
A SciTechnol JournalReview Article

Bhandari and Chitrakar, J Comput Eng Inf Technol 2020, 9:6
DOI: 10.37532/jceit.2020.9(6).241 Journal of Computer

Engineering & Information
Technology

All articles published in Journal of Computer Engineering & Information Technology are the property of SciTechnol, and is
protected by copyright laws. Copyright © 2020, SciTechnol, All Rights Reserved.International Publisher of Science,

Technology and Medicine

Comparison of Data Migration
Techniques from SQL Database
to NoSQL Database

Abstract
With rapid and multi-dimensional growth of data, Relational
Database Management System (RDBMS) having Structured Query
Language (SQL) support is facing difficulties in managing huge data
due to lack of dynamic data model, performance and scalability
issues etc. NoSQL database addresses these issues by providing
the features that SQL database lacks. So, many organizations
are migrating from SQL to NoSQL. RDBMS database deals with
structured data and NoSQL database with structured, unstructured
and semi-structured data. As the continuous development of
applications is taking place, a huge volume of data collected has
already been taken for architectural migration from SQL database
to NoSQL database. Since NoSQL is emerging and evolving
technology in the field of database management and because
of increased maturity of NoSQL database technology, many
applications have already switched to NoSQL so that extracting
information from big data. This study discusses, analyzes and
compares 7 (seven) different techniques of data migration from SQL
database to NoSQL database. The migration is performed by using
appropriated tools / frameworks available for each technique and
the results are evaluated, analyzed and validated using a system
tool called SysGauge. The parameters used for the analysis and the
comparison are Speed, Execution Time, Maximum CPU Usage and
Maximum Memory Usage. At the end of the entire work, the most
efficient techniques have been recommended.

Keywords

Data Migration; MySQL; RDBMS; Unstructured Data; SysGauge

Received: November 01, 2020 Accepted: December 14, 2020 Published:
December 21, 2020

Introduction
In 1970, Edgar Frank Codd has introduced architectural

framework on the relational database approach in his paper.”A
relational model of data for large shared data banks” [1]. After some
time Codd has introduced Structured English Query Language and
later has renamed it as Structured Query Language to provide a way
to access data in a relational database [2]. Since then, relational model
has had dominant form in the database market.The most popularly
has used database management systems are Oracle, Microsoft SQL
server and MySQL [2]. All these three DBMS are based on relational
database model and use SQL as query language.When NoSQL
database has been introduced by Carlo Strozzi in 1998 as a file based
database, it has been used to represent relational database without
using Structured Query Language. However, it has not be able to

compete with relational database. Later Eric Evans an employee in
Rackspace Company explained the ambition of the NoSQL movement
as a new trend to solve a problem that Relational Databases are not
fit. The increasing usage of NoSQL products have energized other
companies to develop their own solutions and headed to emerge of
generic NoSQL database systems. This way there are more than 150
NoSQL products. These products come with issues like suitability to
some areas of application, security and reliability [3].

NoSQL databases are emerging from last few years due to its less
constrained structure, scalable schema design, and faster access in
comparison to relational databases. The key attributes that make it
different from relational database are that it does not use the table as
storage structure of the data. In addition, its schema is very efficient
in handling the unstructured data. NoSQL database also uses many
modeling techniques like key-value stores, document data model, and
graph databases [1].

This research study aims to present comparative study on data
migration techniques from SQL database to NoSQL database. This
study analyses 7 (seven) recent approaches [4] which have been
proposed for data migration from SQL database to NoSQL database.

Statement of the problem

There is nothing wrong in using traditional RDBMS for database
management. As huge introduction of data from social sites and other
digital media, it simply isn’t enough for the application dealing with
huge databases. Also, NoSQL databases need cheap hardware. Hence,
requirement of some of the relational databases need to be converted
to NoSQL databases which then enable to overcome drawbacks
found in relational databases. Some drawbacks of relational database
management systems are:

1.	 They do not encompass a wide range of data models in data
management.

2.	 They are not easily scalable because of their constrained
structure.

3.	 They are not efficient and flexible for unstructured and semi-
structured database.

4.	 They cannot handle data during hardware failure.

Due to massive use of mobile computing, cloud computing,
Internet of Things, and other so many digital technologies, large
volume of streaming data is available nowadays. Such huge amounts
of data take a great deal of challenges to the traditional relational
database paradigm. Those challenges are related to performance,
scalability, and distribution. To overcome such challenges enterprises
begin to move towards implementing new database paradigm known
as NoSQL [5].

On the other hand, NoSQL database contains several different
models for accessing and managing data, each suited to specific
use cases. This is also significant reason to migrate data from SQL
database to NoSQL database. The several models are summarized in
the Table 1.

NoSQL DBMSs are distributed, non-relational databases. They

*Corresponding author: Hira Lal Bhandari, Faculty of Science Health and
Technology Nepal Open University, Nepal. E-mail: drw.moon@gmail.com

 Hira Lal Bhandari*, and Roshan Chitrakar

Citation: Bhandari HL, Chitrakar R (2020) Comparison of Data Migration Techniques from SQL Database to NoSQL Database. J Comput Eng Inf Technol
9:6.

• Page 2 of 10 •Volume 9 • Issue 6 • 1000241

doi: 10.37532/jceit.2020.9(6).241

are designed for large-scale data storage and for massive parallel
data processing across a large number of commodity servers. They
use non-SQL languages and mechanisms to interact with data. Use
of NoSQL database systems in database management increased in
major Internet companies, such as Google, Amazon, and Facebook;
which has aroused challenges in dealing with huge quantities of data
with conventional RDBMS solutions could not cope. These systems
can support multiple activities, including exploratory and predictive
analytics, ETL-style data transformation, and non-mission critical
OLTP. These systems are designed so as to scale up thousands
or millions of users doing updates as well as reads, in contrast to
traditional DBMSs and data warehouses [6].

