
Compact Tree Structures for
Mining High Utility Itemsets
Hailye Tekleselase*

Department of Information Systems, Wolaita Sodo University, Addis Ababa, 
Ethiopia

*Corresponding author: Tekleselase H, Department of Information Systems, 
Wolaita Sodo University, Addis Ababa, Ethiopia, E-mail: hailyie83@gmail.com
Received date: September 29, 2021; Accepted date: October 13, 2021; 
Published date: October 20, 2021

Abstract

High Utility Itemset Mining (HUIM) from large transaction
databases has garnered significant attention as it accounts for
the revenue of the items purchased in a transaction. While
most tree-based algorithms to mine HUIs transform the
database to an item-prefix tree, they discard the unpromising
items and consume a significant amount of memory. Employing
trees that store transaction-level information has proven to
enhance the mining process in conjunction with such prefix
trees. In this regard, the present work proposes memory-
efficient trees namely- Utility Prime Tree (UPT), Prime Cantor
Function Tree (PCFT), and String based Utility Prime Tree
(SUPT) that encode entire transaction information in a node,
unlike the prefix-based trees through a single database scan.
Experiments conducted on both the real and synthetic datasets
show that these structures consume significantly less memory
when compared to the tree structures in the literature.

Keywords: High Utility Itemset Mining, Tree based algorithms

Introduction
Mining frequent itemsets from a large transaction database is an

indispensable step in obtaining patterns that indicate associations
among items. Such a task addresses the market basket analysis
problem of identifying frequently purchased items by a customer on
his visit to a supermarket store. Since its inception, Frequent Itemset
Mining (FIM) has been applied in diverse areas such as Text Mining,
Bioinformatics, and Pharmacovigilance and so on and has delivered
novel insights. Amongst plethora of application areas recommendation
systems, Intrusion Detection Systems, Web-click analysis are
noteworthy. Due to its versatility, FIM is viewed as a general and
popular data mining task.

FIM algorithms are designed to consider only the frequency of
occurrence of an itemset in a transaction database. However, the
factors such as purchase quantities of items and their unit profit are not
handled. Consequently, the patterns obtained are devoid of the revenue
information. High Utility Itemset Mining (HUIM) provides for a
model where the aforementioned factors can be accommodated during
mining. Hence, this area has played a pivotal role since the past
decade as a more generalised form of FIM. Most of the algorithms
employed for FIM work on the downward closure property of the
support or frequency of an itemset in order to enumerate the patterns.
However, the revenue or utility measured as unit Prof it purchase
quantities is neither monotone nor ant monotone. E.g., if the database

shown in considered, the utilities of itemsets are respectively. If the
user defined threshold of minimum utility to extract the high utility
patterns were set to 18, then the high utility itemset contains both a
high utility and low utility subsets [1]. Hence, the utility measure for
an itemset does not satisfy the downward closure property.

Materials and Methods
The utility measure carries a broader significance that may vary

depending on the domain where these algorithms are applied, and the
intent of the study. E.g., certain studies have incorporated correlation
of items, discount or cost variations of items in conjunction with the
utility. Additionally, HUIM algorithms have been applied in different
fields such as mobile commerce, web mining, and biomedicine
facilitating efficacious applications.

HUIM has evolved from two-phase to single phase algorithms.
Although there is an absence of downward closure property, studies
have explored various measures to prune the search space and
efficiently mine High Utility Itemsets (HUIs). Generally, the
algorithms discard the items that are deemed to be unpromising during
the initial phase when a data structure such as a tree or a list is
constructed. If a user requests for mining with a lower threshold,
certain unpromising items may turn out to be promising mediating
data structure reconstruction from scratch. Also, varying the threshold
is a plausible scenario amongst decision makers. The patterns obtained
at different thresholds get adjudged by the decision makers for
interestingness before arriving at a consensus. Primarily, the
thresholds and interestingness measures are varied to suite the
intended application of the mining task. Apart from this, quality
decision making requires the algorithm to ensure better inter
activeness instead of repeated data structure construction prior to
mining. Apart from this, the trees occupy significant amount of
memory as the transaction databases are voluminous and mostly
sparse. Further, the divide and conquer strategy employed during the
mining phase is a recursive process that necessitates the creation of
large number of conditional pattern trees. This can overwhelm the
memory space and hence adversely affect the mining performance.

