
Abstract 

Advancements in neuroscience have enabled the collection and 

assessment of neurological data to assist in the detection and 

treatment of several medical conditions as well as the operation 

and control of devices through brain-computer interface. Existing 

studies rely heavily on data such as electroencephalography 

(EEG) because of its ease of data collection and assessment, high 

temporal resolution, low cost, ease of use, and high computational 

accuracy compared to other neurological and physiological data 

such as functional Magnetic Resonance Imaging (fMRI) and heart 

rate. 

This paper provides a comprehensive review of recent literature on 

EEG data assessment and applications in computer and 

neuroscience research. Specifically, the paper reviews articles 

recently published in high impact venues including IEEE to provide 

a brief insight into ongoing work in this research area. The survey 

is intended to provide a quick summary for researchers, graduate 

students, and any interested individuals seeking to advance 

research on this topic. It should also be beneficial to neuroscientists 

and professionals wishing to obtain a quick overview of previous 

work. In addition to summarizing key methodologies on data 

collection, preprocessing, and algorithms, we identify open data 

sets, software, and developing trends that would benefit from 

continued exploration. 
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Introduction 

Technological advancement in the field of neuroscience has 

enabled solutions to many problems through the collection and 

assessment of neurological and physiological data such as 

Electroencephalography (EEG) [1], functional Magnetic Resonance 

Imaging (fMRI) [2], Electrocardiogram (ECG) [3], 

Electromyography (EMG) [4], and Galvanic Skin Response (GSR) 

[5]. Specifically neurological signals such as EEG and fMRI have 

assisted in advancing the detection and treatment of many 

neurological afflictions, including mental health disorders, through 

neurofeedback signals specific to the patient. Additional areas 

include improved focus in learning and design of brain-computer- 

interface (BCI) [6,7] devices, including brain-wave- controlled 

prostheses and control of autonomous systems. 
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Much progress has been made over the years in understanding 

and applying EEG and other types of data. Other formats, such as 

electrocorticography (ECoG), sometimes called intracranial EEG 

and fMRI, are gaining traction. However, these methods of data 

collection have limitations that restrict their usage [8]. A review of 

existing literature suggests that applications of EEG ranging from 

emotion discrimination and seizure detection to motor imagery (MI) 

in BCI have seen significant increases in accuracy and computation 

speed. However, there are challenges in filtering out noise and 

acquiring detailed information from the observed signals. Some of 

the challenges encountered are: 

• Limited or lack of communication between neuroscientists and 
computer scientists. 

• Lack of availability of recent datasets to support algorithmic 
research. 

• Limited knowledge of the data collection process and application 
area that may hinder the ability to develop or apply algorithms 
without losing important information. 

• Availability of variety of preprocessing pipelines for use in 

EEG applications to remove artifacts. While there is no quality- 

assurance standardization between methods as yet, continuing to 

encourage diverse approaches while having a means to evaluate 

them may be preferred to a central “gold standard” [9]. 

• Inherent non-stationarity of EEG signals complicates 

generalization, as signals vary between subjects and within 
subjects, depending on their state of mind. 

This paper provides a comprehensive review of articles on EEG 

approaches published in high-impact journals and conferences 

including IEEE, Springer, and Elsevier. 48 articles from 15 journals 

and 3 conferences in IEEE, 22 papers from 17 journals in Springer, 

and 24 articles from 8 journals in Elsevier were selected from a pool 

of over 700 articles and analyzed. Much attention was paid to high- 

impact journals, including IEEE Machine Learning and Pattern 

Recognition, Elsevier Pattern Recognition, and proceedings including 

the Genetic and Evolutionary Computation Conference and the 

International Conference on Bioinformatics and Biomedical Science. 

The shortlisted articles capture the limitations and challenges of EEG 

research as well as highlight efforts from computer science researchers. 

The survey focuses on summarizing data collection, preprocessing, 

feature extraction, and classification/prediction algorithms. It 

provides a quick review of the existing and latest work for people 

who would like to pursue research in this area and enhance our 

understanding. The survey is intended to support graduate students, 

academic researchers, neuroscientists, and other professionals in the 

field. The paper also includes a list of devices and open data sets to 

support continued exploration. 