The focus of the study is to get comparative study on different
seven techniques to migrate data from relational database to
NoSQL database. Migration of data from relational database to
NoSQL database refers the transformation of data from structured
and normalized database to flexible, scalable and less constrained
structure NoSQL database. The main objective of this research is to
find out the most efficient data migration technique among seven
major migration techniques from SQL database to NoSQL database.

Scope and Limitations of the Research Study

Scope and limitation of this research covers the following:
This study is focused to get analyzed with different techniques to
migrate the data from SQL database to NoSQL database to know
efficient migration technique so that one can efficiently adapt
emerging technology in the database world. Therefore, the study
does not include technical discussion of the risks identified, or of the
implementation guideline here. The demand for NoSQL databases
is increasing because of their diversified characteristics that offer
rapid, smooth, scalability, great availability, distributed architecture,
significant performance and rapid development agility. It provides a
wide range of data models to choose from and is easily scalable where
database administrators are not required. Some of the SQL to NOSQL
data migrating providers like Riak and Cassandra are programmed to
handle hardware failures and are faster, more efficient and flexible. It
has evolved at a very high pace.

However, some data migration techniques and NoSQL is still
immature and they do not have standard query language. Some
NoSQL databases are not ACID compliant. No standard and data
loss are the major problems while migrating data from SQL database
to NoSQL database.

Review of Related Works
This research study provides the comparative study on different

data migration approaches from SQL database to NoSQL databases.
This focuses on the study of major migration techniques and suggests
the efficient approach for data migration. Migrating process is
performed with the help of tools/ framework available.

SQL database and other traditional databases strictly follow
structured way to organize the data generated from various
applications but NoSQL databases provide flexibility and scalability

in organizing the data which makes it easy to access the data. The data
generated from social networking sites and real time applications
needs flexible and scalable system which increases the requirement
of NoSQL. Hence, multidimensional model has been proposed for
data migration. The biggest challenge is the migration of existing data
residing in data warehouse to NoSQL database by maintaining the
characteristics of the data. The growing use of web applications has
raised the demand to use NoSQL because traditional databases are
unable to handle the rapidly growing data [4].

The concept of NoSQL was first used in 1998 by Carlo Strozzi
to represent open source database that does not use SQL interface.
Strozzi likes to refer to NoSQL as “noseequel” since there is difference
between this technology and relational model. The white paper
published by Oracle mentions techniques and utilities for migrating
non Oracle databases to Oracle databases [7]. Abdelsalam Maatuk
[8] describes an investigation into approaches and techniques used
for database conversion. Its origin is also regarded to the invention of
Google’s BigTable model. This database system, BigTable, is used for
storage of projects developed by Google, for example, Google Earth.
BigTable is a compressed high performance database which was
initially released in 2005 and is built on the Google file system. It was
developed using C and C++ languages. It provides consistency, fault
tolerance and persistence. It is designed to scale across thousands of
machines and it is easy to add more machines to it [9]. Later, Amazon
developed fully managed NoSQL database service DynamoDB that
is used to provide a fast, highly reliable and cost effective NoSQL
database services designed for internet scale applications [9]. These
projects directed a step towards the evolution of NoSQL.

However, the term re-emerged only in 2009, at a meeting in
San Francisco organized by Johan Oskarsson. The name for the
meeting, NoSQL meetup, was given by Eric Evans and from there
on NoSQL became a buzzword [8]. Many early papers have talked
about the relationship between Relational and NoSQL Databases
which gave a brief introduction of NoSQL database, its types and
characteristics. They also discussed about the structured and non-
structured database and explained how the use of NoSQL database
like Cassandra improved the performance of the system, in addition
to it can scale the network without changing any hardware or buying
bigger server. This result is improving the network scalability with
low-cost commodity hardware [10].

Sunita Ghotiya [4] gave literature review of some of the recent
approaches proposed by various researchers to migrate data from
Relational to NoSQL databases. Arati Koli and Swati Shinde [11]
presented comparison among five different techniques to migrate
from SQL database to NoSQL database with the help different
research paper reviews. Shabana Ramzan, Imran Sarwar Bajwa and
Rafaqut Kazmi [12] stated the comparison of transformation in
tabulated format with different parameters such as source database,
target database, schema conversion, data conversion, conversion
time, data set, techniques, reference papers which clearly shows the
research gap that currently no approach or tool supports automated
transformation of MySQL to Oracle NoSQL for both data and

Model Characteristics
Document Store Data and metadata are stored hierarchi-cally in JSON-based documents inside the database.
Key Value Store The simplest of the NoSQL Databases, data is represented as a collection of key-value pairs.

Wide-Column Store Related data is stored as a set of nested-key/ value pairs within a single column.
Graph Store Data is stored in a graph structure as node, edge, and data properties.

Table 1: NOSQL database models.

Citation: Bhandari HL, Chitrakar R (2020) Comparison of Data Migration Techniques from SQL Database to NoSQL Database. J Comput Eng Inf Technol
9:6.

• Page 3 of 10 •Volume 9 • Issue 6 • 1000241

doi: 10.37532/jceit.2020.9(6).241

schema transformation. Arnab Chakrabarti and Manasi Jayapal [13]
presents empirical comparative study to compare and evaluate data
transformation methodologies between varied data sources as well
as discuss the challenges and opportunities associated with those
transformation methodologies. The database used in transformation
was heterogeneous in nature.

In this way, this research study explores the issues regarding
relational databases, their features and shortcomings as well as
NoSQL and its features. It emphasizes on comparative study on the
migration approaches from structured (SQL) database to NoSQL
database. In this present scenario maximum application are to be
transformed into NoSQL databases because of incremental growth
of heterogeneous data. In such condition, SQL database is no more
has the ability to handle such complex dataset. So, there is the need
of migration of structured and normalized dataset into NoSQL
database. In this manner, the research study is focused on performing
major migration techniques to transfer data from SQL database i.e.
MySQL to NoSQL databases i.e. MongoDB, Hadoop database, etc.
Major seven migrating approaches are discussed and used to perform
migration task.

