjust the hyperparameter controlling the number of sampled 
subgraphs in order to show our evaluation results on ensembling link 
predictions from 10 subgraphs G1−> G10 in Table 7. This was primarily 
done to reduce the variance and aggregate plausibility scores from 
more number of localized view spaces. The results observed with 10 
subgraphs were similar to the trend observed with 3 subgraphs, in 
which link predictions from the subgraphs yielded similar Hits@k 
compared to the link predictions from the full graph G but the 
consolidated link predictions yielded by the ensemble learner on G 
ensemble performed better in all the evaluation metrics compared to 
the KGE model trained on the full knowledge graph G.

• Hits@1
• Hits@10
As shown in Table 4 RotatE undisputedly outperformed all the 

other KGE models for link prediction on all the four-benchmark 
biomedical KG datasets that we have considered. Therefore, as a 
result we selected Rotate to train our individual subgraph learners 
prior to ensembling the link predictions. We have demonstrated 
the performance boost that is achieved upon ensembling the link 
predictions from individual subgraph learners over generating link 
predictions using a KGE model trained on the full KG.

TransE

KG MR AMRI Hits@1 Hits@10

Bio-KG 712.2 0.96 0.019 0.24

Hetionet 667.6 0.97 0.034 0.26

DRKG 929.4 0.84 0.023 0.19

iBKH 3468.2 0.59 0.007 0.11

RotatE

KG MR AMRI Hits@1 Hits@10

Bio-KG 634.2 0.976 0.059 0.28

Hetionet 413.6 0.998 0.063 0.33

DRKG 463.9 0.99 0.135 0.31

iBKH 1480.2 0.785 0.068 0.147

ComplEx

KG MR AMRI Hits@1 Hits@10

Bio-KG 5226.7 -0.102 0.003 0.011

Hetionet 4235.6 0.44 0.01 0.1

DRKG 684.2 0.972 0.03 0.26

iBKH 4982.8 0.41 0.008 0.092

DistMult

KG MR AMRI Hits@1 Hits@10

Bio-KG 3572.2 0.198 0.007 0.036

Hetionet 5184.2 0.278 0.011 0.088

DRKG 24032.3 -0.116 0 0.012

iBKH 312651.8 -0.388 0 0.005
Table 4: Evaluation metrics obtained by various knowledge graph embedding 
models on link prediction when trained on the full scope of the KG for the four 
benchmark biomedical knowledge graph datasets namely Bio-KG, Hetionet, 
DRKG and iBKH.

The evaluation results of our ensemble learner have been reported 
for general link prediction on all the four benchmark biomedical KG 
datasets regardless of their size and for task-specific (drug-disease) 
link prediction on the relatively larger biomedical KG datasets among 
the four benchmark datasets namely DRKG and iBKH.

The various experiments that we conducted for evaluating our 
ensemble learner have been listed below:

• DRKG: Compound → Disease task specific link prediction
• iBKH: Drug → Disease task specific link prediction
• DRKG: General link prediction
• iBKH: General link prediction
• Hetionet: General link prediction
• Bio-KG : General link prediction
DRKG: Compound�disease task speci�c link prediction
For the task-specific (drug-disease) link prediction experiment, 

subgraphs were sampled from the full DRKG knowledge graph 
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DRKG: General link prediction

General link prediction experiment was conducted on DRKG 
to demonstrate our ensemble learner’s capabilities to yield good link 
predictions between any two types of entity pairs from the KG on a 
large biomedical KG. This experiment was conducted in addition to 
the task-specific (drug-disease) link prediction experiment shown 
previously in this section for DRKG because showcasing that our 
model can generalize well to predict links between any two categories 
of entities in the KG is crucial to truly understand if the performance 
boost previously observed in the task-specific link prediction 
experiment was indeed a capability of our ensemble learner or some 
inherent bias in the KG topology relevant to the (drug, disease) 
entity pairs. Tables 9 and 10 shows the evaluation metrics on the 
consolidated set of link predictions aggregated from 20 subgraphs by 
our ensemble-learner for iBKH KG. The Hits@10 metric for the link 
predictions yielded by our ensemble learner trained on the group of 
20 sampled subgraphs Gensemble showed a 34% increase compared 
to the Hits@10 metric for the link predictions yielded by an individual 
KGE model trained on the full knowledge graph G.