The remainder of the paper is organized as follows: Section II 

provides a definition of EEG along with a brief description of data 

and devices, while Section II-B identifies publicly available datasets. 

Section III outlines some of the applications of EEG. Section IV 

reviews different stages of data processing and highlights efficient 

and commonly used algorithms at each stage. Section V provides a 

summary of the study along with some directions for future research. 
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Electroencephalography 

This section describes EEG along with its benefits and drawbacks. 

It then summarizes EEG data collection and visualization with an 

example, and identifies publicly-available datasets. Finally, invasive 

and non-invasive data collection devices are discussed, and 

commercially available EEG devices are identified with their technical 

specifications. 

A. Definition and Description 

EEG is a measure of electrical activity in the brain that records 

frequencies observed through the brain’s normal activity. While 

EEG signals were discovered in 1875 through Richard Caton’s 

work with animals [9,10], the term ‘EEG’ was coined by Dr. Hans 

Berger in 1924 after the successful recording of the first human 

electroencephalograph. Formally, Olejniczak [1] defines EEG as 

“a graphic representation of the difference in voltage between two 

different cerebral locations plotted over time,” mostly consisting of 

synaptic activity, though contaminated with noise from other sources 

and distorted by being measured through the skull. Initially a 

novelty, interest in EEG technology increased with the discovery of 

seizure patterns. 

EEG is prominently used in biomedical applications for the 

detection of neurological disorders such as epilepsy, tumors, sleep 

disorders, and inflammation or damage in the brain. In addition to 

this, EEG is extensively used in neuroscience research focused on, 

but not limited to, motor, cognitive, and sensory imaging. Advances 

in neuroscience research have enabled the development of brain- 

computer interfaces, which facilitate the control and use of devices 

via brain wave interpretation. 

EEG is generally preferred over other methods of data collection 

mainly because of its high temporal resolution, low device cost, non- 

invasive and easy data-collection process as well as the fact that EEG 

data conversion and interpretation is computationally less expensive 

than other methods. However, EEG has a low signal-to-noise ratio 

since brain activity is observed through the skull, and motion can 

add additional noise artifacts. As mentioned before, signals are not 

always consistent between or within individuals. While individual 

differences are beneficial in applications such as EEG-based 

biometric identification, it complicates any kind of generalizable BCI 

or other algorithms that attempt to understand the functional details 

of the brain. This complication is further worsened by differences in 

individuals’ brain waves at any given time, based on emotional state, 

movement, and so on. 

B. Data Collection and Interpretation 

The EEG data collection process is typically centered around 

particular frequencies depending on the specific application, such as 

a research problem or medical assessment. Collection of EEG data 

through electrode placement adheres to internationally agreed rules 

[11], generally classified into 10-10 or 10-20. The numbers refer to 

the distance between electrodes; in the 10-20 system, for instance, 

electrodes are 10% of the skull’s left-right distance and 20% of its 

front-back distance apart. The placement starts with initial marks at 

four points: between the forehead and nose, middle of the back of the 

skull over the occipital area, and on both sides of the head above the 

outer part of the ear opening. After the indentation, the electrodes 

are placed at specific distances from the points. The brain signals can 

be localized by narrowing down the region through the addition of 

electrodes. 

Figure 1 shows electrode placement based on 10-20 system to 

collect EEG data. 

Figure 1 shows connection points for 21 total channels, where 

each channel corresponds to an electrode and outputs a waveform. 

The connection points or electrodes are denoted by letters and 

numbers to easily distinguish them. The letters correspond to lobes, 

or approximate parts of the brain being analyzed: frontopolar or 

prefrontal cortex (Fp), frontal (F), temporal (T), parietal lobe (P), 

occipital (O), auricular (A), and central (C). The ‘Z’ label associated 

with these letters indicates electrodes along the midline of the head. 

The left and right hemisphere of the brain are identified by odd and 

even numbers, respectively. 

Common wavelengths used in EEG analysis include delta (<4 

Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma 

(30-45 Hz) waves as shown in Figure 2. Figure 2 shows shows a 

visualization of brain activity [12,13] at different wave- lengths 

generated using MNE [14]Python. 

