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Abstract
To find the approximate solutions of heat equations in a boundary 
layer flow, beneath a uniform free stream permeable continuous 
moving surface in a nanofluid is the main purpose of this paper. 
First, we will propose a neural network coupled with the Chebyshev 
polynomials. We will then study the heat transfer and heat flow 
equations by using the presented Chebyshev neural network. As it 
turns out, this method can obtain the approximate solutions for any 
kind heat transfer and heat flow equations.

Approximate answers can be more helpful to study the behavior 
of heat transfer heat flow, and it can ensure a more efficient heat 
transfer with a lower operational cost. The missing slopes f rr(0) 
and gr(0), for some values of the governing parameters, namely the 
nano-particle volume fraction φ, the mov- ing parameter λ and the 
suction/injection parameter f0 are determined using the proposed 
method. The obtained results of this method have been compared 
with other papers results of different methods.
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Introduction
The boundary layer flow problems have various applications in 

the fluid mechanics. Most researchers have used the semi-analytical 
and numerical methods such as Runge-Kutta methods [1], finite 
difference methods [2], finite element methods [3] and spectral 
methods [4] to solve this type of equations. In recent years, for solving 
nonlinear differential equations, several analytical and semi-analytical 
methods have been established such as, variational iteration method 
[5,6], Adomian decomposition method [7], differential transform 
method [8], homotopy analysis method [9-13], and the spectral-
homotopy analysis [14,15] and more recently, successive linearization 
method [16,17].

All analytical and semi-analytical methods mostly focus on 
the single and independent linear and non- linear equations of the 
boundary layer flow problems. In this paper we present an improved 
Chebyshev neural network method to solve the system of boundary 
layer problems. The considered system con- tains the nonlinear 
boundary differential equations governed from partial differential 
equations of heat equations in a boundary layer flow, beneath a 

uniform free stream permeable continuous moving surface in a 
nanofluid. Five various types elements, namely Ag, Cu, CuO, TiO2 
and Al2O3 are examined as potential nanoparticles in a water-based 
fluid in [18,19], whereby their performance in the boundary layer 
flow over a permeable continuous moving surface with suction and 
injection are analyzed. Additionally, the parameters influencing the 
process’s fluid velocity, temperature and particle concentration are 
analyzed and discussed in detail.

Formulation of problem

The flow model and coordinate system of a flat surface moving 
at a constant velocity uw in a par- allel direction to a free stream 
of a nanofluid of uniform velocity u∞ are shown in Figure 1. The 
dimensionless boundary layer equations of this model can be defined 
as follows [18-21],
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With the boundary conditions as follows, 

, , 1, 1w wu u Tλ ν ν ϕ= = = = =  at y=0

1, 0, 0, 0u u T as yν ϕ∞→ = = = = → ∞

Here vw represents injection, suction and impermeable surface 
when vw>0, vw<0 and vw=0, respectively. Moreover, u and v are the 
velocity components along the x and y axes, respectively; T is the 
temperature of the nanofluid, µnf is the dynamic of the nanofluid, αnf 
is the thermal diffusivity of the nanofluid and ρnf is the density of the 
nanofluid, written as follows,
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The equation of continuity is satisfied if a stream function Ψ(x, y) 
is chosen, such that, 
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The similarly transformed equations is then introduced as follows, 

( ), , ( ), ( ), ( ),f y T h hλχ η η λ θ η θ θ η ηΨ = = = = (8)

The governing equations (1) up to (5) are then transformed to the 
ordinary differential equations by 

using the similarity transformation quantities as follows, 



Citation: Chaharborj SS, Mahmoudi Y (2017) Analytical Solutions of Heat Problems for Efficient Heat Transfer in a Nanofluid. J Comput Eng Inf Technol 
6:3.

doi: 10.4172/2324-9307.1000179

• Page 2 of 8 •Volume 6 • Issue 3 • 1000179

''' '

2.5 8

1 0
(1 ) 1

f ff

f
ρφ φ φ
ρ

+ =
  

− − +  
  

,               (9)

( )
( )

'' ' ' ' '2

8

/1 0
Pr

1

nf f

f

k k
f Nb h Nt

Cp
Cp

θ θ θ θ
ρ

φ φ
ρ

+ + + =
 

− + 
  

, (10)

