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Abstract

Parameter calibration is an important part of hydrological 
simulation and affects the final simulation results. In this paper, 
we introduce heuristic optimization algorithms, Genetic 
Algorithm (GA) and Particle Swarm Optimization Algorithm 
(PSO), to cope with the complexity of the parameter calibration 
problem. In large scale hydrological simulations, we use a 
multilevel parallel parameter calibration algorithm framework to 
make full use of processor resources and accelerate the 
process of solving high dimensional parameter calibration. The 
results of parameter calibration with GA and PSO can basically 
reach the ideal value of 0.65 and above, with PSO achieving a 
speedup of 7.67 on TianHe-2 supercomputer. The experimental 
results indicate that by using a parallel implementation on 
multicore CPUs, high dimensional parameter calibration in 
large scale hydrological simulation is possible. Moreover, our 
comparison of the two algorithms shows that the GA obtains 
better calibration results and the PSO has a more pronounced 
acceleration effect.
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Introduction
Hydrological models are widely used in many fields such as 

drought forecasting, flood protection and water resources management 
systems [1-4]. The results of hydrological simulations depend to a 
large extent on the merits of the model parameters. The process 
parameters in the hydrological model must be calibrated. Parameter 
calibration of hydrological model is an important process in which 
parameter adjustment are made so as to match (as closely as possible) 
to the actual observed values. However, in complex practical 
applications, due to the high complexity of the hydrological process, 
the simulation of a large range of watersheds, the need to calibrate 
more parameters, traditional optimization methods often suffer from

computational dimensionality curse. In addition, due to the long time 
consumption of the serial execution of the parameter calibration 
process, the excessively slow calibration speed seriously reduces the 
efficiency.

There are two types of parameter calibration methods; manual trial 
and error method and automatic calibration method. The trial and 
error method requires manually adjusting parameters to match the 
simulated results with observed values, while the method not only 
takes a long time to debug, but also depends on the human experience, 
which increases the uncertainty of the model. The automatic 
calibrations involve with setting up objective functions, developing 
optimization algorithms and setting up termination conditions as 
calibration targets [5].

Traditional optimization algorithms, such as the gradient method 
and Newton method, are susceptible to local convergence by initial 
values and often fail to obtain globally optimal solutions, resulting in 
strong instability of optimization results impossible to be promoted in 
practical applications [6-9]. Since the 1980's, modern optimization 
algorithms, mainly including Genetic Algorithms (GA), Particle 
Swarm Optimization (PSO), Shuffled Complex Evolution Algorithm 
(SCE-UA), Simulated Annealing Algorithms (SAA) and Artificial 
Neural Networks (ANN), have emerged and greatly promoted the 
development of parameter optimization of hydrological models 
[10-13]. However, the model parameters calibration using modern 
optimization methods needs to carry out an efficient and sufficient 
search of the parameter sets by evaluating a large set of parameters to 
determine the optimal solution, which is usually computationally 
intensive, consumes many system resources and causes a huge 
computational burden [14]. With the rapid development of high 
performance computing, parallel computing has become an effective 
means to improve the efficiency of large-scale data processing and 
combining optimization algorithms with parallelism can further 
improve the feasibility [15-17]. In terms of specific practical 
applications with optimization problems of high dimensionality and 
complexity, the curse of dimensionality causes slow convergence of 
the solution for parameters optimization and the individuals makes the 
search easily fall into local optimal in the optimization process. In 
addition, the parallelization for calibrating hydrologic models requires 
load balancing and communication minimization.

In this paper, we use two heuristic algorithms to calibrate 
parameters of hydrologic models in large scale. There are three main 
contributions of our research work. First, we propose a multi-level 
parallel parameter calibration algorithm framework, where the inner 
parallel layer implements water cycle simulation and the outer parallel 
layer manipulates parameter iteration and optimization search by 
dividing sub domains. In our case, we use the GA and the PSO to 
calibrate parameters. Second, we propose a technique to parallelize 
both the GA and the PSO while minimizing the communication 
between the processes in order to make full use of computing 
resources with multicore CPUs. Finally, we compare the feasibility 
and parallel efficiency of the set of parameters generated by our GA 
based and PSO based parameter calibration. The results given in this 
paper clearly illustrate that parallel GA is suitable for applications 
requiring high calibration accuracy, parallel PSO is suitable for 
applications with fast calibration response.
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Materials and Methods
The remainder of this paper is organized as follows. The next 

section discusses the related work. Then we present the multi-level 
parallel parameter calibration framework we applied in large scale 
hydrologic simulation, followed using the GA and the PSO to 
calibrate parameters in hydrologic models. Finally, we present the 
parallel implementation of the GA and the PSO in order to allow 
parameter calibration in large scale and compare the validation and 
performances of calibration results produced by the GA and the PSO 
and summarize the conclusion.