Alpha and beta waves in Figure 2 are commonly used in motor 

imagery applications, with the former correlating with eye-muscle 

movements and the latter associated with general movement [10]. 

In emotion and preference research, alpha waves are associated with 

positive emotions while asymmetrical, and greater beta waves (16- 

18 Hz) are tied to individual preference. Higher and lower frequency 

in theta bands indicates positive and negative emotions, respectively 

[15]. Delta waves in Figure 2 are assumed to be less useful and 

filtered out during the process of noise reduction. 

F3 is a visualization of an EEG motor movement/imagery dataset 

[13] collected using non-invasive device described in F i g u r e 1 

and Figure 2. In Figure 3, the x-axis indicates time in seconds and 

the y- axis corresponds to the output of each electrode described in 

Figure 1, sampled at 160 times per second. Figure 3 presents 

unprocessed data with no visible effect of the artifacts, which are 

commonly introduced during EEG data collection. The color 

changes represent the transitions between different events, with an 

approximate length of 4s along with the resting state (T0) between 

events. In baseline trials T0 is recorded between 60-120s. 

Additional data formats: Other formats considered as standalone 

replacements or multimodal supplements in neuro- science research 

and development include: 

• ECoG: This method is similar to an invasive form of an EEG 

scan. Subdural electrodes measure activity directly from the surface 

of the cerebral cortex, but the invasive nature of data collection limits 

its adoption [8]. 

• fMRI: This approach measures activity more spatially through 

detection of blood oxygen level-dependent changes in the MRI 

signal due to neuronal activities as a result of a stimulus or task [2]. 

While useful, the amount of time required to take a clear picture and 

potential for noise introduction severely limit the feasibility of its 

real- time use. 

• EMG: An EMG analyzes electrical activity in the muscles. 

EMG is useful in examining the connection between nerves and 

muscles in a particular part of the body. Due to spatial limitations, 

EMG is often used for diagnosis rather than for signal analysis. 

In addition to these formats, eye movement, heart rate, and body 

temperature are sometimes used in combination with EEG and other 

data formats to improve the accuracy of classification or prediction. 
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Figure 2: Brain activity measured by EEG at different wavelengths 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Visualization of EEG Data. 

 

 
 

 

Publicly Available Datasets 

Table 1 summarizes some publicly and readily available 

datasets for EEG that should serve as a helpful resource for 
subsequent work in the field. 

In Table 1 the BCI Competition datasets [17] and DEAP [18-24] 

are among the most commonly used for MI activities and emotional 

interpretation, respectively. In addition, Temple University maintains 

a comprehensive list of EEG databases and complementing software. 

Additional neurological data sets are maintained by Neuroscience 

Information Framework [25-27], while MRI and fMRI sources are 

maintained by Neuro data [28] and Open fMRI [29], respectively. 

C. Devices 

EEG data is typically collected by placing electrodes on the skull 
similar to Figure 1. At a high level, devices used to collect EEG data 

can be 

classified into invasive and non- invasive depending on placement of 

electrode inside or outside the skull. 

1. Non-invasive: Information gathered from the brain is gathered 

without any surgical procedure. The data is usually collected 
using a cap or headset. 

2. Invasive: Data is gathered from electrodes placed directly on the 
brain. Collected data will be less susceptible to noise and other 
interference. Additional benefits include accurate localization of 
signals. 

The non-invasive device is the preferred type of data collection due 
to its ease of use and low cost. While selecting a non- invasive device, 
there are additional parameters that should be considered such as: 

• Electrode Patterns: Selection of patterns including the original 

10-20 or 10-10 system. Different and denser patterns usually 
allow for greater level of detail [30]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Positioning of electrodes in the 10-20 system. 
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Table 1: Publicly available EEG data repository. 
 

Name Data type Reference 

OpenNeuro EEG [16] 

BCI Competition EEG [17] 

Physionet EEG [18], [19] 

UCI-ML EEG [20], [21] 

EEGLab EEG/ERP [22] 

DEAP EEG [23] 

BNCI Horizon 2020 EEG/EMG/EOG [24] 

EEGbase EEG/ERP [25] 
 

• Channels: The quality of data collection and assessment is 
dependent on electrode placement and the number of channels 

analyzed. Modern devices typically feature 24- 32 and up to 128 
channels [31]. While a greater number of channels can allow for 

greater level of detail, it also increases the setup time and device 
cost significantly. However, the cost remains less expensive 

compared to fMRI data collection. 