Recently, an algorithm called SPUC was proposed. In this study, the
authors proposed two tree structures-a transaction-level compressed
tree called SUT (String Utility Tree) along with a conventional prefix
tree called Utility Count Tree (UCT) for mining HUIs in a single-
phase. In order to alleviate the aforementioned shortcomings, the
current work proposes and evaluates trees similar to SUT that
compactly represent the transaction database. Most of the existing
trees encode the database information on a per item basis for each
transaction. In contrast to this, the proposed tree structures compactly
represent the information in the nodes of the tree at the transaction
level thus providing a higher abstraction. Also, the memory efficiency
of these structures namely Utility Prime Tree (UPT), Prime Cantor
Function Tree (PCFT), and String based Utility Prime Tree (SUPT)
have been compared with the Utility Count Tree (UCT). The
significance and advantages of the proposed tree structures are
enumerated below:

All these trees are complete i.e., these are constructed using a single
database scan without discarding any items. This ensures faster
construction as multiple database scans (a costly I/O operation) in
discarding the unpromising items is overcome.

Journal of Nuclear
Energy Science & Power
Generation Technology

Research Article A SCITECHNOL JOURNAL

All articles published in Journal of Nuclear Energy Science & Power Generation Technology are the property of
SciTechnol and is protected by copyright laws. Copyright © 2021, SciTechnol, All Rights Reserved.

Haliye, J Nucl Ene Sci Power Generat Technol 2021, 10:11

mailto:marwabelhaj2@gmail.com


The trees are compact due to the encoding of information with
respect to a transaction rather than per item basis in the nodes of the
trees. Also, experimental evaluations prove that they are memory
efficient

The rest of this paper is organized as follows. In subsections 2.1
and 2.2 of Section 2 formal concepts and related work in the area of
HUIM have been described. The proposed data structures have been
detailed in Section 3. The paper concludes with experimental
evaluation and conclusion provided in Section 4 and 5 respectively
(Table 1).

Item 1 2 3 4 5 6 7

Profit 5 2 1 2 3 5 1

(b) Transaction Table

TID Transaction

T1 {(3,1)(5,1)(1,1)(2,5)(4,3)(6,1)}

T2 {(3,3)(5,1)(2,4)(4,3)}

T3 {(3,1)(1,1)(4,1)}

T4 {(3,6)(5,2)(1,2)(7,5)}

T5 {(3,2)(5,1)(2,2)(7,2)}

Table 1: Sample database.

Background
Preliminary: Given a transaction database D, each transaction Td in

D is identified by TID, the transaction identifier and records a
collection of items purchased along with its quantity or internal utility.
Formally, T I where I = fi1; i2; i3; ing denotes the collection of items.
A typical transaction database. An ordered pair (ix; qx) in each
transaction indicates that the item ix was purchased in qx quantities in
that transaction. Each item is also associated with unit profit or
external utility as shown.

Related Work
For an itemset X, the TWU is an upper bound on the utility, u(X)

and antimonotone. Hence, most of the algorithms that generate and
test candidates in a level-wise manner employ this measure to prune
the search space [2]. However, such a level-wise approach is time
consuming owing to the repeated database scans to determine the
TWU of large number of candidate itemsets. Further, the join
operation adds to the complexity of enumerating higher order itemsets.
In order to alleviate this problem, several algorithms have been
proposed that transform the information in the database to a data
structure. The subsequent mining involves operating on this data
structure without the necessity of scanning the database.

In this regard, the role of HUP-Growth, HUC-Prune based on FP-
Growth is significant. While both the algorithms transform the
database into a tree with a node for every item of a transaction, the
former captures the quantity information in one of the elements of the
node. Due to the absence of a mechanism to enumerate itemsets from
the HUP-tree efficiently, a lot of candidate itemsets are generated. In
contrast, HUC-Tree employs the TWU Downward Closure Property
and employs pattern growth approach to enumerate candidate HUIs.