Related work
Parameter calibration is an important part that affects the accuracy 

and efficient in large-scale hydrological simulation. The traditional 
parameter calibration method mainly adopts the manual experiment 
method, that is, a set of parameters is randomly selected from a given 
parameter range and then the selected parameters are used to simulate 
[18]. Due to the large number and range of parameters, thousands of 
calculations are required during the calibration process. The obvious 
disadvantage of manual methods is that they consume much time and 
energy.

There are optimization algorithms used to calibrate 
hydrologic models such as Gauss-Newton type methods, 
Shuffled Complex Evolution of the University of Arizona (SCE-
UA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) 
and Artificial Neural Networks (ANN) [19-23]. Gauss-Newton 
type algorithm as local calibration methods for the optimization of 
hydrological models, it is usually more robust while keeping costs 
down but tend to get trapped in a local optimum when solving multi-
extreme value problems. More efficient global optimization 
algorithms are proposed to consistently locate the global optimum of 
the hydrological models. The SCE-UA was used to calibrate in a 
complex watershed model and the recommended values for the 
SCE-UA can be construed as guidelines for most application. GA 
and PSO as optimization algorithms based on the natural 
intelligence of the biological world, both algorithms have been 
widely used for parameter calibration of hydrological models 
[24,25]. The parameters of the Muskingum model which are 
calibrated by the particle swarm algorithm are applied to the Yalong 
river basin in 2013. Wang earlier proposed to apply the GA to the 
parameter calibration of flow in a runoff model. Cheng combined GA 
with the fuzzy optimal model and applied it to the parameter 
calibration of Xinanjiang model. The Bayesian approach was applied 
to the Nash-Cascade model and Sacramento model. The authors used 
the Leaf River basin in Mississippi as an example and verified that the 
Bayesian recursive estimation algorithm has good results in parameter 
optimization. However, these parameter optimization methods are 
executed serially, which can be time-consuming when applied to large 
scale simulation. With the development of hydrological simulation 
combined with parallel technology, Kollet demonstrated the 
correctness and feasibility of using parallel computing for 
hydrological simulation. Yalew, explored the use of parallel computing 
for hydrological simulation in Soil and Water Assessment Tool 
(SWAT). A master slave dynamic task assignment scheduling strategy 
was proposed to parallelize hydrological simulation by Li. Despite the 
introduction of parallel techniques and the corresponding 
improvement in the computational efficiency of hydrological models, 
these studies are aimed at the accelerated solution of the 
computational process of hydrological simulation and do not directly 
accelerate the process of parameter calibration. Rouholahnejad,

parallelized the calibration of the SWAT hydrological model. And, a 
parallel optimization algorithms Multi-core Parallel Artificial Bee 
Colony algorithm (MPABC) was proposed to improve the 
optimization precision and performance for parameters optimization 
of the Xinanjiang model. A Multicore Parallel Genetic Algorithm 
(MCPGA) based on the fork join parallel framework proposed is 
also applied to parameter calibration for the Xinanjiang model. 
These studies have used multicore parallel technology to offer 
considerable benefits for parameter calibration, but most of their 
methods focus on improving optimization algorithms and not many are 
based on parallel frameworks.

Multi-level parallel parameter calibration
In order to meet the need for parameter optimization in large scale 

and better improve the computational efficiency, we introduce multi-
level parallelism, with the inner layer, processes within each sub 
domain, using a custom message queue data structure and introducing 
parallelism in two dimensions of space time for water cycle 
simulation; the outer layer, between sub domains, using Message 
Passing Interface (MPI) to divide the sub domain based on the master-
slave model to parallelize the optimization space. The multilevel 
parallel parameter calibration algorithm framework is shown in Figure 
1.

Figure 1: Multilevel parallel parameter calibration algorithm 
framework. The main process in the outer layer divides the currently 
idle processes into several inner parallel communication domains and 
all processes in each inner parallel communication domain execute the 
parameter calibration tasks in parallel.