• Sensor Technology: EEG electrodes can be wet, dry, or semi- 

dry. Dry electrodes are easier to set up [32], but can be prone to 
interference and motion artifacts, unlike wet technology, which 

uses a conductive cream or paste. Semi-dry technology uses 
polymer electrolyte, which is usually utilized in devices such as 

EEG buds to record data for long periods of time. 

• Connection: can be wired or wireless. Wireless connection 

usually involves transmission of data over Bluetooth or similar 
technology. While wireless is more expensive, such a feature is 
convenient in a laboratory setting, especially if movement of any 
sort is involved. 

• Device type: could be a cap, headset, headband, or buds 
depending on the type of use. Caps and headsets are most 
commonly used in laboratory settings to collect high quality 
data, whereas headbands and buds are mostly used in 
applications involving cognitive studies. 

Table 2 lists commercially-available EEG devices and their 

approximate cost. Many devices feature accompanying software to 

process, visualize, and analyze the data, also listed in Table 2. 

Applications 

This section identifies and describes the applications of EEG data 

in medical and non-medical categories. 

A. Medical Applications 

With the increased interest in EEG technology following the 

discovery of epilepsy spikes in 1930, seizure detection has long been 

a major biomedical application of EEG data. Identification and 

prediction of seizures [33-42] in epileptic patients has significantly 

improved the quality of patients’ lives and enhanced the reliability 

of medical treatments. Applications for epileptics are getting faster 

and more cost- effective as researchers continue to uncover new 

algorithms with high detection [43] and prediction accuracy [41] as 

well as improved epileptogenic foci localization [44]. 

Motor imagery [45] is another prominent field that attempts 

to understand and map human thinking processes into action. MI 

research is essentially predicated off the fact that whether someone 

actually moves a limb or simply imagines moving a limb, the brain 

signals produced are the same. Essentially, a functioning MI program 

could allow amputees [46] to regain movement in robotic versions of 

their lost limbs or allow anyone to remotely operate such limbs. The 

present state of the field is limited and classification of brainwaves 

is restricted to a few degrees of freedom. Recent studies on robotic 

prostheses focus on control [47], while some studies have focused on 

achieving that control with a short training time of approximately 

15 minutes [48]. In addition, to improve the classification of signals, 

physiological data such as facial expression can also be analyzed [49]. 

Another major application of EEG is in the assessment and 

development of rehabilitation methods. Recently, a real-time EEG 

based MI-BCI system with a virtual reality game [50] was developed as 

a motivational tool with feedback for patients in stroke rehabilitation. 

Another study [51] explored the possibility of using poor personal 

EEG devices with games to motivate patients to carry out their 

rehabilitation exercises. Additional applications include individual 

preference identification through interpretation of emotional 

information, especially for those with difficulties communicating 

[52,53] the study of sleep disorders through sleep-quality assessment 

[54] the analysis of EEG signals during pain perception [55]; the 

classification of potentially alcoholic patients [56] and the diagnosis 

of Parkinson’s disease [57]. 

B. Non-medical Applications 

Non-medical applications of EEG are focused on, but not limited 

to, cognitive studies, robotic prostheses and security systems. 

Previous research on cognitive studies involves emotion 

recognition 

[52] and classification [23]. In addition, physiological signals were 

combined with EEG to improve the accuracy of emotion recognition 

[58]. A few studies also focused on methods to improve focus in e- 

learning through. Attention feedback [59], improve learning for 

novice programmers through neurological signals controlled 

interface [59- 60] and to report experiences [61] of using EEG in the 

context of a software engineering education. 

While robotic prostheses have significant use in medical 

applications, computer researchers are focused on utilizing motor 

imagery in applications including autonomous system operation 

and control [62,63]communication and security research [64]. 

Recent studies include one focused on the teleoperation of a dual- 

arm robot carrying a common object in multi-fingered hands [65]. 