Table 9 shows the evaluation metrics on the consolidated set 
of link predictions aggregated from 10 subgraphs for DRKG; even 
though mean rank MR is lower in Gensemble compared to full KG 
G; hits@10 showed a 10% improvement compared to the individual 
KGE model trained on G. We have also plotted the variation of the 
evaluation metrics (Hits@1, Hits@3, Hits@10, MR and AMRI) for the 
consolidated set of link predictions against the number of subgraphs 
used for aggregating those link predictions in DRKG as shown in 
Figure 6.

iBKH: General link prediction

General link prediction experiment was conducted on iBKH to 
demonstrate our ensemble learner’s capabilities to yield good link 
predictions between any two types of entity pairs from the KG on a 
large biomedical KG. This experiment was conducted in addition to 
the task-specific (drug-disease) link prediction task shown previously 
in this section for iBKH because showcasing that our model can 
generalize well to predict links between any two categories of entities 
in the KG is crucial to truly understand if the performance boost 
previously observed in the task-specific link prediction experiment 
was indeed a capability of our approach or some inherent bias in 
the KG topology relevant to the (drug, disease) entity pairs. Since 
iBKH is a very large knowledge graph with about 50 M, triples we 
sampled more number of subgraphs to reduce the variance and 
ensure that each individual subgraph size was not too large in itself. 
Table 10 shows the evaluation metrics on the consolidated set of link 
predictions aggregated from 20 subgraphs by our ensemble-learner 
for iBKH KG. The Hits@10 metric for the link predictions yielded by 
our ensemble learner trained on the group of 20 sampled subgraphs G 
ensemble increased by 0.051 points compared to the Hits@10 metric 
for the link predictions yielded by an individual KGE model trained 
on the full knowledge graph G.

Dividing the full iBKH graph into multiple smaller subgraphs 
and aggregating the link predictions from multiple subgraph learners, 
Gensemble demonstrated significantly improved performance on all 
the evaluation metrics compared to the link predictions generated 
by training a KGE model on the full graph. We have also plotted the 
variation of the evaluation metrics (Hits@1, Hits@3, Hits@10, MR 
and AMRI) for the consolidated set of link predictions against the 
number of subgraphs used for aggregating those link predictions in 
iBKH as shown in Figure 7.

 MR AMRI Hits@1 Hits@3 Hits@10

G 746.1 0.985 0.034 0.075 0.154

Mean(G) 937.9 0.949 0.036 0.076 0.157

Std(G) 32.3 0.002 0.001 0.001 0.003

Gensemble 606.7 0.987 0.05 0.101 0.195
Table 7: Results of ensembling link predictions from 10 subgraphs and 
aggregating their respective plausibility scores. A link prediction from Gensemble 
(which is aggregated from 10 subgraphs G1→ G10) performs better than the 
link predictions from the full DRKG graph G. The test set only includes (Drug, 
Disease) triples.

iBKH: Drug�disease task speci�c link prediction
For the task-specific (drug-disease) link prediction experiment, 

subgraphs were sampled from the large iBKH knowledge graph 
as shown in Figure 3 and all the entities belonging to the drug and 
disease categories were added into the sampled subgraphs so that each 
subgraph-learner had all the context that it needed to come up with 
good link predictions for the (drug-disease) entity pairs. Compared 
to the 6 M triples in DRKG, iBKH is much larger with 50 M triples. 
Therefore, when we train a rotate model to generate embeddings for 
the full iBKH graph; even at the maximum embedding dimension 
size of 6000, the performance on task-specific (drug-disease) link 
prediction remains poor as shown by the evaluation metrics in Table 
8.

 MR AMRI Hits@1 Hits@3 Hits@10

G 181579 -0.357 0 0 0.001

Mean(G) 362.9 0.987 0.089 0.148 0.242

Std(G) 30.4 0.004 0.013 0.018 0.025

Gensemble 216.8 0.998 0.134 0.217 0.345

Table 8: Results of ensembling link predictions from 10 subgraphs and 
aggregating their respective plausibility scores for iBKH. A link prediction from 
Gensemble (which is aggregated from 10 subgraphs G1→ G10) performs better 
than the link predictions from the full iBKH graph G. The test set included only 
includes (Drug, Disease) triples.

It is expected that increasing the embedding dimension sizes 
further might improve the link prediction capabilities on this massive 
KG. However, using an embedding dimension size of 6000 to represent 
the graph data was already enough to max out our GPU memory. So, 
clearly using a single KGE model to generate vector representations for 
the full KG in this case is infeasible due to the massive size of the iBKH 
KG. Therefore, we sample 10 subgraphs G1−>G10 from the full KG. G 
using our stochastic sampling approach to conduct this experiment on 
iBKH. We ensemble link predictions from more number of subgraphs 
in order to reduce the variance and aggregate plausibility scores from 
multiple localized view spaces. We also summarized the evaluation 
metrics obtained across all the sampled subgraphs by computing the 
Mean (G) and Standard deviation Std (G) statistic for each of them. 
The results that we achieved followed the same trend that we observed 
when ensembling task-specific link predictions from multiple 
subgraphs for DRKG in which the consolidated set of task-specific 
link predictions yielded by the ensemble learner on G ensemble 
performed much better in all the evaluation metrics compared to the 
KGE model trained on the full knowledge graph G.