This comparative study presented in this research study could be
as guide lines for the organizations which are shifting their application
towards NoSQL databases. This research will be helpful choose the
efficient migration approach to transfer structured and normalized
database into NoSQL database.

Methodology
This research study evaluates major migration approaches which

have been proposed in the previous research papers. The evaluation
is done through comparative study on the migration approaches
efficiency measurement with different parameters. They are Speed,
Execution Time, Maximum CPU Usage, and Maximum Memory
Usage. Migration of data from SQL database to NoSQL database
belonging to different migration approaches is done using available
framework/tools.

In the Figure 1 we have presented the workflow that has been
followed during the entire process of data transformation. This
helps to systematically run and verify each job as it was essential in
concluding the study among major migrating approaches performed.
This way we can trace the most efficient migration approach to
transform data from traditional normalized Database to NoSQL
database.

Figure 1 shows how data is migrated from source data store to
destination data store i.e. SQL database to NoSQL databases. Here in
the diagram each migration approach is planned to implement with
the help of respective technology i.e. tools/ framework. Data store 1
signifies SQL database i.e. MySQL and data store 2 implies MogoDB
and HBase. Up to the migrating process completion, SysGauge tool
is run to check either other processes are run or not. If there are
processes running that will be shut down, then only the migration
technology run for respective migration approaches using tools/
framework.

Data Description

The source of sample database to migrate from SQL database to
NoSQL data. Database used in the migrating process is structured
database. Data set containing in the database table consists of 1000
number of records. The database table schema is presented below

which clarifies the structure of data. Table 2 includes six different
columns and seven different rows. First column consists of fields such
as user id, user name, last name, Gender, password and Status. They
have int and varchar data type. int basically the numeric data type and
varchar is the character data type.

Environment and Comparison Characteristics

Implementation Details: This section includes the details of
implementation of the study in which an experiment to execute the
data migration between the data stores was setup. Microsoft Windows
machine with the following configuration is used to run all type of
data migration approaches using respective tools Table 2.1.

Only the migrating tools and concerned database were allowed to
run whereas all others shut down to make sure that no other variable
had impact on the result. After the completion of each job, the tools
and databases were restarted. SysGauge tool was used to analyse
the processes running on the machine with respect to the CPU and
memory utilization. The process specific to the technology was studied
using ’SysGauge’ and the quantitative characteristics like maximum
CPU, Memory and Time are documented as Maximum CPU load,
Maximum Memory Usage and CPU Time respectively. Figure 2
shows an instance of the SysGauge tool in which the characteristics
are highlighted.

Characteristics of Comparison: In this section, a set of well-defined
characteristics have been discussed which can be considered for
comparative study. Previous study stated NoSQL databases are often
evaluated on the basis of scalability, performance and consistency.
In addition to that system or platform dependent characteristics
there could be complexity, cost, time, loss of information, fault
tolerance and algorithm dependent characteristics could be real time
processing, data size support etc. To meet the scope of this research,
quantitative characteristics are considered hence actual values are

Figure 1: Workflow to run the transformation.

Citation: Bhandari HL, Chitrakar R (2020) Comparison of Data Migration Techniques from SQL Database to NoSQL Database. J Comput Eng Inf Technol
9:6.

• Page 4 of 10 •Volume 9 • Issue 6 • 1000241

doi: 10.37532/jceit.2020.9(6).241

retained and can be traced actual result observed from performing
the migration of data from SQL database to NoSQL database. These
numerical aspects were carefully studied before collecting the data to
give the best comparative Figures 3-5. We present the metrics that
have been used to evaluate our results.

Maximum CPU Load: This refers maximum load percentage of
the processor time used by the processor during the data migration.
This is a key performance metric and useful for investing issues
was monitored by shutting down all other unnecessary processor
technologies management.

Maximum Memory Usage: Maximum memory usage refers
maximum percentage of the physical RAM used by the process during
data migration. An important metric to keep a track of resource
consumption and impact it has on the time.

Analysis of changes in the resource consumption is an important
performance metric. Maximum CPU load, CPU time and maximum
memory usage were calculated for each of the migration approaches
using SysGauge tool in Windows operating system.

Execution Time: It is the total time taken to complete the data
migration. This was measured using the respective tools for the
migration techniques to compare the faster means of migrating data
between SQL databases to NoSQL databases. This time included the
time taken to establish a connection to the source and destination
databases, reading data from the source and writing data to the

destination. As a common unit, all the results were converted into
second. However, some migration took long time to complete, were
expressed in minutes.

Speed: speed is computed as the size of data transformed per
second. For each of the migration techniques, this value was obtained
from the tools using which migration was performed. The value of
speed was important, for example, in the migration of data from
MySQL to MongoDB database.

Methods of Migration

While comparing SQL databases with NoSQL databases, the
structure is more complex because they use structured way to access
and store data as well as the concept of normalization. According
to the rules of normalization they split their information into
different tables with join relationship. On the other hand, NoSQL
Databases store their information in a de-normalized way which is
unstructured or semi-structured. Therefore the successful migration
with data accuracy and liability from relational to NoSQL would not
be an easy task. To come to the conclusion, comparison of major
data migration techniques is done with the help of different tools
such as MysqlToMongo, phpMyAdmin, Sqoop, Mysq l2 etc. Speed,
Execution Time, Maximum CPU Usage and Maximum Memory
Usage are checked for the comparison of major approaches for data
migration from relational to NoSQL database.

Mid-model Approach using Data and Query Features: This model
is used for transition and for migration of data from SQL database
to NoSQL database. This model works on two basic concepts: Data
features and query features. First mid model is migrated to the physical
model which is destination database and when it is successfully
performed the data is migrated from SQL to NoSQL Databases [4].

Figure 2: SysGauge Instance.

Field Type Null Key Default Extra
user_id Int(11) No PRI Null auto_increment

user_name varchar(255) Yes Null -
last_name varchar(50) Yes Null -

Gender varchar(50) Yes Null -
password varchar(50) Yes Null -

Status varchar(50) Yes Null -

Table 2: NOSQL database models.

