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Abstract

Microorganisms colonize the engineering materials and could 
damage them eventually. Sulfate reducing bacteria (SRB, hereafter) 
are responsible for corrosion in various metals such as carbon 
steel, stainless steel, iron and some alloys. Biocorrosion causes 
huge loss every year which causes various socio and economic 
complications. In anaerobic environments, SRB are active and thus 
microbiologically influenced corrosion (MIC) could occur. However, 
molecular mechanisms of MIC are less understood. Therefore, it 
is important to recognize the microorganisms at the molecular 
level and their mechanisms associated to biocorrosion, in order 
to reduce/prevent damages caused by these organisms. Also, the 
identification of various genera and species related to biocorrosion 
is needed. In this article, we determined the presence of SRB related 
to biocorrosion under anoxic conditions in the Yucatan Peninsula of 
Mexico. Water and sediment samples were collected from a total of 
twenty-one sampling sites coming under four environmental types 
(Freshwater upwelling’s, Lagoon, Sea, Sea (Beach) and Wetlands) 
in Sisal Coastal region of Yucatan State in Mexico. Physicochemical 
parameters such as pH, salinity, dissolved oxygen, conductivity; total 
dissolved solids, redox potential and temperature were monitored in 
situ. 16S ribosomal RNA (rRNA) gene-based sequencing analysis 
showed that, out of 37 bacterial genera in SRB group, mainly 
eight anaerobic bacteria were present in both water and sediment 
samples including Desulfatibacillum, Desulfatitalea, Desulfobacula, 
Desulfobulbus, Desulfotignum, Desulfotomaculum, Desulfovibrio 
and Sulfurospirillum. Principal Component Analysis (PCA) showed 
that at least six variables were correlated between the selected 
sampling sites. Hierarchical Cluster Analysis (HCA) indicated 
a minimum of five groups of environmental variables, including 
outgroup and two major clusters. This is the first 16S rRNA gene 
sequence-based study of the presence of sulfate reducing bacteria 
which could cause biocorrosion in the Yucatan Peninsula of Mexico.
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endorse iron corrosion, consuming hydrogen as an electron donor 
from oil facilities [1]. Iron is usually unstable and easily affected by 
corrosion which could cause severe damages. Corrosion damages and 
protection measures result in losses of US $ 4 trillion per year all over 
the world, and also cause various socio-economic complications and 
human health problems [2-4]. In the Gulf of Mexico, most of the cases 
of major pipeline failures are caused by corrosion [5]. In industrial 
sectors, the inferred costs of metal corrosion affect the Gross domestic 
product (GDP) value of each country from 4% in developing/
industrialized countries and 20% of total cost is because of microbial 
corrosion mechanisms [6,7].  

Microbiologically influenced corrosion (MIC) is a serious threat 
to essential infrastructure in the steel and pipeline industries. In 
energy industries, microbiologically influenced corrosion in oil and 
gas pipelines is responsible for more than 20% of the total corrosion 
expense which could costs billions of dollars loss every year [8-10]. 
Anaerobic iron corrosion is one of the major devastating damages 
on infrastructure, such as oil and gas structures in pipeline systems, 
refineries and storage terminals [9,11,12]. The bacteria which reduce 
sulfate and iron are called sulfate reducing and iron reducing bacteria 
respectively [13]. The biocorrosion caused by Sulfate-reducing 
bacteria (SRB) has been studied over many years. Formation of iron 
sulfides (FeS) which could lead to iron corrosion by SRB might reduce 
corrosion in some cases, whereas increase in others [14,15]. Microbes 
grow on surfaces of various metals and accomplish various metabolic 
reactions which promote the deterioration of the substrate. Sulfate-
reducing bacteria (SRB) causes biocorrosion under anoxic conditions 
and the activity of these bacteria in some cases creates serious 
environmental problems [14, 16]. However, their use under carefully 
controlled conditions could be beneficial, such as purposes both in 
domestic and industrial and saline wastewater treatment [17,18]. 