MPI is a parallel program interface with good performance. It has 
two most basic parallel program design modes; peer to peer mode and 
master slave mode. In our work, the parameter calibration is based on 
the master slave mode to realize parallelism. In this master slave 
mode, we add a layer of internal master processes to the parallel 
framework, where the slave processes in each sub domains will first 
send the corresponding results to the internal master process, which 
will then perform the corresponding calculations and finally send the 
results to the external master process. Each internal master process is 
responsible for the communication of several adjacent sub domains, 
which effectively reduces the communication consumption of the 
outer master process and further accelerates parameter calibration 
process.

We will focus on the parallel parameter calibration part in the outer 
layer. The way to divide the sub domain through the MPI is shown in 
Figure 2. The whole communication domain MPI_COMM_WORLD
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is divided into a new communication domain MPI_NEW_COMM by 
MPI_Comm_split, where process p0 is divided into a separate main 
domain and the rest of the processes form multiple sub domains. The 
multilevel parallel parameter calibration flowchart is shown in Figure 
3. First, sub domains obtain N sets of parameters and perform the
water cycle simulation. And then the simulation results are compared
with corresponding measured values and these results as well as the
parameters are recorded in each iteration. When sub domain has
completed all the iterations, they send the above data to the inner
master process in its own sub domain respectively and the inner
master process is responsible for calculating the optimal solutions and
sending them to the external master process. The simulation results are
further passed to the external master process for the final calibration. It
is worth noting that we introduce GA and PSO to accelerate the
optimization in the part of parameter calibration.

Figure 2: A domain divided into two sub domains. The domain 
consisting of 7 processes in the figure called MPI_COMM_WORLD, 
where each circle represents a process. The domain divided into two 
sub domains by MPI_Comm_split. The new domain called 
MPI_NEW_COMM, where process P0 is divided into a separate main 
domain, p1, p2 and p3 form sub domain 0 and p4, p5 and p6 form sub 
domain 1.

Figure 3: Multilevel parallel parameter calibration algorithm 
flowchart.

For hydrological simulation, the measurement standard 
representing the hydrological simulation index can be used as a fitness 
function, such as the Nash-Sutcliffe Efficiency (NSE) or the 
determination coefficient (R2). The specific formula for calculating the 
NSE and R2 are defined as follows:

Where Qobs,i is the observed value of the ith sub-basin and Qsim,i is 
the simulated value of the ith sub-basin. The NSE, also known as the 
simulation efficiency coefficient, takes a value range of -∞ to 1. If the 
NSE close to 1, the simulation quality is good; close to 0, the overall 
results are credible simulation process error is large; much less than 0, 
the model is not credible. The coefficient of determination R2 takes 
value of 0.0 to 1.0 and the ideal value is 0.8 to 1.0. The R2 closer to 1 
means that the difference between the simulated runoff and the 
measured runoff is smaller.

Parallel Genetic Algorithm (PGA
The GA is an adaptive heuristic search algorithm based on the 

evolutionary process of natural selection and genetic. The GA 
simulates the evolution process of the natural population and selects 
the optimal individual which adapts to the environment by eliminating 
backward genes and the solution of the optimization problem can be 
regarded as a set of chromosomes. In recent years, the GA has been 
used for calibration of conceptual runoff model and optimization of 
cascade stilling. As the scale of optimization problem increases and 
the search space becomes more complex, with the GA inherent 
parallelism, Parallel Genetic Algorithm (PGA) becomes the most 
significant way to solve these complicated problems efficiently 
and effectively. In this work, we use master slave PGA to simulate 
the evolution of a population with multiple sets of parameters 
in hydrological simulation adapting to the objective function. 
The flowchart of our parallel GA is displayed in Figure 4.

Figure 4: Flowchart of our parallel genetic algorithm. The sub 
domain performs hydrological simulation and calculates the optimal 
target and the master process is responsible for the selection, crossover 
and mutation operations.

In our implementation, a set of parameters of the sub-basins is a set 
of chromosomes and a specific parameter value on the chromosome 
represents a gene. The essence of GA is to obtain the optimal solution 
that satisfies the condition by changing the value of the gene. The 
flowchart of the GA includes chromosome selection, crossover and
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mutation. The initial population with multiple sets of parameters is 
randomly generated within the set parameter value range. The 
chromosome selection is mainly based on the roulette wheel selection 
to ensure randomness and the selection criterion is the fitness of the 
solution that refers to the objective function we ultimately need to 
solve. The fitness evaluation of individuals is assigned to different 
processors. In our hydrological simulation, we take R2 coefficient as 
the fitness. The serial operation of selection consists of the following 
steps. First, the R2 coefficient of N sets of parameters for water cycle 
simulation are calculated and the probability of each set of parameters 
being inherited to the next generation population can be calculated by:

Where P (Xi) is the inheritance probability of the ith chromosome, f 
(xi) is the R2 coefficient of the ith chromosome. The inheritance
probability of each chromosome is then be accumulated. Second, a
uniformly distributed value is randomly generated in (0,1), if the value
is less than the cumulative probability of the first chromosome, the
first chromosome can be selected and if the value is between the
cumulative probability of two chromosomes, the latter chromosome is
selected. N chromosomes, that are N sets of the parameters, can be
selected repeating the above steps N times.