Based on the evaluation metrics shown in Table 8; we concluded 
that dividing the full iBKH graph into multiple smaller subgraphs 
and aggregating the individual subgraph learners/embedding models 
on G ensemble demonstrated significantly improved performance 
compared to the KGE model that was trained on the full iBKH graph G.
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Table 9: Result of ensembling link predictions from 10 sampled subgraphs in the case of DRKG. The test set included all types of triples, as this was a general link 
prediction experiment.

 MR AMRI Hits@1 Hits@3 Hits@10

G 463.9 0.99 0.044 0.135 0.311

Mean(G) 264.6 0.982 0.193 0.442 0.601

Std(G) 93.8 0.013 0.057 0.033 0.038

Gensemble 521.0 0.989 0.053 0.162 0.349

Figure 6: Plots visualizing the variation of evaluation metrics for the consolidated set of link predictions in Gensemble with the number (#) of subgraphs used 
for consolidating/aggregating those link predictions in the case of DRKG. The plots include: (a) Hits@1 vs number of subgraphs, (b) Hits@3 vs number of 
subgraphs, (c) Hits@10 vs number of subgraphs, (d) MR vs number of subgraphs, (e) AMRI vs number of subgraphs.
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Table 10: Result of ensembling link predictions from 20 sampled subgraphs in the case of iBKH. The test set included all types of triples, as this was a general link 
prediction experiment.

 MR AMRI Hits@1 Hits@3 Hits@10

G 1480.2 0.785 0.007 0.068 0.147

Mean(G) 412.27 0.956 0.202 0.182 0.32

Std(G) 88.84 0.011 0.032 0.004 0.024

Gensemble 1240.4 0.827 0.01 0.072 0.198

Figure 7: Plots visualizing the variation of evaluation metrics for the consolidated set of link predictions in Gensemble with the number (#) of subgraphs used 
for consolidating/aggregating those link predictions in the case of iBKH. The plots include: (a) Hits@1 vs number of subgraphs, (b) Hits@3 vs number of 
subgraphs, (c) Hits@10 vs number of subgraphs, (d) MR vs number of subgraphs, (e) AMRI vs number of subgraphs.



Citation: Prabhakar V, Vu C, Crawford J, Waite J, Liu K (2023) An Ensemble Learning Approach to Perform Link Prediction on Large Scale Biomedical 
Knowledge Graphs for Drug Repurposing and Discovery.  J Pharm Drug Deliv Res 12:3.

• Page 13 of 16 •Volume 12 • Issue 3 • 100148

performance of a KGE model trained on the full graph is almost the 
same as the performance of an ensemble learner that consolidates 
link predictions from multiple subgraphs. No significant boost in 
evaluation metrics was observed between full graph G and aggregated 
graph G ensemble for Hetionet. We have also plotted the variation 
of the evaluation metrics (Hits@1, Hits@3, Hits@10, MR and AMRI) 
for the consolidated set of link predictions against the number of 
subgraphs used for aggregating those link predictions in Hetionet as 
shown in Figure 8.

Hetionet: General link prediction

General link prediction experiment was conducted on Hetionet 
to demonstrate our ensemble learner’s capabilities to yield good link 
predictions between any two types of entity pairs from the KG. Table 
11 shows the evaluation metrics upon ensembling link predictions 
from 10 subgraphs to create a consolidated set of link predictions for 
Hetionet graph dataset. For a relatively smaller KG such as hetionet, 
the evaluation metrics did not get boosted upon ensembling link 
predictions from multiple subgraphs. The metrics show that the 

Table 11: Result of ensembling link predictions from 10 sampled subgraphs in the case of Hetionet. The test set included all types of triples, as this was a general link 
prediction experiment.

 MR AMRI Hits@1 Hits@3 Hits@10

G 413.6 0.998 0.063 0.11 0.33

Mean(G) 224.3 0.98 0.182 0.24 0.59

Std(G) 66.64 0.017 0.044 0.02 0.01

Gensemble 438.2 0.994 0.062 0.107 0.328

Figure 8: Plots visualizing the variation of evaluation metrics for the consolidated set of link predictions in Gensemble with the number (#) of subgraphs used 
for consolidating/aggregating those link predictions in the case of Hetionet. The plots include: (a) Hits@1 vs number of subgraphs, (b) Hits@3 vs number of 
subgraphs, (c) Hits@10 vs number of subgraphs, (d) MR vs number of subgraphs, (e) AMRI vs number of subgraphs.
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by a very small margin. The metrics show that the performance of 
a KGE model trained on the full graph to generate link predictions 
is almost equivalent to the performance of an ensemble learner that 
aggregates link predictions from multiple subgraphs. No significant 
boost in evaluation metrics was observed between the full graph G 
and aggregated graph G ensemble. We have also plotted the variation 
of the evaluation metrics (Hits@1, Hits@3, Hits@10, MR and AMRI) 
for the consolidated set of link predictions against the number of 
subgraphs used for aggregating those link predictions in Bio-KG as 
shown in Figure 9.

