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Abstract

To find the approximate solutions of heat equations in a boundary
layer flow, beneath a uniform free stream permeable continuous
moving surface in a nanofluid is the main purpose of this paper.
First, we will propose a neural network coupled with the Chebyshev
polynomials. We will then study the heat transfer and heat flow
equations by using the presented Chebyshev neural network. As it
turns out, this method can obtain the approximate solutions for any
kind heat transfer and heat flow equations.

Approximate answers can be more helpful to study the behavior
of heat transfer heat flow, and it can ensure a more efficient heat
transfer with a lower operational cost. The missing slopes f rr(0)
and gr(0), for some values of the governing parameters, namely the
nano-particle volume fraction ¢, the mov- ing parameter A and the
suction/injection parameter f0 are determined using the proposed
method. The obtained results of this method have been compared
with other papers results of different methods.
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Introduction

The boundary layer flow problems have various applications in
the fluid mechanics. Most researchers have used the semi-analytical
and numerical methods such as Runge-Kutta methods [1], finite
difference methods [2], finite element methods [3] and spectral
methods [4] to solve this type of equations. In recent years, for solving
nonlinear differential equations, several analytical and semi-analytical
methods have been established such as, variational iteration method
[5,6], Adomian decomposition method [7], differential transform
method [8], homotopy analysis method [9-13], and the spectral-
homotopy analysis [14,15] and more recently, successive linearization
method [16,17].

All analytical and semi-analytical methods mostly focus on
the single and independent linear and non- linear equations of the
boundary layer flow problems. In this paper we present an improved
Chebyshev neural network method to solve the system of boundary
layer problems. The considered system con- tains the nonlinear
boundary differential equations governed from partial differential
equations of heat equations in a boundary layer flow, beneath a
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uniform free stream permeable continuous moving surface in a
nanofluid. Five various types elements, namely Ag, Cu, CuO, TiO,
and ALO; are examined as potential nanoparticles in a water-based
fluid in [18,19], whereby their performance in the boundary layer
flow over a permeable continuous moving surface with suction and
injection are analyzed. Additionally, the parameters influencing the
process’s fluid velocity, temperature and particle concentration are
analyzed and discussed in detail.

Formulation of problem

The flow model and coordinate system of a flat surface moving
at a constant velocity uw in a par- allel direction to a free stream
of a nanofluid of uniform velocity ueo are shown in Figure 1. The
dimensionless boundary layer equations of this model can be defined
as follows [18-21],
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With the boundary conditions as follows,
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Here vw represents injection, suction and impermeable surface
when vw>0, vw<0 and vw=0, respectively. Moreover, u and v are the
velocity components along the x and y axes, respectively; T is the
temperature of the nanofluid, unfis the dynamic of the nanofluid, anf

is the thermal diffusivity of the nanofluid and pnfis the density of the
nanofluid, written as follows,
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The equation of continuity is satisfied if a stream function ¥(x, y)
is chosen, such that,
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The similarly transformed equations is then introduced as follows,

Y =2y ), Ay, T=00), 0=0(n), h=h@n),®)

The governing equations (1) up to (5) are then transformed to the
ordinary differential equations by

using the similarity transformation quantities as follows,
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The learning algorithm can be used to update the network
@ Thermayooundary layer parameters and minimizing the error function. The weights of the
proposed neural network can be to updated by using the error back

Thermal boundary

Figure 1: Physical model and coordinate system; (a): flat plate moving out
of the origin; (b): flat plate moving into the origin.
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where the governing parameters Pr, Le, Nb and Nt are defined
as follows,
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The transformed body conditions are given by,
S(0)= f5, £ (0)=2,0(0) = Lh(0) =1, £ (c0) =1,6(o0) = 0,h(20) = 0 (13)

The skin friction coefficient and the Nusselt numbers are
individually defined as,

P
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Where qw and qm are the surface heat flux and Tw is the surface
shear stress, which are given by
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Substituting equations (6) and (8) into equation (14) and using
the equation (15), we get
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Structure of Chebyshev Neural Network