Processor Intel® Core(TM)i3-3217U CPU@1.80
GHZ

Installed Memory (RAM) 2.00 GB
Operating System Windows 7 Professional

Processor type 64-bit
Hard disk 500 GB

Table 2.1: NOSQL database models.

Figure 3: Migration Module Working Diagram.

Figure 4: Data Mapping Module Working Diagram.

Figure 5: Original system with RDB only.

mailto:CPU@1.80

Citation: Bhandari HL, Chitrakar R (2020) Comparison of Data Migration Techniques from SQL Database to NoSQL Database. J Comput Eng Inf Technol
9:6.

• Page 5 of 10 •Volume 9 • Issue 6 • 1000241

doi: 10.37532/jceit.2020.9(6).241

To perform the migration task an application ‘MysqlToMongo’ is
used to perform migration of data using its data and query features.

Algorithm 1 Mid-model approach (For executed transaction)

Goal:

Execute Transaction
Assumption:
 Once Transaction start execution it’s not interrupted
Input: Keys:
 in which transactions will operate
Operations:
 (kind of operation required for each key read, write) Data of
each Sub Transaction and operations resides in memory of layer
Output:
 Transaction Data Steps
1. Inform data migration to get data of the required keys.
2. If data is ok in memory
3. Inform secondary middle layer to start execution.
4. Lock data in key status by saving the required operation on it.
5. For each key in SubTransactionKeys
6. do the required operation using current data in memory
7. write operation with data
8. If Transaction.status==”Running”
9. Transaction.status=”Completed” so no transaction can in-terrupt it
10.Update data in layer Memory
11. If(updated data status is delete)
12. State Change current data status to delete
13. Else if(current data status is insert)
14. Leave it Insert
15. Else If (current data status is update)
16. Leave it update
17. End return selected data
18. Else
19. Go to Transactions In waiting

Algorithm 2 Mid-model approach (For waiting transaction)

Goal:

 Execute Transaction

Input: Keys:

 In which transactions will operate

 List of currently locked keys and operations in each key
(Read or

Write) reside in locked table

List of Waiting Transactions (transactions in waiting that arrive

Before current transaction and use any of keys associated with

Current transaction) for current transactions

Output:

Locking keys of transaction and go to transaction execution

Steps:

1.	 while (transaction.status==”waiting”)

2.	 if(no keys were locked)

3.	 transaction.status=”running”

4.	 go to Execute Transaction

5.	 else

6.	 for each transaction in waiting transaction

7.	 if (all transaction status==completed or errored)

8.	 remove all keys from locked table

9.	 current transaction.status=running

10.	 go to execute transaction

NoSQLayer Approach: This migration approach works on the
basis of two modules: Data Migration Module and Data Mapping
Module. In this data migration module the elements for example,
column and row are identified from source database and then they
are mapped automatically into NoSQL model. Data-mapping module
consists of the persistence layer, designed to be an interface between
the application and the DBMS, which monitors all SQL transactions
from the application, translates these operations and redirects to the
NoSQL model created in the previous module. Finally, the result of
each operation is treated and transformed to the standard expected
by the SQL application. The pictorial representations presented below
describe each of these modules [11].

This migration approach migrate dataset from MySQL to
MongoDB. To perform the NoSQLayer migrating process, software
’MysqlToMongo’ is used so that data is migrated from MySQL to
MongoDB. MysqlToMongo is data conversion software that helps
database user to convert MySQL database data to MongoDB.

Content Management System Approach for Schema De-
normalization: Almost all web-based applications and Content
Management System (CMS) solutions are using Relational
databases for data management. But, when users of internet and
clouds are growing rapidly, it is difficult for relational databases to
handle the huge data traffic. This is why database design approach
has transformed the real CMS SQL database to a NoSQL database.
This approach consists of two steps, first to de-normalize the SQL
database and then to choose a unique identifier key as a primary key
for a big table [12,13]. Conversion from RDBMS TO NOSQL by
schema mapping and migration, centered on two forms of analysis:
qualitative and quantitative. In the evaluation, goal of qualitative is
to provide a proof of concept by showing the schema migration and
mapping framework execution in practice, in the quantitative one we
aim to verify whether the application of NoSQL, with our framework,
leverages the system performance [14].

 Schema migration and query mapping framework consist of:
Schema Migration Layer, Reverting Normal Forms and Row-key
Selection, and Schema Migration.

 Algorithm below shows a schema migration algorithm that
uses table-level de-normalization. We first generate a schema graph
from the relational schema and make it acyclic if needed. We then
transform the schema graph into a set of schema trees. For each
schema tree, we create a collection for the root node and replace a
foreign key in each node with the child node that the foreign key
refers to (i.e., primary key table).

Algorithm 3 A schema migration using table-level de-normalization

Input: relational schema RS

Output: MongoDB schema

Citation: Bhandari HL, Chitrakar R (2020) Comparison of Data Migration Techniques from SQL Database to NoSQL Database. J Comput Eng Inf Technol
9:6.

• Page 6 of 10 •Volume 9 • Issue 6 • 1000241

doi: 10.37532/jceit.2020.9(6).241

1.	 Generate a schema graph G from RS

2.	 Make G acyclic based on user’s decision if needed

3.	 Transform G into a set ST of schema trees

4.	 for (each schema tree TST) {

5.	 create a collection for the root of T

6.	 for (each non-root node n of T)

7.	 embed n into the parent node np of n

8.	 remove the foreign key in np that refers to n

9.	 }

10.	 }

HBase Database Technique: HBase is the Hadoop database,
a distributed and scalable big data store. HBase consists of some
features such as linear and modular scalability, strictly consistent
reads and writes convenient base classes for backing Hadoop Map
Reduce jobs with Apache HBase tables [15]. By using Sqoop we can
import information from a NoSQL database from social website
framework into HDFS. The information to the import procedure is a
database table. Sqoop read the table column by line into HDFS [16].