When the parents are selected, children can be created from parents 
using single point crossover. Significantly, if the number of 
chromosomes is odd, the last chromosome is directly retained. The 
children solutions need to mutate to guarantee the diversity of the 
population and avoid the local convergence caused by the crossover. 
According to the number of parameters in the current sub-basins, 
mutation points are randomly set for the chromosomes and the value 
at the mutation point should be set within the value range given in the 
parameter configuration file. Finally, the optimal target value is 
constantly updated and the evolution cycle continues until the 
termination condition has been met. The termination condition in our 
implementation is defined as a maximum number of iterations of 
simulation or final convergence accuracy.

Particle Swarm Optimization (PSO)
The PSO is a population based stochastic optimization method 

which was proposed by Eberhart and Kennedy in 1995. It simulates 
the swarm behavior which looks for food in a cooperative way of 
insects, herds, birds and fish. For example, when a group of birds are 
looking for food, each bird inside will be abstracted into a particle 
with position and speed and each particle will change its possible 
future activity trend and trajectory according to its own personal 
experience as well as the experience of other members. Similarly to 
the GA, the PSO has been used for parameter calibration in some 
hydrological model. The algorithm is initialized to a group of random 
particles, that is random solutions and then the optimal solution is 
obtained iteratively. At every step of the iteration, the velocity of each 
particle is updated according to the current individual best position 
found by itself and the current global best position shared by the 
whole particle swarm. If the swarm consists of N particles and the 
maximum iteration counters is max_iter, the velocity and position of a 
single particle are updated at t iteration by the following formula:

Where vectors v and x are the velocity and the position of the 
particle separately; pb is the best position previously occupied by the 
particle; gb is the best position previously occupied by any particle of 
the global swarm; u1 and u2 are vectors of random values between 0 
and 1. The velocity and the position of each particle in the global 
space are updated independently by the above two equations. The 
flowchart of our parallel PSO is shown in Figure 5.

Figure 5: Flowchart of our parallel particle swarm algorithm. The 
sub domain performs hydrological simulation and calculates the 
optimal local target and the master process is responsible for updating 
particles to get the global optimum.

In our work, the position vector of the particle corresponds to a set 
of parameters in the water cycle simulation process. We will take a 
simple model of three sub-basins, of which the first and the second are 
upstream sub-basins and the last one is the corresponding downstream 
sub-basin as an example to explain the specific meaning of particle 
position and velocity in the simulation. The relationship between input 
x and output y in each sub-basin is defined as:

And the vector x which is each particle’s position representing a set
of parameters for all sub-basins is defined as:

And the v which is each particle’s velocity representing the
variation of each parameter is also a vector corresponding to the
position, that is,

Citation: Zhang X, Li Y (2022) Comparison of Parallel Genetic Algorithm and Particle Swarm Optimization for Parameter Calibration in
Hydrological Simulation. J Comput Eng Inf Technol 11:10.

Volume 11 • Issue 10 • 1000254 • Page 4 of 7 •



If the component direction of v is positive, it means that every 
component of the vector x will increase by the corresponding value 
and if the component direction is negative, it will decrease. As for the 
best solution, the local optimal solution of each particle refers to the 
parameter values corresponding to the optimal R2 coefficient that 
appears for each particle as of the current time step and the global 
optimal solution corresponds to the optimal coefficient appearing in all 
particles as of the current time step.

Results and Discussion
In the above sections, we described how to calibrate the parameters 

in water cycle simulation and find out the optimal set of parameters. 
Although a set of optimal parameters can be selected through specific 
algorithms and methods to make the hydrological simulation results 
closest to the actual situation and achieve the optimal effect, the 
demand of calculation for parameters of each sub-basin will increase 
geometrically in large scale simulation, resulting in too long time for 
real-time applications. We need to meet the calibration requirements in 
high spatial dimension and long time span in this large scale case, so 
we developed parallel versions of our GA and PSO. In our 
parallel implementation, we adopt a master slave implementation and 
split the domain owned by the MPI processor to make full use 
of the advantages of multicore CPUs. The optimization space of the 
whole set of parameters is allocated to each sub domain for 
calculation and the algorithm is introduced into each sub domain 

to speed up the iteration. Our approach maintains a good level of 
cooperation among sub domains, performs parameter iteration in 
parallel, accelerates parameter calibration and makes full use of 
computing resources.