The study is then extended to a controllable multi-directional arm 

to reach tasks in three- dimensional environments [7]. Many studies 

have also improved the classification accuracy of motor imagery 

signals [66]. EEG signals are also used in security, specifically in 

biometrics authentication systems. EEG signals are used for personal 

identification [67] including facial recognition [68]. Most recently, 

one such study [69] examined network patterns and graph features 

to understand the distinctiveness of humans EEG functional 

connectivity and provide useful guidance for the design of graph- 

based EEG biometric systems. 
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Table 2: Devices. 
 

Device Name Data type Channels Device Style 
Electrode 
Type 

Data 
Transfer 

Freq. 
Range 

Software Cost Ref 

Emotiv EPOC Flex EEG ≤ 32 Cap Wet BT 0.2 - 45Hz EmotivPRO ≥$1700 [33] 

Emotiv EPOC X EEG 14 Headset Wet USB, BT 0.16 – 43Hz EmotivPRO $850 [34] 

OpenBCI EEG 16-Aug Cap, Headset Dry, Wet Wired, BT - OpenBCI (Open-Source) $1,000 [35], [36] 

NeuroSky MindWave EEG 1 Headset Dry BT 3-100Hz NeuroView, NeuroSkyLab $100 [37] 

Muse 2 EEG, Multi 4 Headset Dry BT 0.5-100Hz Muse/Muse Direct Apps $250 [38] 

MindMedia NeXus 10 EEG, Multi 8 - - - - BioTrace+ $1,000 [39] 

ActiveTwo EEG, Multi 32 - - USB None - $1,000 [40] 

 
Table 3: Preprocessing. 

 

Algorithm Reference 

Wavelet transform (II) [42]–[44], [70], [74], [81], [84], [86], [87], [89], [96], [97], [100], [101], [109]–[120] 

Fourier transform (II) [53], [86], [87], [92], [99], [120] 

Independent component analysis (II-III) [7], [57], [68], [69], [83]–[87], [91], [96], [119]–[123] 

Principal component analysis (II-III) [47], [58], [83], [89], [97], [120], [121], [124]–[126] 

Power spectral density (I-II) [81], [85], [126]–[128] 

Common average reference (I) [7], [102], [110], [120] 

Common spatial pattern (II-III) [45], [65], [80], [82], [90], [93], [99], [120], [121], [128]–[138] 

Hjorth parameters (I) [75], [87], [112], [123], [139] 

Convolutional neural network (III) [99], [117], [129], [140], [141] 

Discrete cosine transform (II) [86], [99] 

Long short-term memory (III) [56], [142]–[144] 

Linear discriminant analysis (II-III) [96], [128] 

Genetic algorithms (III) [57], [98] 

Support vector machine (III) [71], [109] 

Transfer learning (III) [145], [146] 

Empirical mode decomposition (I) [54], [87], [99] 

Finite impulse response filter (I) [82], [147], [148] 

Adaptive auto regression (I) [87], [120] 

Autoregression (III) [120], [149] 

Detrended fluctuation analysis (II) [54], [109] 

Partial directed coherence (III) [57], [149] 

Quadratic time-frequency distribution (II) [105], [141] 

Renyi Entropy (III) [119], [150] 

Symmetric and positive definite matrix (III) [151], [152] 

Least mean squares (II) [83], [86] 

Multiple artifact rejection algorithm (I) [69], [91] 
 

EEG signals are also used in vigilance detection [70,71] critical 

for those who engage in long, demanding tasks such as monitoring 

systems or driving, which makes it a key field in BCI research. 

Additional non-medical applications include speech recognition 

[72], user intention classification [73], driver fatigue evaluation [47] 

for traffic safety, and mental workload assessment [74] for 

maintaining mental health and preventing accidents. More unique 

studied examples include using EEG as a lie detector [75] and using 

it for evaluating one’s confidence in making decisions [76]. 

Data Processing 

This section describes steps in EEG data processing, including the 

preprocessing and classification stages. The section also summarizes 

existing studies on each stage of EEG data processing and identifies 

corresponding machine learning algorithms [77-78]. Figure 4 

outlines the stages of EEG data processing in a neurofeedback 

system. In Figure 4, stages identified in the dashed box corresponds 

to data preprocessing. Most of the existing studies detail one or two 

stages of preprocessing rather than all three, due to either lack of 

information on the collection 

process or lack of knowledge in the selection and application of 
preprocessing methods. 