Although both the algorithms generate significantly lesser number of
candidates in comparison to the Two-Phase algorithm, the tree
structure needs to be reconstructed once the user defined threshold for
minimum utility, i.e., minutil is modified.

UP-Growth and UP-Growth+are the efficient state of the art tree
based algorithms. Here, the authors proposed several strategies to
prune the search space during construction and recursive mining of the
UP-Tree. At the very outset, during the first database scan, those 1-
items that were not HTWUI are discarded. Further, the utilities of each
item is calculated without considering its descendants. In a similar
manner, during the mining operation local UP-trees are constructed
after discarding local unpromising items and decreasing minimum
utilities of descendant nodes. The bounds are further strengthened in
UP-Growth+ based on path utilities and estimated utilities of
descendant nodes.

Compact tree structures for mining high utility itemsets
In order to facilitate efficient incremental and interactive mining of

HUIs, IHUP algorithm that constructs tree without ignoring any items
based on TWU was proposed. Authors proposed three different
approaches of tree construction-based on lexicographic order of items
called IHUPL-Tree, based on descending order of Transaction
Frequency called IHUPTF-Tree and based on descending order of
TWU called IHUPTWU-tree. After every N transaction is read,
IHUPTF-Tree and IHUPTWU-tree has to be reordered that increases
the data structure construction time.

Apart from the tree based algorithms, several list based algorithms
are available in the literature such as HUI-Miner, HUP-Miner, d2HUP.
These algorithms are mostly single-phase and employ pruning
strategies for efficient mining. However, the memory consumed in
storing the Utility Lists and the costly comparison and join operation
is a severe performance bottleneck [3]. Further, recent studies have
indicated that trees can outperform list based and projection based
algorithms. In addition to this, recently a single-phase trees based
algorithm called SPUC (Single-phase Utility Computation) was
proposed. In SPUC mining process was guided by a conventional
prefix tree called UCT and converged in a single-phase with exact
utility information stored in transaction level compressed String
Utility Tree (SUT). The authors demonstrated the efficiency of SPUC
algorithm in comparison to IHUP, UP-Growth, and UP-Growth+
algorithms. Thus, the current study aims to compactly represent the
transaction information in a tree so as to ensure completeness and
memory efficiency.

In this section three different tree structures are proposed to
represent the transaction database namely:

• Utility Prime Tree (UPT)

• Prime Cantor Function Tree (PCFT)

• String based Utility Prime Tree (SUPT)

The following subsections are dedicated to each of these tree
structures where the node structure and brief procedure of representing
the information in the database is described. Although UCT is first
proposed in it has been briefly described here for the benefit of the
readers.

Utility count tree
A node in the Utility Count Tree has the following fields:

Citation:

JNPGT-21-35493
• Page 2 of 7 •

Haliye T (2021) Compact Tree Structures for Mining High Utility Itemsets. J Nucl Ene Sci Power Generat Technol 10:11.

Volume 10 • Issue 11 •



item that denotes the name of the item,

count that indicates the count of the item in the given path of the
tree,

utility that accumulates the utility of the item in the given path of
the tree,

parent pointer that points to the parent of the node

UCT is constructed without discarding any items during the initial
tree construction unlike HUP-Growth or HUC-Prune. The database is
scanned and a node N is constructed for every item in a transaction Tj.
The brief procedure for inserting transactions into UCT is provided in
Algorithm. Initially N is set to the root node of the tree. The items in
the transaction are inserted as child nodes of one another. Hence, each
path of the tree corresponds to a particular transaction. If a transaction
contains a node that is already present in the tree, the procedure
updates the count and utility instead of creating a new node in the
given path. This ensures prefix sharing. The UCT for sample database
displayed in (Figure 1).

Figure 1: UCT for database.