( )
( )

8

'' ' ' ' ' '2

Pr 1

( ) 0
/

f

nf f

Cp
CpNth Lefh f Nb h Nt

Nb k k

ρ
φ φ

ρ
θ θ θ

 
− + 

  + + + + = , (11)

where the governing parameters Pr, Le, Nb and Nt are defined 
as follows,
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The transformed body conditions are given by,
' '
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The skin friction coefficient and the Nusselt numbers are 
individually defined as,
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Where qw and qm are the surface heat flux and Tw is the surface 
shear stress, which are given by
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Substituting equations (6) and (8) into equation (14) and using 
the equation (15), we get 

1 1
1 '' 2 2' '2

2.5

(0) 2 2(2Re ) , (0), (0)
(1 ) Re Re

nf nf
x f

f f

k kfC Nu g N h
x k x k

φ
φ

   = = − = −   −    
(16)

Structure of Chebyshev Neural Network
The structure of the network with the first m Chebyshev 

polynomial and single input and output layer are shown in  
Figure 2. In this network input data is extended to several terms using 
Chebyshev polynomials. 

The learning algorithm can be used to update the network 
parameters and minimizing the error function. The weights of the 
proposed neural network can be to updated by using the error back 
propagation algorithm [22-25]. The network output with input data η 
and weight parameters, w, can obtain as follows,

( , ) ( )Ni w F ziη = ,               (17)

where F(zi)=zi is an active function and zi is a sum of the weighted 
expanded input data’s as follows, 
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where η is the input data’s, Tj−1 and wi,j with j=1, 2, ..., M denotes 
the the Chebyshev polynomials and the weight vector, respectively. 
For updating the network weights we will use the principle of back 
propagation as 

follows, 
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where ζ, k and E(η,w) are the learning parameter, iteration step 
and the error function, respectively. This parameters are using to 
update the network weights (Figure 2).

Chebyshev Polynomials

The Chebyshev polynomials of the first kind of degree n can be 
define as follows,
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The first two Chebyshev polynomials are, T0(x) = 1 and T1(x) = x. 
The higher order Chebyshev 

polynomials may be evaluated by the following formula,

Tn+1(x) = 2xTn(x) − Tn−1(x),                                                        (23)

where Tn(x) denotes the nth order Chebyshev 
polynomial
Chebyshev Neural Network Formulation for Heat Equations

The general formulation of the boundary value problems by using 
the neural network can be define as follows,
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where Ψi is the function which presents the structure of the 
boundary value equations. The parameters yi and ∇ are showing 
the solution and differential operators, respectively. If yi,t(η, w) are 
defined the trial solutions, then the equation (24) can be rewrite as,
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Therefore, the minimization equation [22,23,24] of the equation 
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Figure 1: Physical model and coordinate system; (a): flat plate moving out 
of the origin; (b): flat plate moving into the origin.
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(25) can be shown as the following form, 
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Trial solutions of the equations (9) up to (11) with the input 
parameter η and unknown weight parameter

w is written as follows, 
2
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with, η ∈ [0, b]. The general form of the error function for the 
equations (9) up to (11) is given by, 
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For minimizing the proposed error function corresponding to 
the input data’s, η, gradient of the error function with respect to the 
unknown parameters w will be used.

Computation of gradient for optimizing the weight values

As seen from the equations (30), this function is involve to 
function N (η, w) and derivatives of this function. Therefore, we need 
to obtain the derivative of this function with respect to the inputs 
parameters η as follows,
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where wi,j denotes the network parameters and Tj-1 denote the 
first, second and third derivatives of (n) the Chebyshev polynomials 
for n=1,2,3 respectively. Therefore, the equations (27) up to (29) can 
be rewritten as follows,
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Now, for minimizing the error function (30), the gradient of this 
function with respect to the parameters wi,j are given by,
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Finally, approximate solutions for the proposed heat equations 
can be computed by using the converged Cheby-shev neural network 
results in the equations (27) up to (29).