In our experiments, we compare the performance of the GA and the 
PSO using 8192 parameters from Ganjiang sub-basins on TianHe-2 
supercomputer. The initial conditions are shown in Table 1. Each sub 
domain including two processes performs the water cycle simulation 
based on Wetspa runoff model and Muskingum routing model. We 
first calibrate the hydrological data for the first half of 2018 and then 
use this model to simulate for the second half of the year. As 
previously stated, the fitting accuracy we used is measured by index 
R2 and the closer the value is to 1, the better the calibration effects. 
The trend of R2 based on the GA and PSO within 100 iterations during 
calibration period is shown in Figure 6. It can be seen that the 
calibration results converge to 0.74 and 0.65 based on GA and PSO, 
respectively, as the number of iterations increases. The convergence 
values of the algorithms during simulation period are shown in Table 
2, where the final convergence result of GA is higher than that of PSO 
and consistent with results in calibration period. In addition, fitting 
accuracy of the calibration results associated with GA exceeded 0.8 to 
meet the desired expectations after 1000 iterations. It can be 
concluded that our method works. Moreover, it can be analyzed that 
the iteration of PSO depends on its own optimal value as well as 
global optimal value, so it is easy to make parameters fall into local 
optimal value. Since the GA operates with genetic mutation when 
performing parameter calibration, it ensures that the population is 
diverse and therefore looks beyond the global optimum to find a wider 
range of solutions.

Parameters Values

Number of iterations 100, 500 and 1000

Calibration accuracy 0.8

Crossover rate (GA only) 0.88

Mutation rate (GA only) 0.1

c1 (PSO only) 2

c2 (PSO only) 2

Table 1: Algorithm parameter values.

Figure 6: The calibration result of GA and PSO at each iteration.
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GA PSO

100 0.761534 0.639657

500 0.791308 0.639676

1000 0.831248 0.639826

Table 2: Comparison of convergence values of GA and PSO.

The speedup and parallel efficiency of our parallel GA and PSO are 
plotted in Figure 7 and Figure 8. We can find that the speedup of GA 
and PSO increases as the number of processes increases, but the 
speedup of the GA slows down at 256 processes, while the PSO still 
increases at a speedup close to the ideal. As the parameter update of 
the GA is more complex, the master process takes up the core work, 
such as parameter selection, crossover and mutation, while the slave 
processes are mainly responsible for the calculation of the water cycle 
simulation, so the computation of the master process cannot be 
effectively reduced in the process of adding slave processes. In 
contrast, the parameter update of the PSO is simpler and its speedup 
increases significantly as the number of processes increases. However, 
due to the consumption of processes communication, the more the 
number of processors, the more frequent the communication will be 
which in turn leads to a decrease in the parallel efficiency of the 
processor as the number of processes increases.

Figure 7: The speedup of our parallel methods with GA and PSO 
for different work sizes.

From the above test results and summary, it can be concluded that 
the parallel genetic algorithm and the parallel particle swarm 
algorithm are suitable for different hydrological simulation application 
due to their respective characteristics; parallel genetic algorithm is 
used for accurate hydrological models or for long-term simulations 
and parallel particle swarm algorithm is used for short-term 
simulations for real-time predictions.

Conclusion
This paper presents a parameters optimization solution for large 

scale hydrological simulation which considers multiplicity of 
parameters and the complexity of sub-basins. We used two 
optimization algorithms, the GA and the PSO, to attack the complexity 
of high dimensional parameters and produce solutions in a relatively 
short computation time. The computing time is further reduced 
through parallelization of optimization algorithms. After obtaining 
convergence results essentially around 0.65 and the parallel efficiency 
of 95.9% on 32 cores, we conclude that, it is possible to achieve high 
dimensional parameters calibration in large scale hydrological 
simulation by using a parallel implementation on multicore CPUs, that 
is the optimal parameters can be obtained in a relatively short 
computation time while ensuring correctness of simulation results. In 
addition, our comparison of the two algorithms shows that the final 
result of convergence of the GA is better than the PSO and that the 
acceleration effect of the PSO is more obvious than the GA. It is 
necessary to combine the characteristics of the two algorithms in the 
specific use of parameters.
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