Sulfate reducing bacteria (SRB) are a ubiquitous group of 
anaerobic bacteria found in sulfate rich environments such as marine, 
estuarine, sewage, freshwater wetlands, humans and animals [19-
21]. SRB are involved in geochemical carbon and sulfur cycles both 
in land and sea [22-24] and contribute to around 50% of organic 
matter mineralization in marine sediments [25,26]. These anaerobic 
bacteria also live in intestinal guts of various animals and humans 
causing severe damages [27,28]. In anerobic environments SRB 
performs dissimilatory sulfate reduction in order to obtain energy 
[29-31]. SRB release Hydrogen sulfide (H2S) as the final product, after 
the reduction process of sulfate (electron acceptor) and utilize it for 
anaerobic respiration [32-34]; this H2S is toxic, flammable, corrosive 
and also contributes to corrosion. Moreover, H2S gas is a serious 
threat to human beings, transportation pipelines and production 
places [35] and damages the metals by increasing the iron sulfide 
concentration which could lead to an increase in the corrosion rate 
as well. SRB could utilize various organic electron donors for sulfate 
reduction; for example, Desulfoluna butyratoxydans, sulfate-reducing 
bacterial strain MSL71T consume formate, butyrate, pyruvate, lactate, 
malate, ethanol, propanol, butanol, glycerol and H2 [36]. SRB are also 
involved in anaerobic degradation of crude oil in sulfate-containing 
environments [37]. 

Sulfate-reducing bacteria are classified into five phylogenetic 
lineages, which consist of 220 species of 60 genera [38]. i) 

Introduction
Corrosion is a chemical action or oxidation which could produce 

deterioration of the iron and steel. Anaerobic microorganisms 
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Desulfobulbus (all delta subgroup) and the genera Desulfovibrio, 
Desulfobacterium, Desulfobacter with mesophic proteobacterias [39], 
ii) thermophilic G-ve bacteria with the genus Thermodesulfovibrio, 
iii) G+ve Peptococcaceae with the genus Desulfotomaculum, iv) 
a genus of Archaea named Archaeoglobus (22) and v) finally 
thermophilic autotroph Thermodesulfobium narugense of the family 
Thermodesulfobiaceae [40]. 

The objective of this study was to identify the presence of 
sulfate-reducing bacteria (SRB) related to biocorrosion in different 
environmental samples in the Yucatan peninsula of Mexico. 

Materials and Methods
Sampling sites

Water and sediment samples were collected from different sites 
(Freshwater upwellings, Lagoon, Sea, Sea (Beach) and Wetlands) at a 
total of twenty-one sites near the Sisal Port of Yucatan state in Mexico 
from March to May and in August 2016 (Table 1). Sampling points 
were geolocated using a GPS navigation device (Garmin, Olathe, KS, 
USA). Various physicochemical parameters were used to assess the 
water quality. Physicochemical data in water including pH, salinity, 
dissolved oxygen, conductivity, total dissolved solids, redox potential 
and temperature were collected in situ using a multiparameter 
probe (YSI, OH, USA, Table 1). Sediment samples were collected 
in duplicates (20 to 25 cm in depth) using a polypropylene corer of 
18 mm diameter and one meter long. The samples were stored in 
sterile 50 mL conical tubes. Water samples were collected in sterile 
plastic bottles  (3 to 5 L total per site). Samples were transported to 
the laboratory in an ice box. Pulled column water samples for each 
sampling site were filtered using a nitrocellulose membrane of 0.45 
µm pore size (Millipore, Darmstadt, Germany). Sediment samples 
and water filters were stored at -20°C until DNA extraction process.

DNA extraction and sequencing

Total DNA purification was performed with previously reported 
silica adsorption-based method [41]. DNA was confirmed in a 1% 
agarose gel, concentration and purity were evaluated using both 
NanoDrop 2000 (Thermo Scientific, Waltham, MA, USA) and 
Quantus Fluorometer and the Quantifluor dsDNA system (Promega 
Corporation, Madison WI, USA). 16S rRNA gene sequencing 
was performed in the Laboratorio Nacional de Genómica para la 
Biodiversidad (LANGEBIO, Irapuato, Gto., Mexico). Libraries were 
prepared using the Nextera XT kit (Illumina, San Diego, CA, USA) 
and sequenced in a MiSeq instrument (Illumina, San Diego, CA, 
USA) generating 2 × 300 paired-end reads. 

Sequence data analysis

Paired reads were merged using PEAR v1.10.5 [42]. Merged reads 
were filtered using PRINSEQ-lite v0.20.4 [43], with Q20 as quality 
filter. Primers and adapters were removed using TagCleaner v0.16 
[44]. FastQC v0.11.5 (Babraham Institute, UK) was used for quality 
assessment of raw reads and after the TagCleaner process. One 
Codex [45] was used for taxonomic assignment. A search to identify 
bacteria associated to biocorrosion according to previous reports was 
performed. 