Convergence of the error function

In this section we investigate the convergence analysis of error 
function. Let Em(η, p) be a sequence of error functions as follows, 
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then, sequence Em(η, p) converges uniformly to a function E(η, 
p) if and only if for every c>0 there exists an N so that m>N and k>N 
implying that |Em(η, p)−Ek(η, p)|<c. Some sufficient conditions for 
the convergence are as follows,
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Figure 2: Structure of single layer Chebyshev Neural  Network.
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Numerical Simulations
The analytical solutions of the nonlinear heat equations (9) 

up to (11) by using the proposed method with the five Chebyshev 
polynomials can be shown as follows,
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After substituting the updated weights, wi,j , (i-1,2,3; j=1,…,5) 
in the equations (34) up to (36), the analytical approximations of 
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Results and Discussion
Approximate solutions of the nonlinear ordinary differential 

equations (9) up to (11) with the boundary conditions (13) were 
obtained by using the proposed Chebyshev neural network 

method. The missing slopes f(0)tt and g(0)t, for some values of the 
governing parameters, namely the nanoparticle volume fraction φ, 
the mov- ing parameter λ and the suction/injection parameter f0 are 
determined by using the Maple, Matlab softwares coupled with the 
Chebyshev neural network method.

Five types of nanoparticles were studied, namely, Silver Ag, 
Copper Cu, Copper Oxide CuO, Titania TiO2 and Alumina Al2O3 as 
shown in the Table 1 [19,20]. The volume fraction of nanoparticles is 
from 0 to 0.2 (0 ≤ φ ≤ 0.2) in which φ=0 corresponds to the regular 
Newtonian fluid. The numerical results are summarized in the Tables 
2 and 3 and Figures 3-14. Figures 3-8 are showing the variation of f(0)
tt (skin-friction coefficient) with λ for the water nanoparticles Ag, Cu, 
CuO, TiO2 and Al2O3 and different values of f0 when Nt=0.1, Nb=0.3, 
Le=1, Pr=0.1 and φ=0.1. It is seen that the solution is unique when λ 
≥ 1, while dual solutions are found to exist when 0 ≤ λ ≤ 1 and trinal 
solutions are found when λ ≤ 0.

As seen from these figures the values of f(0)tt are positive when 
λ ≤ 0. They become negatives when λ ≥ 1 and positive-negative 
when 0 ≤ λ ≤ 1 for all values of the suction/injection parameter f0. 
The Chebyshev neural network can give also third solutions for f(0)
ttwhen λ ≤ 0. The third solution is coupled with the second solution 
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                Physical Properties

Nanoparticles
ρ (Kgm-3) Cρ (Jkg

-1 K-1) k (Wm
-1 K-1) β×105 (K-1)

H2O 997.1 4179 0.613 21
Au 10500 235 429 1.89
Cu 8933 385 401 1.167
CuO 6320 531.8 76.5 1.8
Al2O3 3970 765 40 0.85
TiO3 4550 686.2 8.9538 0.9

Table 1: Thermophysical properties of water and nanoparticles [19,20].

F0

λc

Weidman et al. [25] Pop et al. [18] ChNN
-0.50 -0.1035 -0.1035 -0.1034
-0.25 -0.2125 -0.2181 -0.2124
0.00 -0.3541 -0.3541 -0.3540
0.25 -0.5224 -0.5227 -0.5222
0.50 -0.7200 -0.7202 -0.7200

Table 2: Comparison of λc for various f0 when φ=0 (purefluid).

                  Physical Properties

F0

λc

Ag Cu CuO TiO3 Al2O3

-0.3 -0.1590 -0.1660 -0.1929 -0.1929 -0.1955
0.3 -0.6115 -0.5997 -0.5817 -0.1519 -0.5595

Table 3: Values of λc for different nanoparticles and different values of f0 when φ=0.1.

Figure 3: Variation of the reduced skin-friction coefficient f (0)tt with λ 
for φ = 0.

Figure 4: Variation of the reduced skin-friction coefficient f(0)tt with λ for 
Ag-water nanoparticale.

as shown in Figures 3-8. Physically, a positive value of f(0)tt means 
that the fluid exerts a drag force on the plate, and a negative value 
means the opposite. The zero value of f(0)ttwhen λ=1 does not mean 
separation, but it corresponds to the equal velocity of the plate and 
the free stream.

