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Abstract

A new approach for the rapid and accurate correlation study of
the nonlinear properties in the Transition Metal (TM) clusters
based on the Deep Leave-One-Out Cross-Validation (LOO-CV)
method is presented. The method together with the cosine
similarity delivers significant accuracy in the order of at most
10−9 for the prediction of total energy, lowest vibrational mode,
binding energy and HOMO-LUMO energy gap of TM2, TM3,
and TM4 nanoclusters. Based on the correlation errors, the
most coupling TM clusters are ob- tained. In this regard, Mn
and Ni clusters has the maximum and minimum amount of
energy couplings with other transition metals, respectively. In
general, energy prediction errors of TM2, TM3, and TM4
demonstrate comparable patterns while an even-odd behavior
is observed for vibrational modes and binding energies. In
addition, Ti, V and Co demonstrate maximum binding energy
coupling to the TM2, TM3 and TM4 sets, respectively. For the
case of the energy gap, Ni shows the maximum correlation in
the smallest TM2 clusters while Cr dependence is highest for
TM3 and TM4 sets. Finally, Zn has the highest error for HOMO-
LUMO energy gap in all sets and consequently the maximum
independent energy gap characteristics.

Keywords: Transition metal clusters; Density functional theory;
Artificial neural network; Deep neural network.

Introduction
Cluster properties are significantly correlated with their

corresponding size, composition and charge state. As a result, their
numerous applications, specifically in heterogeneous catalysis and the
various branches of nanoscience, are extensively related to their
characteristics [1]. Analysis of similarities and differences between the
characteristics of clusters and those from the corresponding bulk
materials is com- mon [2]. Understanding the properties of the clusters
will help to gain a deeper understanding and new insights into the

behavior of the bulk. Small cluster characteristics are greatly different
from bulk matter and are not scalable from those of bulk materials [3].

The atomic clusters of transition metals have been the topic of
extensive investigations over the last decades. Due to the challenges of
understanding transition metal nanocluster formation, stabilization,
agglomeration, size and shape-dependent properties, there is still an
enormous interest in transition metal nanoclusters [4]. Wide
knowledge of these variations, especially for transition metal clusters,
can open an extensive window of applications considering their
structural, electronic, and magnetic properties [5,6]. These
applications include catalysis, quantum computers, photochemistry,
optics, nanoelectronics, chemical sensors, etc. An incomplete d shell
plays a crucial role in the discrimination of transition metals properties
in comparison with the clusters or solids of simple sp metals.

While many groups are empirically analyzing TM clusters,
experiments may impose some limitations such as the exact control of
the size and configuration. Atomic material modeling is now
commonly and widely used, and includes a variety of techniques from
exact quantum chemical methods to density functional theory (DFT)
and semi-empirical quantum mechanics to analytical interatomic
potentials. DFT is the key computational tool and most popular
approach for explaining the chemical and physical properties of
materials in different phases, forms, and degrees of aggregation. DFT
calculations typically include a high computational cost and are
sensitive to the employed exchange-correlation functional. Thus, its
corresponding ability to simulate large-size systems and long-term
scales is relatively limited [7].