A. Denoising 

In reducing and removing noise, the most common approaches 

include using low, high, or bandpass filters. These filters allow the user  

to pass along frequencies above, below, or between specified values, 

respectively. The choice of filters and frequency selection is dictated 

by the specific task at hand; for example, waves above 30Hz and below 

8Hz will often be filtered out in studies involving motor imagery, as 

they are less relevant. More generally, very low frequencies are often 

muscle-movement artifacts, while frequencies in the 50- 60 Hz range 

feature noise from power lines or other electronic signals. There are a 

variety of more dynamic filters in use, such as Volterra [79] the zero- 

phase band pass Butterworth filter [80,81] and even fully adaptive 

filters for epilepsy detection [82,83]. 

Figure 5 shows a visualization of power recorded in the EEG 

data in Figure 3 after passing through low- and high- pass filters. 
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While denoising using filters enables significant noise reduction 

by selecting only the required frequency range, artifacts in the data 

are more difficult to remove. Therefore, many studies extend the 

denoising stage with methods such as Independent Component 

Analysis (ICA) in attempts to automatically remove such artifacts 

[84- 86] though earlier and modern studies sometimes resort to 

manual artifact removal [87]. Infrequently, researchers and 

practitioners use filtered data directly without applying artifact 

removal procedures, though this has caused significant deviations in 

the overall assessment. 

B. Time-frequency 

Considering the non-stationary nature of EEG data, time- 

frequencyanalysis provides a temporal indication of multiple artifacts 

with the feature of time, helpful for developing controllers and 

feedback devices. Artifact removal [88] is a critical, yet challenging 

step in processing EEG data. The challenge is to analyze and isolate the 

data and remove the influence of other activities, such as prominent 

eye blink, heart rate, facial movement, and body temperature. 

Existing studies treat artifact removal as an optional stage. Less than 

50% of the studies discuss artifact removal, with over 80% focused 

on manual removal based on their domain and problem-specific 

knowledge ICA and discrete wavelet transform (DWT) are among 

the most commonly used approaches to remove artifacts. However, 

application of these approaches are limited to static data analysis in 

applications such as epileptic seizure detection. However, some of 

these studies have highlighted the use of time-frequency analysis 

in reducing artifacts by assessing the input signal in both the time 

and frequency domains to achieve better resolution. For EEG data 

in particular, wavelet transforms (WT) [81] are commonly employed 

to more easily work with the inherently non-stationary signal. While 

WT can also help with denoising, it requires a relatively involved 

reconstruction process that is not used when using simpler filters; 

this process in itself can aid in dimensionality reduction, making 

the information that remains significantly more useful. As such, the 

Flexible Analytic Wavelet Transform (FAWT) [88,89] and others 

are extremely common due to their relative effectiveness. Common 

Spatial Patterns (CSP) [45, 80, 90] are also frequently used to preserve 

the limited spatial data ascertainable from an EEG, though the 

computational time that this takes limits its usefulness in real-time 

applications. Because of the extent to which the data can be altered by 

these processes, there are a few ways to estimate the relative quality 

of data afterwards. These include Harvard’s HAPPE, the LTAPP, and 

Automagic [91]. Considering how important the quality of the data 

used to develop a model is, these tools may see wider future use. 

Additional time-frequency analysis methods include the Fourier 

transform (FT), short-time Fourier transform (STFT), Hilbert Huang 

transform (HHT), etc. FT is used only to deconstruct the received 

signal into component frequencies, though time information is 

necessarily lost. Because of the non-stationary nature of EEG signals, 

this is an uncommon approach and it is mostly coupled with other 

methods when used. Santoso [92] describes STFT as an extension 

of FT, which is able to preserve time information through the use of 

windowing, where FT will be applied to the subset of data in each 

window. A review of existing studies suggests the broad utilization of 

WT, which is able to preserve both time and frequency information. 

Specifically, WT is good in the time resolution of high frequencies, while 

for slowly varying functions, the frequency resolution is remarkable. 