 When direct access is available to the RDBMS source system,
we may choose for either a File Processing method if not we may
choose RDBMS processing while database client access is available
[17].

Algorithm 4 Migration from MySQL to HBase

1.	 Steps to migrate from MySQL to HBase

2.	 Setup Hadoop on the system.

3.	 Use Sqoop to migrate data (tables) from MySQL to Hadoop

 Distributed File System.

4.	 Convert the data stored in HDFS to a designated data store

 format such as XML or CSV etc.

 5. Setup HBase on top of the Hadoop framework.

 6. Map the data onto tables created on the HBase – column

 oriented database based on the data access needs of the

 applications.	

Data Adapter Approach: The data adapter system is highly
modularized, layered between application and databases. It is basically
lies on the concept of performing queries from applications and data
transformation between databases at the same time. This system
provides a SQL interface to parse query statements that enables to
access both a Relational database and a NoSQL database.

This approach offers a mechanism to control the database
transformation process and to let applications perform queries
whether target data (table) are being transformed or not. After
data are transformed, we get a patch mechanism to synchronize
inconsistent tables [18]. We present the data adapter system with its
design and implementation in following manner.

Without using adapter i.e. mysq l2, available system only allows
application to connect to a relational database. Figure 6 depicts

the architecture of data adapter system consisting of: a Relational
Database, a NoSQL Database, DB Adapter, and DB Converter. Above
mentioned system is the coordinator between applications and two
databases. It controls query flow and transformation process. The
DB Converter is needed for transformation of data and reporting
transformation progress to DB Adapter for further actions.

Application i.e. Ruby on rails access databases through the DB
Adapter i.e. mysq l2. The DB Adapter parses query, submits query,
and gets result set from databases. The system needs some necessary
information such as transformation progress from DB Converter,
and then decides when the query can be performed to access
database. DB Converter migrate data from a relational database to
a NoSQL database. The data adapter system accepts queries while
the transformation is performed, but the data in two databases may
not be consistent. The DB Adapter will detect and ask DB Converter
to perform synchronization process to maintain data consistency.
Automatic Mapping Framework: This approach of migration
provides a framework which is generally used for automatic mapping
of Relational databases to a NoSQL database. Data migration to a
Column-oriented database is beneficial for several cases because the
data can be appended on one dimension that is technically simpler
and faster: the data are added one after the other, thus arouses much
higher write speeds with very low latency. This technique consists
of better scalability since the development of data is done only on
one dimension their partitioning is simpler to perform and can be
distributed across multiple servers [12].

Framework ’NoSQLBooster’ is used for MongoDB for automatic
database mapping from MySQL to MongoDB. NoSQLBooster for
MongoDB (formerly MongoBooster) is a shell-centric cross-platform
GUI tool for MongoDB, which provides comprehensive server
monitoring tools, fluent query builder, SQL query, ES2017 syntax
support and true intelligence experience.

Here is an algorithm of automatic mapping of MySQL
relational databases to MongoDB. The algorithm uses the MySQL
INFORMATION SCHEMA that provides access to database
metadata. Metadata is data about the data, such as the name of
a database or table, the data type of a column, or access privileges.
INFORMATION SCHEMA is the information database, the place
that stores information about all the other databases that the MySQL
server maintains. Inside INFORMATION SCHEMA there are several
read-only tables. They are actually views, not base tables.

Algorithm 5 Automatic Migration Framework

Figure 6: System architecture with data adapter and its components.

Citation: Bhandari HL, Chitrakar R (2020) Comparison of Data Migration Techniques from SQL Database to NoSQL Database. J Comput Eng Inf Technol
9:6.

• Page 7 of 10 •Volume 9 • Issue 6 • 1000241

doi: 10.37532/jceit.2020.9(6).241

 1. Creating the MongoDB database. The user must specify the

 MySQL database that will be represented in MongoDB. The

 database is created with the following MongoDB command: use

 DATABASE NAME.

2. Creating tables in the new MongoDB database. The algorithm

 verifies for each table in what relationships is involved, if it has

 foreign keys and/or is referred by other tables.

3. If the table is not referred by other tables, it will be represented

 by a new MongoDB collection.

4. If the table has not foreign keys, but is referred by another

 table, it will be represented by a new MongoDB collection.

5. If the table has one foreign key and is referred by another

 table, it will be represented by a new MongoDB collection.

 In our framework, for this type of tables we use linking

 method, using the same concept of foreign key.

6. If the table has one foreign key but is not referred by another

 table, the proposed algorithm uses one way embedding model.

 So, the table is embedded in the collection that represents the

 table from the part 1 of the relationship.

7. If the table has two foreign keys and is not referred by another

 table, it will be represented using the two way embedding

 model, described in section 2.4.

8. If the table has 3 or more foreign keys, so it is the result of

 a N:M ternary, quaternary relationships, the algorithm uses

 the linking model, with foreign keys that refer all the tables

 initially implied in that relationship and already represented as

 MongoDB collections. The solution is good even the table is

 referred or not by other tables.

Extract-Transform-Load approach: The term ETL came into
existence from data warehousing and is an acronym for Extract-
Transform-Load. ETL insists a process of how the data are loaded
from the source system to the data warehouse [19, 20]. In these days,
the ETL enhances a cleaning step as a separate step. The sequence is
then Extract-Transform-Load.

Extract: The Extract step consists of the data extraction from the
source system and makes it accessible for further processing. The
main aim of the extract step is to fetch all the necessary data from the
source system with as minimal amount of resources as possible.

Transform: The transform step applies a set of rules to transform
the data from the source to the target. This includes converting
any measured data to the same dimension using the same units so
that they can later be joined. The transformation step also requires
joining data from several sources, generating aggregates, generating
surrogate keys, sorting, deriving new calculated values, and applying
advanced validation rules.