Statistical analyses

The physicochemical parameters obtained from environmental 
sampling sites were analyzed by Primer 6. The environmental variable 
data were uploaded and then transformed overall by square-root 

method. Subsequently, Principal Component Analysis (PCA) was 
performed from the databases of each site to find the correlation 
between environmental variables. Based on the variation percentage, 
the most sensible six variables were selected and multivariate analysis 
was done [46]. 

In order to find similarities between the samples, we constructed 
a resemblance matrix with the above-mentioned environmental 
variables using Primer 6. Subsequently, Hierarchical Cluster Analysis 
(HCA) of major components was performed [47]. 

Results 
Microbiologically-influenced corrosion (MIC) or biocorrosion 

causes severe damages in oil and pipeline industries; the causal agent 
of this problem are Sulfate reducing bacteria [SRB; 14,48,49]. The 
production of sulfide is highly reactive, corrosive, toxic and causes 
environmental and economic impact [32,50,51]. In the present study 
SRB were widely found in both water and sediment samples in the 
Yucatan peninsula of Mexico. Physicochemical parameters measured 
in water are presented in Table 2.

Generally, SRB grow optimally in the pH range of 5.5-8.5 and inhabit 
temperatures that vary from 0 to 100°C, with optimum temperature 
of 24-42°C [38,52]. Although, some SRB like Desulfonatronovibrio 
hydrogenovorans and Desulfonatronospira thiodismutans can survive 
at pH>9.5 and pH<5 respectively [33,53,54]. However, at the time of 
sampling, the pH and temperature ranged from 6.90 to 9.02 and 25.0 
to 35.04°C respectively, except in one sample from wetlands (water 
sample 7) where the temperature of water was 78.33°C, this place is 
near to the pipeline of the gas station of Sisal, Yucatan (Table 2). 

In addition, other parameters such as oxygen percentage, 
oxygen concentration (mg/L), Redox potential, salt concentration, 

No Environment Sample type (Water/
Sediment) Location (GPS) North/West

1 Freshwater 
upwellings Water 21º13'8.2554'/89º53'45.0954''

2 Lagoon Water and sediment 21º13'35''/89º53'44''
3 Lagoon Water and sediment 21º13'15''/89º52'58''
4 Lagoon Water and sediment 21º13'08''/89º52'54''
5 Wetlands Water and sediment 21º09'33.7''/90º02'51.4''
6 Wetlands Water and sediment 21º09'30.4''/90º02'42.4''
7 Wetlands Water and sediment 21º09'46.8''/90º01'52.2''
8 Wetlands Water and sediment 21º09'53''/90º01'28.5''
9 (i) Sea (Beach) Water 21º10'03.8''/90º01'54.3''
9 (ii) Sea (Beach) Sediment 21º10'03.8''/90º01'55.9''
10 Sea (Beach) Water and sediment 21º10'0.5''/90º02'1.8''
11 Sea (Beach) Water and sediment 21º09'59.7''/90º02'04.6''
12 Sea (Beach) Water and sediment 21º09'59.9''/90º02'14.3''
13 Sea (Beach) Water and sediment 21º09'57.9''/90º02'18.0''
14 Sea (Beach) Water and sediment 21º09'57.8''/90º02'31.4''
15 Sea (Beach) Water and sediment 21º09'57.7''/90º02'55.9''
16 Sea Water and sediment 21º09'34.14''/90º02'53.92''

17 Freshwater 
upwellings Water and sediment 21º11'24.7''/89º57'09.2''

18 Freshwater 
upwellings Water and sediment 21º11'52.0''/89º56'48.0''

19 Wetlands Water 21º10'02.1''/90º00'47.8''
20 Wetlands Water 21º11'54.2''/89º57'09.2''
21 Sea Water and sediment 21º20'08.36''/90º08'08.61'' 

Table 1: Samples and sampling sites used in this study.
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conductivity (mS/m) and total dissolved solids (g/L) were shown 
(Table 2). Percentage of oxygen and oxygen concentration (mg/L) 
varied in different environments; from very low to high concentrations 
including Freshwater upwellings (0.3 mg/L) to lagoon (7.78 mg/L) 
and Sea (Beach; 9.2 mg/L). Salinity, conductivity and total dissolved 
solids were also presented (Table 2). 

 Among the five phylogenetic lineages of SRB [38,55], our 16S 
rRNA gene sequencing analysis showed that eight genera were 
identified in twenty-one sampling sites of environments such as 
Lagoon, Freshwater upwellings, Sea and Wetlands in both water 
and sediment samples; such as Desulfatibacillum, Desulfatitalea, 
Desulfobacula, Desulfobulbus, Desulfotignum, Desulfotomaculum, 
Desulfovibrio and Sulfurospirillum (Figure 1). 