Ky g0y (16
kfh(O)( )

1
(2Re)*C, =

The structure of the network with the first m Chebyshev
polynomial and single input and output layer are shown in
Figure 2. In this network input data is extended to several terms using
Chebyshev polynomials.

propagation algorithm [22-25]. The network output with input data
and weight parameters, w, can obtain as follows,

Ni(n,w) = F(zi), (17)

where F(zi)=zi is an active function and zi is a sum of the weighted
expanded input data’s as follows,

M
2= T (i =12, (18)
j=1

where 7 is the input data’s, Tj-1 and W, with j=1, 2, ..., M denotes
the the Chebyshev polynomials and the weight vector, respectively.
For updating the network weights we will use the principle of back
propagation as

follows,

k
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where (, k and E(#,w) are the learning parameter, iteration step
and the error function, respectively. This parameters are using to
update the network weights (Figure 2).

Chebyshev Polynomials

The Chebyshev polynomials of the first kind of degree n can be

define as follows,
Tn(n) = cos(np), B = arccos(), (20)

Which are orthogonal with respect to the weight function

w(n) = o
N
1 I1
[ n.ont, eowodt ==, (21)
where, dnm is the Kronecker delta function and
2 =
Cn :{ » n=0 22)
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The first two Chebyshev polynomials are, T0(x) = 1 and T1(x) = x.
The higher order Chebyshev

polynomials may be evaluated by the following formula,

Tn+1(x) = 2xTn(x) — Tn—1(x), (23)
where  Tn(x) denotes the nth order Chebyshev
polynomial

Chebyshev Neural Network Formulation for Heat Equations

The general formulation of the boundary value problems by using
the neural network can be define as follows,

li)i'_fﬁ Vi (W), VY, (7, W), V7y, (17, W),..., V", (7, W)J =0 (24)

where Wi is the function which presents the structure of the
boundary value equations. The parameters yi and V are showing
the solution and differential operators, respectively. If yi,t(y, w) are
defined the trial solutions, then the equation (24) can be rewrite as,

Wil 7,3, 00,0, V5, (7, w), V2, (2,W),..,V"y,,,(7,w) | = 0 (25)

Therefore, the minimization equation [22,23,24] of the equation
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Figure 2: Structure of single layer Chebyshev Neural Network.

(25) can be shown as the following form,
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Trial solutions of the equations (9) up to (11) with the input

parameter n and unknown weight parameter

w is written as follows,
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with, # € [0, b]. The general form of the error function for the

equations (9) up to (11) is given by,
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For minimizing the proposed error function corresponding to
the input data’s, %, gradient of the error function with respect to the

unknown parameters w will be used.
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Computation of gradient for optimizing the weight values

As seen from the equations (30), this function is involve to
function N (7, w) and derivatives of this function. Therefore, we need
to obtain the derivative of this function with respect to the inputs
parameters 7 as follows,

d"N,

M
G = 2T =123

Jj=1

(31)

where w,; denotes the network parameters and T, denote the
first, second and third derivatives of (n) the Chebyshev polynomials
for n=1,2,3 respectively. Therefore, the equations (27) up to (29) can
be rewritten as follows,
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Now, for minimizing the error function (30), the gradient of this
function with respect to the parameters w,  are given by,
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Finally, approximate solutions for the proposed heat equations
can be computed by using the converged Cheby-shev neural network
results in the equations (27) up to (29).

Convergence of the error function

In this section we investigate the convergence analysis of error
function. Let Em(#, p) be a sequence of error functions as follows,

5.0 SE| (e L 003000 o021 e | (33)

then, sequence Em(y, p) converges uniformly to a function E(#,
p) if and only if for every c>0 there exists an N so that m>N and k>N

implying that |[Em(n, p)—Ek(y, p)|<c. Some sufficient conditions for
the convergence are as follows,
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uniformly convergence for 77 € R

A |f;(77)|,|€;(7])|and|h; (77)| are uniformly bounded for 7€ R.