In material science, models based on different types of neural
networks have shown excellent perfor- mance in material detection,
material analysis, material design, and quantum chemistry (e.g.,
Convolutional Neural Network (CNN), Recurrent Neural Network
(RNN), Deep Belief Network (DBN), and Deep Coding Network). In
this area, the advancement of deep learning has made new advances in
the application of data-driven approaches. Deep learning has been
deployed to the integrated frontal poly-merization to adapt the
chemistry to the desired manufacturing strategy. The model is applied
to predict the cure kinetics parameters for a given set of front
characteristics. The convolutional neural networks is also employed to
design a predictive model for the electronic properties of the metal
halide perovskites (MHPs). In addition, the tensorial ANN models of
the product of atomic coordinate vectors and virtual NN outputs or
their partial derivatives with respect to atomic coordinates have been
previously developed. The proposed models accurately predict a large
number of ab-initio data in a variety of benchmark systems.
Furthermore, the ANNs are deployed to estimate the output
characteristics of a multiscale model in the thin film formation
obtained from the chemical vapor deposition method. This indicates
that the ANN-based approach can acceptably estimate the behavior of
the observables under uncertainty and mitigate a huge amount of
undesired parasitic effects . Deep learning has been employed to
estimate a variety of the electronic properties in the organic
semiconductors such as their HOMO and LUMO energy levels and
the excited states. In addition, the capability of the Deep Leave-One-
Out Cross-Validation (LOO-CV) models has been shown in absorption
spectra prediction, considerably reducing the number of quantum
chemical calculations [8].
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A deep Leave-One-Out Cross-Validation model is used to predict
the TM properties in this paper. This model is trained to learn the
nonlinear relationship within data without relying on the physical
model. The Cross-Validation-based model has been used to investigate
the correlated nonlinear properties of the transition metal small
clusters. This network is utilized to predict the missing metal cluster
properties based on the other properties of existing ones. Considering
the similarity of transition metals, the probability of predicting the
characteristics of any of these metal clusters with regard to the nine
other transition metal ones in the fourth row of the periodic table is
investigated. Moreover, the interdependence among these properties in
the small transition metal clusters is reported which would enhance the
understanding of the underlying factors. It is also of great significance
to extract the constant patterns in the characteristics of TM small
clusters as their size varies. The proposed model has been deployed to
predict the interdependence of transition metal clusters based on their
analogy.

Methods
ANN is an efficient method that can use complex algorithms and

analyze data to investigate complex relations between features and

predict the behavior of unknown systems. In this paper, the possibility
of predicting the nonlinear properties of transition metals is examined
using ANN-model. Since the properties of transition metal clusters
share several similarities, it is expected that by having the properties
of nine transition metals clusters, the properties of the tenth transition
metal cluster are predictable.

A Deep Neural Network (DNN) model based on Feedforward
Multilayer Perceptron (MLP) with Levenberg Marquart (LM) error
Back-Propagation (BP) training algorithm is employed for modeling
TM cluster nonlinear properties. The input layer, more than one
hidden layer, and the output layer are three main components of
DNNs. BP training algorithm is an iterative gradient designed to
minimize the mean square error between the output of the neural
network and the real values of output (target). Equation (1) refers to
the rule of updating weights in the back-propagation algorithm [9].

TM2 TM3 TM4

Sc2 Sc3 Sc4

Ti2 Ti3 Ti4

V2 V3 V4

Cr2 Cr3 Cr4

Mn2 Mn3 Mn4

Fe2 Fe3 Fe4

Co2 Co3 Co4

Ni2 Ni3 Ni4

Cu2 Cu3 Cu4

Zn2 Zn3 Zn4

where W represents the weight matrix, E is the cost function which 
is here called mean squared error (MSE) and η is the learning rate. 
During the learning process, the weights and biases of the DNN are 
adjusted to reduce the error in the training data sets. Then, DNN can 
represent complex mappings and to address large nonlinear problems. 
In this work, the Tensorflow and Keras Python packages have been 
used to implement the DNN-based model.

Why Deep Neural Networks?
The recent advances in deep learning in various areas motivated us 

to pursue this approach in the nonlinear problems of TM clusters. 
Deep network structures are generally better generalized than shallow 
networks with the same number of parameters. Deep neural networks 
map the input to target via a deep sequence of simple data 
transformations and these data transformations are learned by 
exposure to examples. Finding the correct value for parameters and

hyper-parameters of the deep neural network may seem like a
challenging task, specifically given that modifying the value of one
parameter will affect the behavior of all the others. Shallow neural
network-based models cannot deal with the problems consisting of
high complexity and nonlinearity. One of the reasons for the
superiority of deep networks is that these networks apply a special
form of composition in which by combining the features of one layer
in different ways, more abstract features are created in the next layer.
Deep architectures are more efficient and consequently more powerful
in the modeling of the nonlinear relation between input and output
data compared to the shallow neural ones. This has been attained by
the same memory computational costs and a fixed amount of training
data. DNNs can capture complex high-dimensional functions
efficiently. On the other hand, DNNs have a strong ability and
outstanding performance to approximate nonlinear functions due to
the common saddle points in high dimensional spaces and their
hierarchical structures.
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Table 1: Three datasets including TM2, TM3, and TM4 nanoclusters.