On the more complex end, some authors make use of the HHT, which 

decomposes a signal into intrinsic mode functions (IMF) that also 

preserve temporal and spatial information [93]. It is highly effective for 

non-stationary and nonlinear data like EEG, and is complex enough 

that it could be considered an algorithm rather than a particular tool. 

C. Feature extraction 

Most commonly, regression and similar machine learning 

methods [94, 95] are used for feature extraction. Some of the most 

commonly used methods include logistic regression [42] support 

vector machine (SVM) [71] linear discriminant analysis (LDA) [96], 

principal component analysis (PCA) [97], evolutionary algorithms 

[98], and ensemble learning [99] including random forest [94] and 

Xg Boost learning [94]. 

Recent studies have employed neural networks (NN) as the most 

common method of feature selection because of their ability to 

process information despite noise or artifacts. Convolutional [100] 

and analytical [101] neural networks with some variations, such as 

recurrent neural networks with long short-term memory (LSTM) 

are most commonly used. CSP algorithms are also frequently seen 

[45,80,90] especially in combination with methods of denoising that 

already decompose the signals. On the opposite end of the spectrum, 

a few papers [102,103] make use of fusional features, attempting to 

combine information from different electrodes, frequencies, or both 

in order to reduce the number of dimensions analyzed. This makes 

computation simpler and faster but runs the risk of reducing accuracy. 

Less-common methods include recurrence quantification analysis 

(RQA) [104] a quadratictime-frequencydistribution (QTFD) and Choi- 

Williams distribution (CWD) [105] quadratic discriminant analysis 

[106] to detect changes be- tween states, various types of segmenting 

[107, 108] and even the NSGA-II genetic algorithm [98]. Many 

studies, including [98] combine multiple methods of feature selection 

and machine learning, often using neural networks or k- nearest 

neighbors in tandem with more complex or uncommon methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Common data processing stages. 
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Preprocessing algorithms: Table 3 lists most commonly- used 

algorithms and corresponding studies in EEG preprocessing. 

Algorithms that correspond to different stages of preprocessing 

are identified as I, II, III to represent denoising, time- frequency 

analysis, and feature extraction, respectively. While the wavelet and 

Fourier transforms as well as CSP are the most commonly used 

techniques in time-frequency analysis since they preserve spatial 

information, ICA and PCA seem to be the preferred feature extraction 

approaches. Neural network algorithms along with transfer learning 

approaches are gaining attention. 

D. Classification and Prediction 

The classification/prediction stage of data processing is the 

final stage of EEG data that precedes inferences. The accuracy and 

computation time of classification is dependent on the quality and 

number of features extracted during preprocessing. While smaller 

sample sizes are easier to compute, many algorithms will not be able 

to make accurate predictions with small training sets. To address 

this, recent research has focused on applications of machine learning 

algorithms such as neural networks, which enable transfer and active 

learning to allow for the utilization of previously trained knowledge 

while making inferences based on small samples or less studied area. 

Table 4 lists most commonly used algorithms and the 

correspondingstudies in classification and prediction. 

The first column in Table 4 suggests that the first few entries 

arethe most commonly used algorithms in classification. While the 

popularity of SVM is less clear, the application   of neural networks 

is a promising path towards knowledge sharing and improved 

accuracy. In addition, the use of transfer learning as a tool appears 

more often in classification efforts than in preprocessing. Given 

the inherent differences in EEG signals within and between people, 

such an approach will be invaluable in shortening learning times 

and improving future systems. Transfer learning’s lack of current 

popularity should not be confused for a lack of importance. 

Conclusions and Future Research 

This paper presents a comprehensive review of recent research 

on EEG data processing. The survey summarizes articles shortlisted 
from high-impact journals and conferences published in venues 

including IEEE, Elsevier, and Springer. The paper also provides 

descriptions of EEG data, applications, devices, and the various data 

processing stages. Comprehensive lists of publicly-available datasets, 

commercially- available devices, and algorithms that correspond to 

different data processing stages are provided for researchers and 

practitioners interested in advancing the field. 

Future research will include the examination of commonly- 

applied algorithms identified in the article and assess their suitability 

for EEG data. The development of efficient and generalizable 

preprocessing approaches that retain temporal and spatial resolution 

will be considered [109-171]. 