Figures 9 and 10 show the variation of −gt(0) with λ for Ag 
and Al2O3-water nanofluid and different values of f0 when Nt=0.1, 
Nb=0.3, Le=1, Pr=0.1 and φ=0.1. By using the fifth order Runge-
Kutta method with shooting technique can find dual solution for 
−gt(0). The Chebyshev neural network can give third solutions for 
-gt(0) which is couple with first solution as showed in Figures 9 
and Figure 10. It is seen that the solution is dual when λ ≥ 0, while 
trinal solutions are found to exist when λ ≤ 0. The values of −gt(0) 

are positive for all values of λ, for all values of the suction/injection 
parameter f0.

Figures 3-10 are indicating that for a particular value of f0, 
the solution exists up to a certain critical value of λ, say λc. At this 
value, the boundary layer approximations break down, and thus the 
numerical solution cannot be obtained. The value λ=λc denotes a 
critical value of parameter λ and boundary layer will separate from 
the surface at value λc. The critical values of the parameter λc are 
showed in the Table 2, which shows a desirable 

agreement with the previous investigations for the case f0=0. 
Moreover, from the table (2), we find that for all nanoparticles the 
values of |λc| increase as f0 increases. Therefore, suction delays the 
boundary layer separation, while injection accelerates it.
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Figure 5: Variation of the reduced skin-friction coefficient f(0)tt with λ for 
Cu-water nanoparticale.

Figure 8: Variation of the reduced skin-friction coefficient f(0)tt with λ for 
Al2O3-water nanoparticale.

Figure 6: Variation of the reduced skin-friction coefficient f(0)tt with λ for 
CuO-water nanoparticale Figure 9: Variation of −θt(0) with λ for Ag-water nanoparticale.

Figure 7: Variation of the reduced skin-friction coefficient f(0)tt with λ for 
TiO2-water nanoparticale. Figure 10: Variation of −θt(0) with λ for Al2O3-water nanoparticale.
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Figure 11: Velocity profile for Ag-water nanofluid. Figure 14: Temperature profiles for Al2O3 water nanofluids.

Figure 12: Velocity profile for Al2O3-water nanofluid.

Figure 13: Temperature profiles for Ag-water nanofluid.

Figures 11 and 14 are presenting the velocity profile f(η)t and the 
temperature profile g(η) for the water nanofluids Ag and Al2O3 when 
Nt=0.1, Nb=0.3, Le=1, Pr=0.1, φ = 0.1, λ=-0.3 and f0=0, respectively. 

For plotting these figures the equations (37) up to (42) have been 
used. It appears that all these profiles satisfied asymptotically the 
far field boundary conditions equation (13). The existence of triple 
solutions in the Figures 3-10 can be satisfied by the velocity and 
temperature profiles are showed in the Figures 11-14. The velocity 
profiles for the first, second and third solutions when λ=-0.3 shows 
that the velocity gradient at the surface is positive, which produces a 
positive value of the skin friction coefficient (Figures 13 and 14).

Conclusion
We have investigated the modified Chebyshev neural network 

for solving a complicated nonlinear dynamical heat system in a 
boundary layer flow, beneath a uniform free stream permeable 
continuous moving surface in a nanofluid. Numerical results show 
the effectiveness of our proposed method for solving complicated 
linear and nonlinear dynamical systems in the heat transfer and heat 
flow problems.

List of Symbols:
cp specific heat capacity at constant pressure
Cf skin friction coefficient
f dimensionless stream function
k thermal conductivity
Nux      local Nusselt number
Pr Prandtl number
qw surface heat flux
Rex      local Reynolds number
Tw plate temperature
T fluid temperature
T∞ ambient temperature
u, v velocity components along the x and y directions, 

respectively
x, y Cartesian coordinates
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Uw plate velocity
U∞ free stream velocity

Greek symbols

α thermal diffusivity
φ nonoparticle volume fraction
µ dynamic viscosity
θ dimensionless temperature
λ velocity ratio parameter
ν kinematic viscosity
Ψ stream function
τw surface shear stress
η similarity variable

Subscripts

s solid
f fluid
nf        nanofluid
∞ ambient condition
w condition at the surface of the plate

Superscript
t differential with respect to
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