Data Collection
Three datasets are defined, which are clusters of first-order

transition metals from groups IIIB to IIB (Sc to Zn) with n=2 to 4
where, n represents the number of atoms in each cluster. Here, datasets
are marked with TM2, TM3 and TM4. These three datasets are shown
in Table 1

Calculations have been performed by Density Functional Theory
(DFT) within B3LYP functional and 6-311++G basis set. For each
cluster of Table 1 various spin multiplicities have been calculated.
Further-more, for each cluster, the structure with the lowest total
energy is considered as the final structure. The calculations have been
performed by using Gaussian 09W. Figure 1 shows the configurations
obtained for TMn clusters, where TM stands for Sc, Ti, V, Cr, Mn, Fe,
Co, Ni, Cu, Zn and n is in the range of 2 − 4. Physical and electronic
properties of these clusters including group number in the periodic
table, bond length between atoms in each cluster, mass, total energy,
binding energy, the energy gap between HOMO and LUMO, HOMO,
magnetic moment and low-frequency vibrational modes, are extracted
from DFT calculations.

Figure 1: TM2, TM3 and TM4 nanocluster configurations of first-
order transition metals.

Data Prepration and Feature Selection DFT calclations are pe

Cluster Magnetic Mean Bond Length
(A˚ )

Binding Energy (eV) HOMO-LUMO
Energy Gap (eV)

Lowest Vibrational
Mode (cm-1)

Sc2 4 2.6013 -0.2471 1.3872 262.6104

Ti2 2 1.9115 -0.554 1.8503 492.1252

V2 2 1.7482 -0.4688 2.336 677.2642

Cr2 10 2.7803 -0.2731 1.8922 187.5621

Mn2 10 2.627 0.0861 1.5447 204.9463

Fe2 6 1.994 -0.4249 1.1978 435.5859

Co2 6 2.0882 -0.189 0.7284 347.2473

Ni2 0 2.0672 -0.0203 2.0403 346.837

Cu2 0 2.2788 -0.8925 4.2381 241.5759

Zn2 0 3.8794 0.0004 4.9658 15.9489

Sc3 3 2.9353 -0.5469 1.4968 125.1783

Ti3 4 2.4342 -0.711 1.3839 126.5158

V3 5 2.4795 -0.8372 1.8245 112.1235

Cr3 6 2.9091 -0.6089 1.9439 38.8681

Mn3 5 2.9798 -0.1795 1.8032 109.3713

Fe3 10 3.1762 -0.9844 2.0854 29.8353

Co3 7 3.0517 -0.915 2.1807 25.4997

Ni3 4 2.9358 -0.9688 1.7507 47.8888

Cu3 1 2.4699 -0.8807 1.3036 66.8161

Zn3 0 3.3824 -0.008 4.4534 32.1097

Sc4 4 3.1954 -0.6667 1.2672 188.7053

Ti4 8 2.7074 -0.7984 1.0443 111.7593

Citation: Kokabi A, Naghibi Z, Mahd ZN (2022) Cross-Validation and Cosine Similarity-based Deep Correlation Analysis of Nonlinear Properties in
Transition Metal Clusters. J Nanomater Mol Nanotechnol 11:7.

Volume 11 • Issue 7 • 1000348 • Page 3 of 5 •



V4 6 3.0379 -0.8273 1.4011 130.9942

Cr4 2 2.9381 -0.5864 0.4636 139.6622

Mn4 2 2.9665 -0.058 0.8963 163.5971

Fe4 6 2.7789 -0.8481 0.4911 160.4016

Co4 10 2.657 -1.0123 1.5213 203.1061

Ni4 4 2.7053 -1.0312 0.9589 191.1343

Cu4 0 2.7451 -1.1691 1.9219 142.5269

Zn4 0 4.374 0.0003 4.2302 14.1698

Results and Discussion
In this section, the shallow and deep structures of neural networks 

are employed to investigate the non- linear correlation between TM 
cluster properties. Different combinations of features were opted to 
predict the outputs. The total energy, lowest vibrational mode, binding 
energy and HOMO-LUMO energy gap are considered as the model 
targets for the DNN approach used for prediction. Many hyper-
parameters must be tuned to achieve the proper performance of DNN. 
The number of hidden layers and neurons is deter- mined to an extent 
to mitigate the training and test errors. In addition, Swish and Selu 
have been picked as the activation functions. Moreover, the 
optimization process is performed through the Adam and RMSProp 
algorithms. Regarding the importance of the activation function and 
optimization algorithm for the desired prediction accuracy, the 
selection of these functions has been performed attentively through the 
sweeping process.