Acronyms 

ANN Artificial neural network 

BCI Brain-computer interface 

BT    Bluetooth 

CFS   Correlation-based feature selection 

CNN   Convolutional neural network 

CSP     Common spatial pattern  

CWD    Choi- Williams Distribution 

DNN      Deep neural network 

DTL Deep transfer learning 

DWT Discrete wavelet transform 

ECG Electrocardiography 

ECoG Electrocorticography 

EEG Electroencephalograph 

EMG Electromyography 

EOG Electrooculography 

ERP Event-related potential 

FAWT Flexible analytic wavelet transform 

fMRI Functional magnetic resonance imaging 

(a) 

Figure 5: EEG power data before and after low and high pass filter. 

(b) 
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Table 4: Classification. 
 

Algorithm Reference Field Hybrid 

 
Support vector machine 

[23], [42], [44], [45], [47], [48], [53], [55], [56], [58], [65], [66], [68], 
[80], [86], [87], [93], [96]–[99], [103], [105], [111], [113], [120], [121], 
[126], [127], [129], [130], [134], [137], [148], [149], [152]–[156] 

 
MI-BCI, Emotion, Epilepsy, Cognitive 

 
Ensemble Group, Sparse 

k-Nearest neighbor 
[42], [53], [55], [58], [68], [96]–[98], [103], [113], [120], [123], [126], 
[127], [129], [148] 

MI-BCI, Emotion, Epilepsy, Cognitive CFS+KNN 

Neural network [41], [45], [54], [73], [87], [97], [98], [101], [117], [118], [120], [147] MI-BCI, Epilepsy, Cognitive, Sleep DNN, ANN, MLP 

Convolutional NN 
[7], [41], [50], [56], [74], [81], [92], [100], [110], [116], [117], [132], 
[137]–[139], [141], [157]–[165] 

MI-BCI, Emotion, Cognitive, Epilepsy 
S-EEGNet, R3DCNN, CNN- 

LSTM 

Linear discriminant 
analysis 

[48], [58], [82], [87], [89], [93], [98], [113], [120], [121], [129], [131], 
[135]–[137], [149], [155] 

MI-BCI, Sleep KLDA, LDA, Shrunken 

Long Short Term 

Memory 
[7], [41], [52], [138], [159], [166]–[168] MI-BCI, Emotion, Epilepsy, Cognitive CNN-LSTM 

Random Forest [42], [53], [57], [68], [72], [103], [111], [127] Emotion, Cognitive, Epilepsy - 

Naive Bayes [23], [53], [68], [97], [120], [148] Emotion, Sleep, Cognitive Gaussian 

Recurrent NN [41], [42], [164], [169] MI, BCI, Epilepsy, Biometric R-3DCNN 

Decision Tree [42], [58], [68], [97], [113] MI-BCI, Emotion Epilepsy, Sleep - 

Transfer Learning [127], [138], [145], [146], [170] MI-BCI, Emotion DTL, MFTL, CSP, DNN 

Logistic Regression [42], [58], [126], [129] MI-BCI, Emotion,  

Common spatial pattern [155], [170], [171] MI-BCI 
Filter Bank, Sparse Filter 
Band 

Deconvolutional NN [47], [127] MI-BCI, Emotion - 

Clustering [43], [87] Epilepsy, Sleep K-medoids 

Quadratic discriminant 
analysis 

[106], [113] MI-BCI - 

Principal component 
analysis 

[152], [155] MI-BCI KPCA 

Sparse Representation [70], [171] MI-BCI, Cognitive - 
 

FT Fourier transform 

GSR Galvanic skin response 

HHT Hilbert-Huang transform 

ICA Independent component analysis 

IMF Intrinsic mode function 

KLDA Kernel LDA 

LDA  Linear discriminant analysis 

LSTM Long short-term memory 

MI Motor imagery 

MLP Multilayer perceptron 

MRI Magnetic resonance imaging 

NN Neural network 

PCA Principal component analysis 

QTFD Quadratic time-frequency distribution 

RQA Recurrence quantification analysis 

STFT Short-time Fourier transform 

SVM  Support vector machine 

WT Wavelet transform 
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