Database with a single scan of the database, UCT captures relevant
information in its tree structure. Although the count field indicates the
number of transactions a given item is participating, reconstructing the
database from this information is not possible. For example, consider
the paths < 3; 5; 2; 4 > and < 3; 5; 2; 7 > for UCT. The count field for
item 2 has the value 2 as it is participating in two transactions, T2 and
T5. However, the utility value is cumulative of utilities in these two
transactions and does not enable in resolving the utility individually
across the two transactions (Figure 2).

Utility prime tree
Utility Prime Tree captures the transaction level information in a

single node unlike the UCT. The items and utilities are mapped to
corresponding prime numbers by employing them as indices. The
assigned prime numbers are then stored compactly in a node of the
UPT. Every node of the UPT contains the following fields:

primeItems This field stores the product obtained after multiplying
the prime numbers assigned to every item of a transaction

T U This field stores the Transaction Utility of a transaction

primeU tility(Tj) This field stores the product obtained after
multiplying the prime numbers assigned to utility of every item of a
transaction

parent pointer that points to the parent of the node.

Figure 2: UPT for database.

UPT compactly stores the database information by capturing the
information at the transaction level instead of creating node for every
item in a transaction. However, as the number of items and
transactions increase, the space required to store the product, primeU
tility(Tj) overwhelms the allocated node space. Hence, factorising and
subsequent resolution of utilities of items is not facilitated.

Brief procedure to construct PCFT is provided in Algorithm.
Displays the PCFT although the tree is complete and ensure database
reconstruction, the main drawback is absence of path sharing as
evident. For example, while T2 and T3 appear as child of T1 in UPT
as items(T2) items(T1) and items(T3) items(T1), due to the
uniqueness in mapping of (ix; u(ix; Tj)) through CF prior to prime
encoding, the sharing is absent in PCFT. With PCFT, if items are
purchased in similar quantities across two transactions Ti and Tj such
that either items (Ti) items (Tj) or items (Tj) items (Ti) sharing can be
ensured.

Utility values are used along with items in the cantor function prior
to assigning them with the corresponding prime numbers. If an item is
present in two different transactions, CF maps the item-utility pair to a
unique number and hence the same item may get assigned to different
prime numbers if the utility values are different. This limits the prefix
sharing in the PCFT owing to the inherent feature of the CF. The
major implementation drawback is due to the large value obtained to
store primeCF (Tj) for every transaction. This is bound to increase
overwhelmingly with growing number of items in the database (Figure
3).

Figure 3: PCFT for database.

String based utility prime tree
This tree is similar to UPT. In order to overcome the problem of

storing large number that arises from computing primeItem (Tj), the
prime numbers assigned to items and utilities are concatenated by a
delimiter. As this information is stored in textual format, substring
comparison is performed while inserting transactions into the tree
structure to identify the transactions containing common set of items.
This ensures prefix-sharing. Also, it is possible to reconstruct the

Citation:

JNPGT-21-35493
• Page 3 of 7 •

Haliye T (2021) Compact Tree Structures for Mining High Utility Itemsets. J Nucl Ene Sci Power Generat Technol 10:11.`

Volume 10 • Issue 11 •



entire database due to the string representation of the primeItems and
primeU tility. The procedure and SUPT for sample database is
displayed in Algorithm 4 respectively (Figure 4 and Table 2).

Figure 4: SPUT for database.

Dataset jDj jIj T Density(%)

Chess 3196 75 37 49.33

Mushroom 8124 119 23 19.32

Foodmart 4141 1559 4.4 0.28

Retail 88162 16470 10.3 0.06

Connect 67557 129 43 33.33

Table 2: Characteristics of real datasets.

SUPT bears slight resemblance to the String Utility Tree proposed.
While SUT directly concatenates the items and utilities using a
delimiter, SUPT resorts to prime encoding prior to concatenation.

Experimental evaluation
The source code implementation in Java provided by SPMF was

extensively used to implement the algorithms of the proposed tree
structures. Experiments were conducted on both real and synthetic
datasets to compare the execution time and memory consumed by the
proposed tree structures against the two popular tree structures in the
literature namely, IHUP and UP-Growth trees. Table 2 records the
characteristics of the datasets used. For the experiments, a system with
8GB RAM, Windows 7 OS with Intel Core i5 processor at 3.00 GHz
was used (Figure 5).