Load: During the load step, it is necessary to ensure that the load is
performed correctly and with as little resources as possible. The target
of the Load process is often a database. In order to make the load
process efficient, it is helpful to disable any constraints and indexes
before the load and enable them back only after the load completes.
The referential integrity needs to be maintained by ETL tool to ensure
consistency.

Steps: -

1. Lock the target database in source system.

2. Lock the target database in destination system.

3. Extract information from target database from

Source system.

4. Transform information to destination database.

5. Release lock of source and destination systems.

Discussion
In this section we discuss the results of the experiment and also

report the challenges that we faced during the entire phase.

Comparing Quantitative Characteristics of Migration Approaches:
This determinative evaluation was used to check if the study is going
in the right direction. The data migration methodologies which were
implemented in this research study are compared with one another
and evaluated in the matrix as described. Since each aspect cannot be
predicted at the initial of the study and due to unexpected changes
that happened at different phases, a revision of the methodologies was
necessary at every stage.

Migrating Results

An implementation details as described earlier was environmental
setup; the values of maximum CPU load, CPU time, and maximum
memory usage are retrieved using the SysGauge tool, outcome of
execution time, speed are documented from the respective technology
used in the migration process and the results are compiled as shown
in the Table 3. There were 3 target data stores such as MongoDB, CMS
Database and Hadoop Database used in the research study. The tools
and framework involved in the transformation were MysqlToMongo,
phpmyadmin, mysq l2, NoSQLBooster for MongoDB, Sqoop and
Studio 3T.

Transformation result varies from one migration technique
to another technique that was evaluated according to the values
retained from execution of respective methodologies. That execution
was performed with the help of tools or framework which belongs
to different migration approaches. Evaluated result of different
migration approaches are discussed below:

Mid-model Approach using Data and Query Features:
MongoDB using MysqlToMongo Framework): MysqlToMongo tool
is used to migrate data from MySQL to MongoDB. It uses data and
query features. It transforms structured data of size 2833.3 KB per
second from MySLQL to MongoDB. Data set having size 85 KB and
including data 1000 rows is transformed in 0.03 sec. At the time of data
transformation from MySQL to MongoDB using MysqlToMongo
tool, Maximum CPU Usage is 23 percentage and Maximum memory
consumption is 9.1 percentage and after transformation and
conversion of SQL database is 4 Kb.

Citation: Bhandari HL, Chitrakar R (2020) Comparison of Data Migration Techniques from SQL Database to NoSQL Database. J Comput Eng Inf Technol
9:6.

• Page 8 of 10 •Volume 9 • Issue 6 • 1000241

doi: 10.37532/jceit.2020.9(6).241

NoSQLayer Approach: MysqlToMongo tool was used migrating
data from MySQL to MongoDB. It uses data and query features. It
transforms structured data of size 8500 KB per second from MySLQL
to MongoDB. Data set having size 85 KB and including data 1000
rows is transformed in 0.01 sec. At the time of data transformation
from MySQL to MongoDB using MysqlToMongo tool, Maximum
CPU Usage is 21 percentage and Max-imum memory consumption
is 7.1 percentage and after transformation and conversion of SQL
database is 1 Kb.

Content Management System Approach for Schema De-
normalization: It transforms structured data of size 44.97 KB per
second from MySLQL to Word press. Data set having size 85 KB and
including data 1000 rows is transformed in 1.89 sec. At the time of
data transformation from MySQL to Word press using phpmyadmin,
Maximum CPU Usage is 26 percentages and Maximum memory
consumption is 50 percentages and after transformation and
conversion of SQL database is 84.7 Kb.

HBase Database Technique: It transforms structured data of
size 0.39 KB per second from MySLQL to Hadoop database using
Sqoop. Data set having size 85 KB and including data 1000 rows is
transformed in 215.4 sec . At the time of data transformation from
MySQL to Hadoop database, Maximum CPU Usage is 84 percentages
and Maximum memory consumption is 59.4 percentages, and after
transformation and conversion of SQL database is 65.1 KB.

Data Adapter Approach: It transforms structured data of size
850 KB per second from MySLQL to MongoDB Database using
mysq l2 data adapter on ruby on rails. Data set having size 85 KB
and including data 1000 rows is transformed in 0.1 sec. At the time
of data transformation from MySQL to Hadoop database using
Sqoop, Maximum CPU Usage is 14 percentage and Maximum
memory consumption is 5.4 percentage, and after transformation and
conversion of SQL database is 88 KB.

Automatic Mapping Framework: It transforms structured data
of size 56.67 KB per second from MySLQL to MongoDB Database
using NoSQLBooster for MongoDB. Data set having size 85 KB and
including data 1000 rows is transformed in 1.5 sec. At the time of
data transformation from MySQL to Hadoop database using sqoop,
Maximum CPU Usage is 63 percentage and Maximum memory
consumption is 16.9 percentage, and after transformation and

conversion of SQL database is 1 KB.

Extract-Transform-Load Approach: It transforms structured
data of size 1214.29 KB per second from MySLQL to MongoDB
Database using Studio 3T. Data set having size 85 KB and including
data 1000 rows is transformed in 0.07 sec. At the time of data
transformation from MySQL to MongoDB database, Maximum
CPU Usage is 70 percentages and Maximum memory consumption
is 17.6 percentages, and after transformation and conversion of SQL
database is 88 KB.

From the evaluated results during migration of data set from SQL
Database to NoSQL database. In totality, ’Data Adapter Approach’
was found the most efficient from the point of CPU Usage and
Memory Usage. On the other hand, NoSQLayer Approach is the most
efficient from execution time and data migration speed point of view.
Basis of comparison were Speed, Maximum CPU Usage percentage,
Maximum Memory Usage percentage and Execution Time. The
resource consumption of migrating procedure was evaluated using
’SysGauge’ tool. Data conversion/ transformation speed and total
execution time were evaluated using framework/ tools regarding
respective migration approach.