For m, k>N we have, [logE,, (17, p) —log E, (1, p)|
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Numerical Simulations

The analytical solutions of the nonlinear heat equatio

up to (11) by using the proposed method with the five Chebyshev

polynomials can be shown as follows,
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After substituting the updated weights, Wi (i-1,2,3; j=1,...,5)
in the equations (34) up to (36), the analytical approximations of
f 4z 0 R h 4> £ Loy 0, Loy and h Alyo, CAN be obtained as follows,
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Results and Discussion

Approximate solutions of the nonlinear ordinary differential
equations (9) up to (11) with the boundary conditions (13) were
obtained by using the proposed Chebyshev neural network

method. The missing slopes f{0)" and g(0)", for some values of the
governing parameters, namely the nanoparticle volume fraction ¢,
the mov- ing parameter A and the suction/injection parameter f0 are
determined by using the Maple, Matlab softwares coupled with the
Chebyshev neural network method.

Five types of nanoparticles were studied, namely, Silver Ag,
Copper Cu, Copper Oxide CuO, Titania TiO,and Alumina AL O, as
shown in the Table 1 [19,20]. The volume fraction of nanoparticles is
from 0 to 0.2 (0 < ¢ < 0.2) in which ¢=0 corresponds to the regular
Newtonian fluid. The numerical results are summarized in the Tables
2 and 3 and Figures 3-14. Figures 3-8 are showing the variation of f(0)
! (skin-friction coefficient) with A for the water nanoparticles Ag, Cu,
CuO, TiO, and Al,O, and different values of f0 when Nt=0.1, Nb=0.3,
Le=1, Pr=0.1 and ¢=0.1. It is seen that the solution is unique when A
> 1, while dual solutions are found to exist when 0 < A < 1 and trinal
solutions are found when A < 0.

As seen from these figures the values of f{0)" are positive when
A < 0. They become negatives when A > 1 and positive-negative
when 0 < A <1 for all values of the suction/injection parameter f0.
The Chebyshev neural network can give also third solutions for f(0)
twhen A < 0. The third solution is coupled with the second solution

Volume 6 ¢ Issue 3 *« 1000179

e Page 4 0of 8 o



Citation: Chaharborj SS, Mahmoudi Y (2017) Analytical Solutions of Heat Problems for Efficient Heat Transfer in a Nanofluid. J Comput Eng Inf Technol

6:3.

Table 1: Thermophysical properties

doi: 10.4172/2324-9307.1000179

of water and nanoparticles [19,20].

hysical Properties
p (Kgm) C, (4, K k (W, K%) Bx10° (K)

Nanoparticles
H,0 997.1 4179 0.613 21
Au 10500 235 429 1.89
Cu 8933 385 401 1.167
CuO 6320 531.8 76.5 1.8
ALO, 3970 765 40 0.85
TiO, 4550 686.2 8.9538 0.9

Table 2: Comparison of A_for various f,when =0 (purefluid).

A
F c
° Weidman et al. [25] Pop et al. [18] ChNN
-0.50 -0.1035 -0.1035 -0.1034
-0.25 -0.2125 -0.2181 -0.2124
0.00 -0.3541 -0.3541 -0.3540
0.25 -0.5224 -0.5227 -0.5222
0.50 -0.7200 -0.7202 -0.7200
Table 3: Values of A_for different nanoparticles and different values of f, when ¢=0.1.

hysical Properties A,
F, Ag Cu CuO Tio, AlLO,
-0.3 -0.1590 -0.1660 -0.1929 -0.1929 -0.1955
0.3 -0.6115 -0.5997 -0.5817 -0.1519 -0.5595

-5 ] as 1 15
Figure 3: Variation of the reduced skin-friction coefficient f (0)* with A
forp =0.

Ag-water pangfiuld {5=10.1)

-3 a _0s 1 15

Figure 4: Variation of the reduced skin-friction coefficient f(0)"with A for
Ag-water nanoparticale.

as shown in Figures 3-8. Physically, a positive value of f0)" means
that the fluid exerts a drag force on the plate, and a negative value
means the opposite. The zero value of f{0)*when A=1 does not mean
separation, but it corresponds to the equal velocity of the plate and
the free stream.