Performance analysis on real datasets

Figure 5: Execution time of the algorithms on real datasets.

Depicts the execution time of the algorithms. Across all the
datasets, UCT executed faster than the remaining algorithms. The
percentage improvement obtained due to UCT in comparison to IHUP
and UP-Growth trees is recorded in Table 3. Among the prime-based
trees, UPT performed better, especially when the dense datasets were
considered. As shown in the figure, it executed faster than UP-Growth
by 66%, 36% and 65% on Chess, M ushroom and Connect datasets
respectively. Also, PCFT performed 48:8% faster than UP-Growth on
Connect dataset. However, its performance was poor on large and
sparse datasets such as, F oodmart and Retail. Owing to the longer
execution time, PCFT was executed on only 100 and 500 transactions
of these two datasets. The larger values obtained after applying CF to
(ix; u(ix; Tj)) pair increased the prime encoding time that subsequently
affected the overall execution time. Although SUPT took longer time
for construction, it performed significantly faster on F oodmart, one of
the sparse datasets where PCFT failed [4]. The low value of T for this
dataset ensured the presence of common set of items across different
transactions leading to lesser string comparisons during the tree
construction.

Denotes the memory consumed by the proposed structures in
comparison with IHUP and UP-Growth trees. The getObjectSize
(Object) method of Instrumentation interface implemented and
provided in sizeof package was used to calculate the amount of
memory consumed. Due to longer execution time only 100 and 500
transactions of F oodmart and Retail was considered. The prime-based
tree structures clearly consumed significantly lesser space in
comparison to the remaining trees. The transaction level encoding of
database information ascertains the lower memory (Table 3 and Figure
6).

Dataset IHUP UP-Growth

Chess 76.47 91.56

Mushroom 64.26 91.38

Foodmart 72.1 92.91

Retail 64.76 99.82

Connect 50.83 99.48

Table 3: Percentage improvement in execution time of UCT in
comparison to IHUP and UP-Growth trees.

Figure 6: Space consumed by the tree structures on real datasets.

Citation:

JNPGT-21-35493
• Page 4 of 7 •

Haliye T (2021) Compact Tree Structures for Mining High Utility Itemsets. J Nucl Ene Sci Power Generat Technol 10:11.

Volume 10 • Issue 11 •



On an average across Chess dataset, UPT, PCFT, and SUPT
consume 19:5, 19:5 and times lesser memory than IHUP and UP-
Growth trees. Across M ushroom, in the same order the reduction in
memory was 5.2, 5.2 and 5.8 times. Due to partial database considered
when running PCFT implementation of F oodmart, UPT and SUPT
consumed 5.9 and 6.5 times lesser space. This reduction for the two
trees was about 12.6 and 13.3 in the case of Retail, another sparse
dataset. A reduction of about 8.6 and 9.7 times was observed when
Connect dataset was considered. Although PCFT has only two fields,
the prefix sharing is easier across SUPT than in PCFT. Hence SUPT
turned out to be memory efficient among the proposed trees (Tables 4
and 5).

Dataset UPT PCFT SUPT

Chess 19.97 19.97 22.57

Mushroom 5.21 5.21 5.89

Foodmart 5.95 255.4 6.56

Retail 12.64 2226.04 13.31

Connect 8.61 57.01 9.75

Table 4: Space reduction in comparison to IHUP.

Dataset UPT PCFT SUPT

Chess 19.16 19.16 21.66

Mushroom 5.2 5.2 5.89

Foodmart 5.91 253.54 6.51

Retail 12.64 2226.04 13.31

Connect 8.61 57.01 9.75

Table 5: Space reduction in comparison to UP-Growth.

Performance analysis on synthetic datasets
In order to further evaluate the performance of the proposed

structures, synthetic datasets were generated using the SPMF tool.
First set of datasets were mostly dense and their characteristics are
provided in Table 6 where the parameter Tmax denotes the maximum
transaction length (Table 6).