Migrating Efficiency of Transformation Techniques: The overall
evaluation of all transformation techniques involved in transforming
data from SQL Database i.e. MySQL to NoSQL Databases such as
MongoDB, Hadoop Database and CMS Database have been plotted
as shown from Figure 7-10. This provides a clear picture of which
technology was the most efficient in comparison to the others. The
average data size per second, Database size, Maximum CPU Usage

Figure 7: Data Migration Speed.

Figure 8: Data Migration Execution Time.

Approaches Speed
(Kb/ sec.)

Execution
time (sec.)

Maximum
CPU Usage

Maximum
Memory
Usage

Mid-model
approach

2833.3 0.03 23 9.1

NoSQLayer
approach

8500 0.01 21 7.1

Content
Management

System approach

44.97 1.89 26 50

HBase database
Technique

0.39 215.4 84 59.4

Data Adapter
Approach

850 0.1 14 5.4

Automatic
Mapping

Framework

56.67 1.5 63 16.9

Extract-
Transform-Load

approach

1214.29 0.07 70 17.6

Table 3: NOSQL database models.

Citation: Bhandari HL, Chitrakar R (2020) Comparison of Data Migration Techniques from SQL Database to NoSQL Database. J Comput Eng Inf Technol
9:6.

• Page 9 of 10 •Volume 9 • Issue 6 • 1000241

doi: 10.37532/jceit.2020.9(6).241

Figure 9: Maximum CPU Usage Percentage.

Figure 10: Maximum Memory Usage Percentage.

percentage, Maximum Memory Usage percentage transformed per
second for each migration approach have also been plotted to convey
the efficiency of each migrating technique.

Summarization of the Results: Although, a final result for
migrating speed amongst major migration techniques has been
drawn, there were other results which further verify the efficiency
of the migration techniques which has helped validate our results to
measure the efficiency of the transformation techniques: To depict
clear picture for migrating techniques’ efficiency, the results for each
parameter has been presented.

In the Figure 7, horizontal axis shows the techniques that
are used in migration and vertical axis is used to represent data in
byte to be migrated in a second during the migrating process from
SQL Database to NoSQL Database. From the Figure 7, NoSQLayer
Approach is migrating largest data size i.e. 8,500 kilo byte per second
from SQL database to NoSQL database. Then Mid-model Approach,
Extract Transform-Load Approach and Data Adapter Approach are
better from data migrating speed point of view. The migrating speed
of these approaches is 2833.3 KB, 1214.29 KB and 850 KB per second
respectively. Thus, we can come to the conclusion that NoSQLyer is
the migrating technique which is the most efficient from the migrating
speed point of view.

In the Figure 8, horizontal axis shows the techniques that are
used in migration and vertical axis is used to represent total execution
time which is consumed during the completion of data migrating
process from SQL database to NoSQL database. From the Figure 8,
NoSQLayer Approach has taken 0.01 Sec. to migrate 1000 number of

records from SQL database to NoSQL database. Then there are other
techniques such as Mid-model Approach, Extract-Transform-Load
Approach and Data Adapter Approach are the techniques which
consume lesser time in data migration. The execution time during
the completion of data migration by them are are 0.03 Sec., 0.07 Sec.
and 0.1 Sec . respectively. Thus, we can come to the conclusion that
NoSQLayer is the migrating technique which is the most efficient
from the execution time point of view.

In the Figure 9, horizontal axis shows the techniques that are
used in migration and vertical axis is used to rep-resent Maximum
CPU Usage percentage which is consumed during the completion
of data migrating process from SQL Database to NoSQL Database.
Maximum CPU Usage of Data Adapter Approach has 14 percentages
which is comparatively the least among seven migration techniques.
Then, NoSQLayer Approach and Mid-layer Approach have 21
percentage and 23 percentage CPU Usage respectively. They are two
other techniques which have lesser CPU Usage. Thus, we can come to
the conclusion that Data Adapter Approach the most efficient from
the CPU Usage point of view i.e. it uses only the 14 percentage of the
CPU Load during the complete migration of 1000 number of records
from SQL Database to NoSQL Database.

In the Figure 10, horizontal axis shows the techniques that are
used in migration and vertical axis is used to represent Maximum
Memory Usage percentage which is consumed during the completion
of data migrating process from SQL Database to NoSQL Database.
Maximum CPU Usage of Data Adapter Approach has 5.4 percentages
which is comparatively the least among seven migration techniques.
Then, NoSQLayer Approach and Mid-layer Approach has 7.1
percentage and 9.1 percentage Memory Usage respectively. These are
the two other techniques which have lesser Memory Usage. Thus, we
can come to the conclusion that Data Adapter Approach is the most
efficient from the Memory Usage point of view i.e. it uses only the
5.4 percentage of the Memory Load during the complete migration
of 1000 number of records from SQL database to NoSQL databases.

The experiments, results, analysis and comparisons show
that HBase Database Technique, Content Management System
Approach, Automatic Mapping Framework and ETL Approach
Technique reached a higher maximum CPU and memory loads than
other techniques during the migration process. It is also seen from
the viewpoint of Speed of Data migration and Execution time, the
NoSQLayer Approach is the most efficient. And, from CPU Usage
and Memory Usage point of view, the Data Adapter is the most
efficient technique.

Conclusion
The main objective of this study is to compare various

approaches of data migration from SQL to NoSQL by using
well defined characteristics and datasets. In order to address the
growing demands of modern applications to manage huge / big
data in an efficient manner, there emerges a need of schema-less
NoSQL databases that is capable of managing large amount of data
in terms of storage, access and efficiency. The main focus of this
research is to carry out a comparative study and analysis of most
common migrating approaches using most appropriate tools (other
than commercially available ones) that prefer basic and practical
conversion from structured data to unstructured data. In this work,
7 (seven) migrations procedures have been performed one-by-one
and separatley by using freely available resources (data and tools)
and then performance analysis of each procedure has been evaluated

Citation: Bhandari HL, Chitrakar R (2020) Comparison of Data Migration Techniques from SQL Database to NoSQL Database. J Comput Eng Inf Technol
9:6.