Bio-KG: General link prediction

General link prediction experiment was conducted on Bio-KG 
to demonstrate our ensemble learner’s capabilities to yield good link 
predictions between any two types of entity pairs from the KG. Table 
12 shows the evaluation metrics upon ensembling link predictions 
from 10 subgraphs to create a consolidated set of link predictions 
for Bio-KG dataset. For a relatively smaller graph such as Bio-
KG; the evaluation metrics did not get boosted upon ensembling 
link predictions from multiple subgraphs. In fact, the rotate model 
trained on the full knowledge graph seems to be performing better 

Table 12: Result of ensembling link predictions from 10 sampled subgraphs in the case of Bio-KG. The test set included all types of triples as this was a general link 
prediction experiment.

 MR AMRI Hits@1 Hits@3 Hits@10

G 634.2 0.976 0.059 0.087 0.28

Mean(G) 208.21 0.994 0.14 0.192 0.46

Std(G) 82.2 0.02 0.003 0.01 0.02

Gensemble 667.6 0.972 0.056 0.08 0.267

Figure 9: Plots visualizing the variation of evaluation metrics for the consolidated set of link predictions in Gensemble with the number (#) of subgraphs used 
for consolidating/aggregating those link predictions in the case of Bio-KG. The plots include: (a) Hits@1 vs number of subgraphs, (b) Hits@3 vs number of 
subgraphs, (c) Hits@10 vs number of subgraphs, (d) MR vs number of subgraphs, (e) AMRI vs number of subgraphs.
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large graphs. Advances in neural information processing systems. 
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29.	 Bai J, Ren Y, Zhang J (2021) Ripple walk training: A subgraph-based 
training framework for large and deep graph neural network. IEEE 1-8. 

30.	 Wan G, Du B, Pan S, Wu J (2020) Adaptive knowledge subgraph ensemble 
for robust and trustworthy knowledge graph completion. World Wide Web 
23:471-490. 

31.	 Xu C, Nayyeri M, Vahdati S, Lehmann J (2021) Multiple run ensemble 
learning with low-dimensional knowledge graph embeddings. IEEE 1-8. 
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embeddings for link prediction on dynamic knowledge graphs. AAAI 
artificial intelligence 31: 1-7. 
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Based on the results generated in the above set of experiments it 
is evident that our ensemble approach which leverages the sampled 
subgraphs to generate link predictions for the full scope of the 
knowledge graph outperforms a KGE model that is traditionally 
trained on the full scope of the knowledge graph in order to generate 
link predictions for the same. This is because the local views of the 
full knowledge graph (subgraphs) have lesser noise (unnecessary 
information that can confuse the KGE model) than the global view. In 
other words, the KGE models only require a sample of the full KG to 
predict missing links between a pair of given entities in the KG. This 
is the underlying concept behind the success of our ensemble learner 
approach over the traditional approach and it is further validated by 
the significantly better performance of our ensemble learner in the 
experiments where we generated link predictions on large biomedical 
KGs. Additionally since we train the KGE model on smaller sized 
subgraphs instead of the large knowledge graph; we are also able to 
reduce the GPU memory footprint associated with training the KGE 
model.

Conclusion
In this article, we explored the potential of using a divide and 

conquer approach to perform knowledge graph completion/link 
prediction. Specifically, we first performed stochastic sampling of a 
large knowledge graph into multiple smaller-sized subgraphs using 
Breadth-First Search (BFS) on randomly selected seed nodes. Then, 
we trained knowledge graph embedding models on each individual 
subgraph to generate embeddings/vector representations in localized 
view space, which were in turn down streamed to compute plausibility 
scores for KG triples. We subsequently normalized and aggregated the 
plausibility score for each triple across multiple subgraphs to generate 
the consolidated set of link predictions for the full knowledge graph. 
Experimental results proved that our approach outperforms the 
traditional approach of training a KGE model on the full graph for 
link prediction in the case of large knowledge graphs and performs 
at least as well as the traditional approach of training a KGE model 
on the full graph for link prediction in the case of smaller knowledge 
graphs.  
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