Dataset jDj jIj Tmax Density(%)

d01 5000 100 10 5.54

d02 5000 100 50 25.53

d03 5000 500 10 1.09

d04 5000 500 50 5.04

d05 10000 100 10 5.43

d06 10000 100 50 25.61

d07 10000 500 10 1.1

d08 10000 500 50 5.1

Table 6: Characteristics of synthetic dense datasets.

The execution time of different algorithms is compared. As in the
case of real datasets, UCT clearly outperformed all the algorithms.
Records the percentage improvement obtained in execution time when
UCT was compared with IHUP and UP-Growth trees. On an average
an improvement of 82:82% on IHUP and 52:49% on UP-Growth was
observed. Among the prime-based trees, UPT and SUPT showed
promising results. Further, on very dense datasets like d02 and d06,
PCFT executed faster than SUPT, although not considerably.
However, as the datasets became relatively sparse its performance
degraded, especially in the case of d03 and d07 where SUPT and UPT
(Figure 7).

Figure 7: Execution Time of the algorithms on synthetic dense
datasets.

Performed significantly better this indicates that PCFT is more
sensitive to sparseness. In the case of UPT and SUPT the increase in
execution time with the increase in density for a constant database size
was significant in contrast to PCFT. Especially in the case of d03 and
d04 where the change in density was around 4 units, execution time of
PCFT was almost the same while there was sharp increase in
execution time of both UPT and SUPT. This indicates that UPT and
SUPT are more sensitive to density changes for a given size of the
database than PCFT (Table 7 and Figure 8).

Dataset UP-Growth IHUP

d01 83.24 44.24

d02 89.83 78.16

d03 81.96 45.45

d04 85.59 66.09

d05 80.34 32.74

d06 84.42 58.65

d07 74.08 44.48

d08 83.14 64.53

Table 7: Percentage improvement in execution time of UCT across
synthetic dense datasets.

Citation:

JNPGT-21-35493
• Page 5 of 7 •

Haliye T (2021) Compact Tree Structures for Mining High Utility Itemsets. J Nucl Ene Sci Power Generat Technol 10:11.

Volume 10 • Issue 11 •



Figure 8: Space consumed by the tree structures on real datasets.

Further, the memory consumed by the various structures was
compared as shown in Figure 8. SUPT turned out to be the memory
efficient one. For a given database size, although the memory taken up
by tree structures seemed to be mostly independent of the changing
density, SUPT showed slight variations when compared to other
prime-based trees. This difference was evident with growing database
size. Record the factor-wise memory consumption of Prime Trees in
comparison to IHUP and UP-Growth trees. Comparison on real and
synthetic dense datasets indicated that UCT is more time efficient
whereas SUPT is more memory efficient (Table 8 and 9).

Dataset UPT PCFT SUPT

d01 5.89 5.9 5.92

d02 37.5 37.78 40.82

d03 7.08 7.01 7.24

d04 39.95 40.44 43.72

d05 5.56 0.562 5.55

d06 37.77 37.06 40.11

d07 6.95 6.77 6.89

d08 39.94 40.35 44.99

Table 8: Space reduction in comparison to IHUP.

Dataset UPT PCFT SUPT

d01 5.89 5.9 5.92

d02 37.5 37.78 40.82

d03 7.08 7.01 7.24

d04 39.95 40.44 43.72

d05 5.56 0.562 5.55

d06 37.77 37.06 40.11

d07 6.95 6.77 6.89

d08 39.94 40.35 44.99

Table 9: Space reduction in comparison to UP-Growth.

In order to further explore the characteristics, experiments were
conducted to compare these two structures on sparse datasets. The
characteristic of the datasets is described in depict the execution time
and space consumed respectively. UCT performed graciously even
with sparsest of the datasets. However, SUPT clearly outperformed
UCT in terms of memory requirements (Table 10 and Figures 9 and
10).

Dataset jDj jIj Tmax Density(%)

s01 10000 10000 10 0.055

s02 10000 10000 50 0.257

s03 10000 50000 10 0.017

s04 10000 50000 50 0.051

s05 100000 10000 10 0.055

s06 100000 10000 50 0.255

s07 100000 50000 10 0.011

s08 100000 50000 50 0.051

Table 10: Characteristics of synthetic sparse datasets.