Total Energy Prediction
The DNN-based model has been employed to predict the Total 

energy of the TM clusters. Inputs are applied to the neural network 
with respect to the features is presented in Table Various sets of 
features were examined to find a combination that precisely predicts 
the outputs. The corresponding results are given in Table for the TM2, 
TM3 and TM4 nanoclusters. As can be seen from Table by variation 
of the number of layers and neurons, training and test error will be 
swept. The appropriate number of layers and neurons must be chosen 
to avoid the under-fitting and over-fitting issues. In the first step, the 
ANN-based model with a shallow structure has been deployed for the 
prediction. This model includes three layers which consist of an input, 
a hidden, and an output layer. In the next step, the ANN-based model 
with a deep structure has been used. This deep structure is formed by 
the same number of neurons used in the shallow one presented in 
Table The shallow structure 1, 25, 1 in Table consists of three layers 
that the input and output layers contain one neuron and the hidden 
layer includes 25 neurons. Also, the deep structure 1, 5, 5, 5, 10, 1 
which is shown in Table consists of six layers that the input layer 
contains one neuron, the first, second, third and fourth hidden layers 
contain 5, 5, 5, and 10 neurons, respectively. Finally, the output layer 
also contains one neuron. As can be seen, the total number of hidden 
layer neurons is equal in both shallow and deep structures. The results 
reveal that the values of MSE were significantly lower for the ANN-

based model with deep structure compared to that of the ANN-based
model with a shallow structure for all nanoclusters.

For the prediction of the total energy, among the different mixture
of features, the highest correlation is obtained with the group number.
Figure illustrates the correlation between features and targets corre-
sponding to the total energy prediction. The test error value in
predicting total energy based on the group

Conclusion
In this paper, the nonlinear correlation between the properties of

transition metal nanoclusters was stud- ied using the LOO-CV
method. The method together with the cosine similarity delivers
significant accuracy for the prediction of the total energy, lowest
vibrational mode, binding energy and HOMO-LUMO energy gap.
These parameters have been analyzed for all TM2, TM3, and TM4
nanoclusters. The correlation errors demonstrate some characteristic
behavior of the elements. For instance, the total energy of the
vanadium has similar errors in all three sets. On the other hand, Mn
cluster has the lowest and Ni has the highest errors. This means that
Mn and Ni clusters have the maximum and minimum amount of
energy correlations with other transition metals, respectively. In
general, TM2, TM3, and TM4 seem to follow comparable pat- terns.
In contrast, the mentioned pattern discriminates TM3 clusters from the
TM2 and TM4 sets in the case of vibrational modes. Therefore, for
these parameters, an even-odd behavior is observed for the considered
range. In the analysis of the binding energy, Ti, V and Co demonstrate
maximum coupling to the TM2, TM3 and TM4 sets, respectively. In
this regard, the binding energy similarity is highest for TM4 and
lowest for TM3 clusters. Again, the discrimination error shows the
even-odd pattern for this parameter. Finally, for the energy gap, Ni
shows the maximum coupling in the smallest TM2 clusters while Cr
dependence is highest for TM3 and TM4 sets. In this regard, Zn has
the highest error for HOMO-LUMO energy gap in all sets and
consequently the maximum independent energy gap characteristics.
Speedup comparison between the deep and shallow structure of neural
networks presents better performance for DNNs at the expense of
higher computation cost. However, the DNN-based model is still
much faster than conventional compu- tational approaches such as
DFT. In this regard, the DNN-based model is shown to be more than
29,000 times faster than the conventional DFT calculations.
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Table 2: Cluster geometric parameters, lowest vibrational modes, binding energies and HOMO-LUMO energy gaps.
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