Figures 9 and 10 show the variation of —g'(0) with A for Ag
and A1203-water nanofluid and different values of f0 when Nt=0.1,
Nb=0.3, Le=1, Pr=0.1 and ¢=0.1. By using the fifth order Runge-
Kutta method with shooting technique can find dual solution for
—£'(0). The Chebyshev neural network can give third solutions for
-gt(0) which is couple with first solution as showed in Figures 9
and Figure 10. It is seen that the solution is dual when A > 0, while
trinal solutions are found to exist when A < 0. The values of —g'(0)

are positive for all values of A, for all values of the suction/injection
parameter f0.

Figures 3-10 are indicating that for a particular value of f0,
the solution exists up to a certain critical value of A, say Ac. At this
value, the boundary layer approximations break down, and thus the
numerical solution cannot be obtained. The value A=Ac denotes a
critical value of parameter A and boundary layer will separate from
the surface at value Ac. The critical values of the parameter Ac are
showed in the Table 2, which shows a desirable

agreement with the previous investigations for the case f0=0.
Moreover, from the table (2), we find that for all nanoparticles the
values of [Ac| increase as f0 increases. Therefore, suction delays the
boundary layer separation, while injection accelerates it.
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Figure 5: Variation of the reduced skin-friction coefficient f(0)* with A for Figure 8: Variation of the reduced skin-friction coefficient f(0)* with A for
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Figure 11: Velocity profile for Ag-water nanofluid. Figure 14: Temperature profiles for Al,O, water nanofluids.

Figures 11 and 14 are presenting the velocity profile f(#)' and the
temperature profile g(#) for the water nanofluids Ag and Al,O, when
T T T T T T T Nt=0.1, Nb=0.3, Le=1, Pr=0.1, ¢ = 0.1, A=-0.3 and f0=0, respectively.

ao —watar nonofiuld {3=0.1)

For plotting these figures the equations (37) up to (42) have been
used. It appears that all these profiles satisfied asymptotically the
far field boundary conditions equation (13). The existence of triple
solutions in the Figures 3-10 can be satisfied by the velocity and
temperature profiles are showed in the Figures 11-14. The velocity
profiles for the first, second and third solutions when A=-0.3 shows
that the velocity gradient at the surface is positive, which produces a
positive value of the skin friction coefficient (Figures 13 and 14).

£

Conclusion

We have investigated the modified Chebyshev neural network
for solving a complicated nonlinear dynamical heat system in a
boundary layer flow, beneath a uniform free stream permeable
continuous moving surface in a nanofluid. Numerical results show
the effectiveness of our proposed method for solving complicated
linear and nonlinear dynamical systems in the heat transfer and heat
flow problems.

Figure 12: Velocity profile for Al,O,-water nanofluid.

Ag-water nonofiuld {01}

- - : . - . List of Symbols:
— Fiirst solution
— Socond schuticn cp specific heat capacity at constant pressure
——— Third soiution [CAMA) e .
Cf skin friction coefficient
f dimensionless stream function
i k thermal conductivity
= Nux local Nusselt number
=
4 Pr Prandtl number
qw surface heat flux
] Rex  local Reynolds number
Tw plate temperature
T fluid temperature
a2 X X ) ) X X ) Teo ambient temperature
] 1 2 3 ] 5 5 7 E] . S
" u,v velocity components along the x and y directions,
respectively
Figure 13: Temperature profiles for Ag-water nanofluid. . .
X,y Cartesian coordinates
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Uw plate velocity

Ueo free stream velocity
Greek symbols

a thermal diffusivity

¢ nonoparticle volume fraction

u dynamic viscosity

0 dimensionless temperature

A velocity ratio parameter

v kinematic viscosity

v stream function

™ surface shear stress

n similarity variable
Subscripts

s solid

f fluid

nf  nanofluid

oo ambient condition

w condition at the surface of the plate
Superscript

t differential with respect to
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