Each environment showed different abundance of reads for 
each genus. Desulfatibacillum reads were the most abundant, 
in lagoon and sea (Figure 1). Desulfovibrio reads were the most 
abundant in freshwater upwellings. In wetlands, the most abundant 
genera in sequencing reads were Desulfotignum, Desulfovibrio and 
Desulfatibacilum. Sulfurospirillum was the least abundant genus, in all 
the environments followed by Desulfobacula and Desulfotomaculum.

Desulfotomaculum spp are anaerobic, gram-positive, widely 
present, heat-resistant spore producing and very diverse in both 
phylogenetically and physiologically SRB [56-58]. Desulfotomaculum 
genus was widely found in our sampling sites, except lagoon (2w), 
wetlands (19w), wetlands (20w) and sea (21w). This genus is composed 
of 30 species and one subspecies [59]. In our samples, we have found 
Desulfotomaculum nigrificans species in just one sampling site (3w 
lagoon); in sediment samples it was found in two places in wetlands 
(5s) and sea (21s, data not shown). 

Desulfovibrio sp. is a genus of SRB, gram negative, anaerobic 
bacteria, which create MIC in steel pipeline industries [9]. We have 
found Desulfovibrio desulfuricans ND132 in most of the sampling 
sites. D. desulfuricans species could be detected in soil, fresh water 
and salt marshes, environment, and human intestinal flora [60,61]. 
In our study, Desulfovibrio genus and its various species were found 
widely when compared with other genera. Desulfovibrio alaskensis 
was found both in the water and sediment samples from many sites 
(data not shown). D. alaskensis strains are related to petroleum 
industries [62], this strain might be found in contaminated petroleum 
regions through the Gulf of Mexico. Similarly, D. alaskensis G20 
bacteria was isolated from a corrosion site of an oil well in Ventura 
Country, California [35]. 

In all twenty-one water sampling sites we have found 
Thermodesulfobium narugense DSM 14796 (Thermodesulfobium 
genus, data not shown). This T. narugense is an anerobic, acidophilic 
and thermophilic autotroph SRB species and classified under 
Firmicutes phylum [40,63], present in the water samples of Freshwater 
upwellings and in Lagoon. Species: T. narugense DSM 14796 is a strain 
type SRB that was previously isolated from Narugo hot spring of 
Miyagi, Japan (40). Whereas in sediment samples, Desulfurobacterium 
sp. TC5-1 was found only in Lagoon (2s). Desulfobulbus sp. Tol-SR is 
a species found in all the locations in sediments and in water samples 
as well (sea 21w, s). 

A little variation has been found in water and sediment samples 
from the same sampling sites. Even at high temperature as 78.33°C, 
we have found all the eight genera of sulfate reducing bacteria in both 
water and sediment samples at one place, (Wetlands 7w, s; Table 2). 
Out of twenty-one sampling sites, we were not able to obtain any data 
sequences from three sampling sites, such as freshwater upwellings 

No Environment Oxygen (%) Oxygen concentration 
(mg/L) pH Redox 

potential
Temperature 
(°C) Salinity Conductivity(mS/m) Total dissolved 

solids (g/L)

1 Freshwater 
upwellings 4.7  0.35 7.41 77.3  26.64 1.76 3.47 2.19

2 Lagoon 86 5.25 8.67 69.9  31.10 36.03 61.07 35.55
3 Lagoon 109.4 6.4 8.83 33.9  33.3 38.42 67.22 37.72
4 Lagoon 136.5 7.78 9.02 -30.1  35.04 38.40 63.22 37.75
5 Wetlands 27.3 1.78 8.08 117.5  30.01 25.82 44.88 26.39
6 Wetlands  16.7  1.16  8.58 -36.2  26.91  25.76 38.92 24.41
7 Wetlands 51.5 3.61 8.71 -2.6 78.33 19.02 32.69 19.99
8 Wetlands 72.9 4.93 8.57 -94.5  30.32 19.72 35.02 20.69
9 (i) Sea (Beach) 108 6.9 8.2 41.7  29.30 32.92 54.54 32.76
9 (ii) Sea (Beach) 106 6.8 8.23 37.8  29.30 32.85 54.23 32.69
10 Sea (Beach)  95.8  5.87  8.46 63.9  30.59  36.57 61.35 36.01
11 Sea (Beach) 95.1  5.83  8.86 50.8 30.61 36.64 61.49 36.08
12 Sea (Beach)  142  9.2  8.16  No data 28.7 33.88 53.81 32.59
13 Sea (Beach) 98.8  6.0  8.57 72.5  30.65  36.59 61.41 36.06
14 Sea (Beach) 127  8.2  8.17  No data 28.7  32.98 54.00 32.82
15 Sea (Beach)  120 7.8  8.07 4.01 27.9  33.01 53.23 32.82
16 Sea 76.0  4.85  8.06  -25.8  29.83  32.46 54.20 32.35