• Page 10 of 10 •Volume 9 • Issue 6 • 1000241

doi: 10.37532/jceit.2020.9(6).241

on the basis of performance parameters. Further, all the challenges
faced during the course of this work have been documented for
future reference. The main contribution of this work is that it will
serve as guidelines for organizations looking for migrating data from
structured to semi or unstructured repository in the most efficient
way.

References

1.	 Mohamed H, Omar B, Abdesadik B (2015) “Data Migration Methodology
from Relational To NoSQL Databases. Inter J Comp App, 9: 2511–2515.

2.	 Pretorius D (2013) “NoSQL database considerations and implications for
businesses” Inter J Comp App.

3.	 Mughees M (2013) “NoSQL, Data migration from standard SQL to NOSQL.

4.	 Ghotiya S, Mandal J,Kandasamy S (2017) “Migration from relational to
NoSQL database,” IOP Conf Ser Mater Sci Eng 263: 1-4.

5.	 Yassine F,Awad M (2018) “Migrating from SQL to NOSQL Database:
Practices and Analysis,” Proc 13th Int Conf Innov Inf Technol 58-62.

6.	 Moniruzzaman B, Akhter H (2013) “NoSQL Database: New Era of Databases
for Big data.

7.	 Potey M,Digrase M, Deshmukh G, Nerkar M (2015) “Database Mi-gration
from Structured Database to non- Structured Database,” Int J Comput Appl,
8975–8887.

8.	 Abramova P, Veronika B, Jorge F (2014) “Experimental Evaluation of Indoor
Visual Comfort,” Int J Database Manag Syst. 6:1-16.

9.	 Ameya N, Anil P, Dikshay P (2013) “Type of NOSQL databases and its
comparison with relational databases” Int J Appl Inf Syst 5: 16-19.

10.	 Mohamed A, Altrafi G,Ismail O (2014) “Re-lational Vs. NoSQL databases: A
survey,” Int J Comput Inf Technol, 2279–2764.

11.	 Koli A, Shinde S (2017) “Approaches used in efficient migration from
Relational Database to NoSQL Database,” Proc Second Int Conf Res Intell
Comput Eng, 10: 223–227.

12.	 Ramzan S, Bajwa S, Kazmi R (2018) “An intelligent approach for han-dling
complexity by migrating from conventional databases to big data,” Symmetry
(Basel), 10:1-12.

13.	 Chakrabarti A, Jayapal M (2017) “Data transformation methodologies
between heterogeneous data stores: A comparative study,” Data 2017 –
Proc 6th Int Conf Data Sci Technol Appl, 241–248.

14.	 Kuderu N, Kumari V (2016) “Relational Database to NoSQL Conversion by
Schema Migration and Mapping,” Int J Comput Eng Res Trends, 3: 506.

15.	 Khourdifi Y,Bahaj M, Elalami A (2018) “A new approach for migration of
a relational database into column-oriented nosql database on hadoop,” J
Theor Appl Inf Technol, 96: 6607.

16.	 Tiyyagura N,Rallabandi M, Nalluri R (2016) “Data Migration from RDBMS
to Hadoop,”184.

17.	 Seshagiri V, Vadaga M, Shah J, Karunakaran P (2016) “Data Migration
Technology from SQL to Column Oriented Databases (HBase),” 5:1-11.

18.	 Liao T (2016) “Data adapter for querying and transformation between SQL
and NoSQL database,” Futur Gener Comput Syst, 65: 111–121.

19.	 Lalitha R (2016) “Classical Data Migration Technique in Multi-Database
Systems (SQL and NOSQL),” Int J Comput Sci Inf Technol,7: 2472–2475.

20.	 Yangui R, Nabli A, Gargouri F (2017) “ETL based framework for NoSQL
warehousing,” Lect Notes Bus Inf Process, 299: 40-53.

Author Affiliation 				 Top

Faculty of Science Health and Technology, Nepal Open University, Nepal

https://publications.waset.org/10004179/data-migration-methodology-from-relational-to-nosql-databases
https://publications.waset.org/10004179/data-migration-methodology-from-relational-to-nosql-databases
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.912.1285&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.912.1285&rep=rep1&type=pdf
https://harvest.usask.ca/handle/10388/ETD-2013-11-1342
https://iopscience.iop.org/article/10.1088/1757-899X/263/4/042055/meta
https://iopscience.iop.org/article/10.1088/1757-899X/263/4/042055/meta
https://doi.org/10.1109/INNOVATIONS.2018.8606019
https://doi.org/10.1109/INNOVATIONS.2018.8606019
https://arxiv.org/abs/1307.0191
https://arxiv.org/abs/1307.0191
https://www.x-mol.com/paperRedirect/1292137987325960192
https://www.x-mol.com/paperRedirect/1292137987325960192
http://www.ijcit.com598
http://www.ijcit.com598
https://doi.org/10.3390/sym10120698
https://doi.org/10.3390/sym10120698
https://doi.org/10.3390/sym10120698
https://www.scitepress.org/Link.aspx?doi=10.5220/0006438802410248
https://www.scitepress.org/Link.aspx?doi=10.5220/0006438802410248
https://www.scitepress.org/Link.aspx?doi=10.5220/0006438802410248
https://ijcert.org/issue_des.php?id=103
https://ijcert.org/issue_des.php?id=103
https://opus.govst.edu/
https://opus.govst.edu/
http://ijarcet.org/wp-content/uploads/IJARCET-VOL-5-ISSUE-11-2631-2635.pdf
http://ijarcet.org/wp-content/uploads/IJARCET-VOL-5-ISSUE-11-2631-2635.pdf
https://doi.org/10.1016/j.future.2016.02.002
https://doi.org/10.1016/j.future.2016.02.002
https://doi.org/10.1007/978-3-319-65930-5
https://doi.org/10.1007/978-3-319-65930-5

	Title
	Corresponding author
	Abstract