Figure 9: Execution Time of the algorithms on synthetic sparse
datasets.

Figure 10: Space consumed by tree structures on synthetic sparse
datasets.

Citation:

JNPGT-21-35493
• Page 6 of 7 •

Haliye T (2021) Compact Tree Structures for Mining High Utility Itemsets. J Nucl Ene Sci Power Generat Technol 10:11.

Volume 10 • Issue 11 •



Inferences
In the previous section, the proposed tree structures were compared

with IHUP and UP-Growth which are item-based prefix trees. As
IHUP involves reordering the tree after N transactions and UP-Growth
involves two database scans for complete tree construction, such
overheads were eliminated in UCT leading to faster execution. In
terms of memory requirements, the prime trees were more efficient
due to the transaction level encoding of information [5]. Among these,
SUPT was more efficient across real and synthetic datasets owing to
better prefix-sharing. As the datasets became sparser, PCFT performed
poorly in terms of execution time. However, for database of shorter
transactions, PCFT can be selected as it displayed faster execution.
Overall, UCT and SUPT are promising choices for tree constructions.

Conclusion
With ever increasing database sizes the need for accommodating

the essential utility information from is of prime importance. In this
regard, the current work proposes tree structures that are constructed
via a single database scan without neglecting any items. Especially the
proposed prime-based tree structures namely, Utility Prime Tree,
Prime Cantor Function Tree and String based Prime Utility Tree have

been promising ways of storing the database information in a compact
manner in the memory. Apart from this, it was demonstrated that
Utility Count Tree is not only time efficient on real datasets but also
on large sparse and dense databases. This work can be extended
further to mine high utility itemsets from very large databases in a
distributed environment.

References
1. Burnett K, Ng KB, Park S0020(1999) A comparison of the two

traditions of metadata development. JASIST 50: 1209-1217.
2. Mishra P, Jimmy L, Ogunmola GA, Phu TV, Jayanthiladevi A, et

al (2020) Hydroponics cultivation using real time iot
measurement system. J Phys Conf Ser. 12: 012-040.

3. Ding Y, Foo S (2002) Ontology research and development. Part I
- A review of ontology generation. J Inf Sci. 28: 123-136.

4. Davenport T, DeLong D, Beers M (1998) Successful knowledge
management projects. MIT Sloan Manag Rev. 39: 43-57.

5. Deepthi T, Balamurugan K, Uthayakumar M (2021) Simulation
and experimental analysis on cast metal runs behaviour rate at
different gating models. Int J Eng Syst Model Simul. 12: 156-64.

Citation:

JNPGT-21-35493
• Page 7 of 7 •

Haliye T (2021) Compact Tree Structures for Mining High Utility Itemsets. J Nucl Ene Sci Power Generat Technol 10:11.

Volume 10 • Issue 11 •

https://iopscience.iop.org/article/10.1088/1742-6596/1712/1/012040/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1712/1/012040/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1712/1/012040/meta
https://doi.org/10.1177%2F016555150202800204
https://doi.org/10.1177%2F016555150202800204
https://www.researchgate.net/publication/200772784_Successful_Knowledge_Management_Projects
https://www.researchgate.net/publication/200772784_Successful_Knowledge_Management_Projects
https://www.inderscienceonline.com/doi/abs/10.1504/IJESMS.2021.115536
https://www.inderscienceonline.com/doi/abs/10.1504/IJESMS.2021.115536
https://www.inderscienceonline.com/doi/abs/10.1504/IJESMS.2021.115536

	Contents
	Compact Tree Structures for Mining High Utility Itemsets
	Abstract
	Introduction
	Materials and Methods
	Background
	Related Work
	Compact tree structures for mining high utility itemsets
	Utility count tree
	Utility prime tree
	String based utility prime tree
	Experimental evaluation
	Performance analysis on real datasets
	Performance analysis on synthetic datasets

	Inferences
	Conclusion
	References