17 Freshwater 
upwellings 29.0  2.2  6.99 85.3  25.2  2.22 34.47 2.22

 18 Freshwater 
upwellings 4.0  0.3  6.90 67.0  25.0  25.0 63.57 4.13

19 Wetlands 44 3.0 8.12 166.5  30.2 16.51 29.80 17.62
20 Wetlands 107 6.1 8.53 100.6  33.3 36.10 63.52 35.68
 21 Sea 109  8.6  8.02 35.5  26.1  32.57 50.88 32.37

Table 2: Physicochemical properties of water in the sampling sites.
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(1s), wetlands (19s, 20s) in sediment samples. We could not obtain 
amplicons for the above-mentioned sediment samples, because they 
had not enough concentration of DNA. Therefore, we analyzed only 21 
water samples and 18 sediment samples from distinct environments. 

Principal Component Analysis (PCA) from the physicochemical 
parameters of environmental data sets. Out of eight variables, six 
were significative and thus considered as principal components, 
such as oxygen percentage, pH, Temperature, Salinity, Conductivity 
and Total dissolved solids (Figure 2 and Table 3). Percent variance 

(% var) and cumulative percent variance (Cum. %) contribution has 
been showed for each variable. However, the variable Total Dissolved 
Solids (TDS) g/L did not contribute to the percent variance in this 
statistical analysis. As indicated in Table 3, oxygen percentage was the 
principal component among all the variables with the highest percent 
variance (80.5%) followed by other components. 

To complement PCA, a Hierarchical Clustering Analysis (HCA) 
was carried out (Figure 3) in search of a stricter division of groups, 
establishing similarities between environmental variables and thus 

Figure 1: Presence of Sulfate Reducing bacteria (SRB) obtained from 16S rRNA gene sequencing reads from different environmental sampling sites.

Figure 2: Principal Component Analysis (PCA) of environmental variables.

No. Principal Component (PC) Eigenvalues % variation Cum % variation
1 Oxygen (O2) % 1.96E3 80.5 80.5
2 pH 311 12.8 93.3
3 Temperature (T) °C 117 4.8 98.1
4 Salinity (ppm) 44.2 1.8 99.9
5 Conductivity (mS/m) 2.82 0.1 100.0

Table 3: Principal Component Analysis (PCA) of variables from environmental parameters.
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Figure 3: Hierarchical Cluster Analysis (HCA) of environmental samples (water and sediment) with physicochemical parameters.

facilitating the processing of information. HCA showed in Figure 3 
that an out group and two major clusters, such as cluster 1 and cluster 
2 were obtained. Out group sample (7 wetlands) was collected near to 
a gas station were the water level was very low. Thus, the temperature 
was the highest among all the sampling sites (78.33°C). 

Cluster 1 contained three sub-clusters such as sub-clusters 1, 
2 and 3. Sub-cluster 1 contained beach and sea samples which had 
saline water. Sub-cluster 2 included lagoon and beach (sea) samples 
where salinity was higher. In, sub-cluster 3 most of the samples were 
from wetlands and just one from sea [21]. In wetlands, the salinity 
of the water was reduced due to rain fall and thus formed a separate 
sub-cluster. 

Cluster 2 included samples 1, 17 and 18 from freshwater 
upwelling, where pH values and temperature were relatively low in 
comparison with other samples. The vegetation was abundant and 
thus reduced the heat in the ambient. In all the eight SRB genera, 
Sulfurospirillum was not found in some of the water [1,11-13] and 
sediment samples [10,14,15,21]. It is interesting that even at high 
temperature (78.33°C) all the above-mentioned genera were found 
in both water and sediment samples. Overall, cluster 1 and cluster 2 
contained salt water and freshwater respectively (Figure 3). 

Thus, statistical analyses such as Principal Component Analysis 
(PCA) and Hierarchical Cluster Analysis (HCA) showed that samples 
could be grouped according to the physicochemical parameters 
measured in water. Eight SRB genera were found in most of the 
environmental water and sediment samples in all groups. 

Discussion 
Sulfate-reducing bacteria (SRB) have been considered as typical 

and ubiquitous in anaerobic environments and one of the most 

ancient prokaryotes [1,16,51,64]. In tropical mangrove, marine water 
and sediment samples the temperature is one of the key elements for 
the healthy microbial niche, metabolic activities and biogeochemical 
cycle such as carbon and sulfur in the environment [24,65]. Anoxic 
sulfate-rich environmental conditions such as sea water and ocean salt 
water promote the survival capacity of SRB. Whereas, in freshwater 
ambient, the anaerobic metabolic activity would go in minimal level 
[19]. In the present study, we showed the presence of Sulfate reducing 
bacteria related to biocorrosion in water and sediment samples from 
Sisal Port in the Yucatan Peninsula of Mexico. 

Our study showed that the optimum temperature was available 
in most of the sampling sites and other physicochemical parameters 
also were optimum for the growth of the sulfate reducing bacterial 
population. Among all the eight genera of SRB present in the 
samples, Desulfatibacillum and Desulfovibrio were highly abundant 
in both water and sediment. The reason behind is that out of 37 
bacterial genera in SRB group, Desulfovibrio genus is one of the 
most abundant, opportunists and the second largest in number 
of species containing genus illustrated as gram-negative bacteria 
[32,66-68]. In our samples we have found SRB genera such as 
Desulfobulbus, Desulfotomaculum and Desulfovibrio and their 
species in the sample next to the gas station according to 16S rRNA 
gene sequencing analysis; similarly, Desulfovibrio, Desulfotignum 
and Thermodesulforhabdus sulfate reducing microorganisms 
(SRM) including archaeal communities as Archaeoglobus genus 
were found in a high temperature petroleum reservoir by the 
combined approach of 16S rDNA and 16S rRNA high-throughput 
sequencing analysis [69]. All eight genera were found in water and 
sediment of almost all the sampling sites (both freshwater and salt 
water). Physicochemical parameters did not affect the presence of 
the bio-corrosion causing SRB in this study.
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Laboratory conditions are not similar as in natural environments 
(Microbiologically-influenced corrosion) for SRB, though various 
studies have showed that it is possible to culture them under 
controlled experimental conditions. However, the limitations of the 
conventional microscopic and culture-based identification techniques 
allow only a little percentage (less than 1%) of bacteria of the total 
diversity to be isolated from nature [49,70-72]. Therefore, in this 
study, 16S rRNA gene sequencing has been used for the identification 
of sulfate reducing bacteria at the genus level. 

Moreover, molecular biology techniques such as Fluorescent 
in situ hybridization (FISH), microarray DNA technology and 
functional gene markers such as Dissimilatory sulfite reductase 
(dsrAB) and adenosine phosphor sulfate reductase (apsA) sequencing 
analysis could be used for the identification and classification of SRB 
from different environments. Dsr, APS and Apr play important roles 
and act as the key enzymes of dissimilatory pathways such as sulfate 
reduction and sulfur oxidation [73]. Also, dsrAB, apsA and other key 
sulfate reduction genes are conserved in twenty-five [74]. Further 
studies are needed to understand the genes involved in biocorrosion 
mechanisms to control the bio-corrosion caused by Sulfate-reducing 
bacteria. 

Molecular related technologies should develop in order to reduce 
and recover the huge loss in oil and pipeline industries. Apart from 
this, it is important to understand the complete mechanism of 
biocorrosion caused by these ancient bacteria. The dilucidation of the 
genome sequences of these potent microbes have played a positive 
role in both industrial and agro-health sectors. Moreover, the 
exploration of the abundant microorganisms in natural resources 
could lead to their conservation and a better understanding of 
their roles in ecological niches. To the best of our knowledge, 
this is the first 16S rRNA sequence-based report to identify the 
presence of Sulfate-reducing bacteria related to biocorrosion from 
environmental water and sediment in the Yucatan peninsula of 
Mexico. 

Conclusion 
As a conclusion, our study provides evidence of the presence 

of SRB in the Yucatan peninsula of Mexico, including the genera 
Desulfatibacillum, Desulfatitalea, Desulfobacula, Desulfobulbus, 
Desulfotignum, Desulfotomaculum, Desulfovibrio and Sulfurospirillum 
which might be involved in biocorrosion mechanisms in various 
environments. Further genetical and biochemical characterization 
of these microorganisms will be necessary to dilucidate their role in 
biocorrosion specifically in the environments studied. 
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