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Abstract
Electroencephalogram (EEG) data has been used in a variety of 
linear and nonlinear time series analysis techniques for predicting 
epileptic seizures. We examine phase-space dissimilarity measures 
for forewarning of seizure events based on time-delay embedding 
and state space recreation of the underlying brain dynamics. 
Given novel states which form graph nodes and dynamical 
linkages between states which form graph edges, we use graph 
dissimilarity to detect dynamical phase shifts which indicate the 
onset of epileptic events. In this paper, we report on observed 
trends and characteristics of graphs based on event and non-
event data from human EEG observations, and extend previous 
work focused on node and link dissimilarity by analyzing other 
graph properties as well. Our analysis includes measured 
properties and dissimilarity features that influence forewarning 
prediction accuracy.
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for seizures, lower medical costs, less work/school absenteeism, and 
retention of driving privileges.

The purpose of this paper is to extend previous work by Hively et 
al. [2-8]; Protopopescu et al. [9] and Gailey et al. [10] in forewarning of 
seizure events using theorem-based phase space analysis methodology 
by 

Identify and analyze graph features and characteristics de- rived 
from EEG data not previously used as a measure of dissimilarity, and 
evaluate the performance of these features as dissimilarity measures 
in phase space analysis.

Identify graph features and properties relative to phase space 
graphs formed by EEG data. We believe the analysis of previously 
unstudied graph features and properties in phase space analysis could 
lead to a higher accuracy rate and improved forewarning prediction 
distance.

Background
Nonlinear EEG measures are non-stationary, displaying marked 

transitions between normal and epileptic states [11,12]. EEG also 
exhibit low-dimensional features [13,14] with at least one positive 
Lyapunov exponent [14-16], and hence positive Kolmogorov entropy. 
EEG have clear phase-space structure [14-16], which our analysis uses 
to extract condition change. However, one would not expect long-
term dynamical changes for an abrupt transition to a seizure [17], for 
example activated by flashing lights, sound, or temperature.

Recent research focuses on statistical tests of forewarning. Such 
statistical tests are part of a long-standing hard problem of forewarning, 
such as earthquakes, machine failures, and biomedical events [18]. Recent 
reviews [19-21] concluded that the work (Figure 1).

to date does not provide convincing statistical evidence for 
seizure forewarning. Mormann et al. [19] suggest guidelines for 
methodological soundness of seizure pre- diction studies:

Testing of prediction on unselected continuous long-term (several 
days) EEG from each patient;

Results with calculation of sensitivity and specificity for a specific 
prediction horizon;

Testing of false positives via Monte Carlo simulations or nave 
prediction schemes;

In-sample training of prediction algorithms, followed by out-of-
sample tests on independent data.

Winterhalder et al. [22] further suggest that a maximum false 
positive (FP) rate of 0.015 FP/hour is rea- sonable. Several recent 
papers address specific statistical tests of epilepsy prediction as 
different from chance [23,24].

Our analysis focuses on noninvasive scalp EEG readings. Scalp 
EEG readings are notoriously contaminated by noisy artifacts such 
as eye blinks and other muscular movements, and have resisted 
previous analyses due to signal attenuation through bone and 
soft tis- sue. Our initial analysis [25] demonstrated a zero-phase 
quadratic filter that removed the artifacts in scalp EEG. That analysis 

Introduction
Epilepsy afflicts about 1% of the world’s population. Seizures 

are usually not serious medical events, but may become life-
threatening during hazardous activities (e.g., driving or swimming 
alone). However, extreme epileptic events require immediate 
medical intervention to avoid sudden unexplained death, which is 
characterized by fatal cardiac arrhythmia and/or breathing cessation, 
along with concomitant injuries. Two-thirds of patients have events 
that are controllable by anti-epileptic drugs, which frequently have 
debilitating side effects (e.g., tiredness, memory problems, dizziness, 
mood problems, seizure continuation, difficulty concentrating, 
headaches, appetite problems, shaking). Another 7-8% can be cured 
by epilepsy surgery, which may result in cognitive impairments 
or post-operation infection which could lead to death. For the 
remaining one-quarter of people with epilepsy, no available therapy 
is effective. Quality-of-life issues include fear of the next seizure, 
inability to drive, social issues, work problems, depression, fatigue, 
school issues, and increased stress [1]. Reliable seizure forewarning 
would drastically alter seizure treatment, allowing preventive action 
(e.g., episodic seizure medication rather than continuous anti- seizure 
drugs). Potential improvements to the patient’s quality of life include: 
reduced morbidity and mortality risk, fewer hospital re-admissions 
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used traditional nonlinear measures, TNM (Kolmogorov entropy, 
correlation dimension, and mutual information), which yielded 
inconsistent forewarning. Our subsequent work [2-10] demonstrated 
phase-space dissimilarity measures (PSDM), which sum the absolute 
value of differences. By contrast, TNM are based on a difference of 
averages. PSDM provide consistently better forewarning than TNM, 
independent of patients’ age, sex, event onset time, pre-event activity, 
or awake- versus asleep-state baseline state. 

Previously, we limited the forewarning analysis to 1 hour before the 
clinically characterized seizure. This time horizon was motivated by:

Whether any forewarning can be obtained; and 

Forewarning of more than 1 hour was generally considered too 
long/uncertain to be clinically useful.

However, work by Litt and Echauz [26] demonstrated forewarning 
of several hours before the epileptic events. Consequently, subsequent 
work Hively et al. [25] extended the time window to the full length of 
the data, yielding forewarning times of 6 hours, consistent with Litt 
and Echauz [26]. Our previous work [2-10] also used forewarning 
indication (or lack thereof in non- event datasets) in any one channel, 
regardless of the results in other channels. However, the any-one 
channel criterion is not definitive, because a true positive (negative) in 
one channel can be accompanied by a false negative (positive) in other 
channel(s). Thus, our subsequent work [8-10,25] used scalp EEG from 
two fixed channels with an accuracy of 58/60, sensitivity = 40/40, and 
specificity = 18/20. However, this result decreases abruptly for a unit 
change in any of the analysis parameters. Also, these test only used node 
and link differences to measure dissimilarity among graphs.

EEG Phase Space Reconstruction
We model the nonlinear dynamics of the brain using time-serial 

EEG data. Specifically, the analysis uses time-serial EEG data in the 10-
20 system from two scalp electrodes, e.g., F8 and FP2, to form a single 
channel of data in the bipolar montage. These data were uniformly 
sampled in time, ti, at 250 Hz, giving N time-serial points in each 
analysis window (cutset), ei = e(ti). A novel zero- phase, quadratic 
filter removes electrical activity from eye blinks and other muscular 
artifacts, which otherwise obscure the event forewarning. This novel 
filter retains the nonlinear amplitude and phase information [8]. The 
filter uses a moving window of 2w + 1 points of ei-data, which are 

fitted to a parabola in a least-squares sense, yielding N-2w points of 
artifact data, fi. Figure 1 shows a single cutset before the quadriatic 
filter (ei) and after the filter is applied (gi).

The residual (artifact-filtered) signal has essentially no low-
frequency artifacts, gi = ei - fi. We then represent every gi in a 
symbolized form si. The number of symbols is a predetermined 
parameter such that si is one of S different integers 0,1,,,S-1:
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Here, INT rounds the calculated value down to the lowest integer, 
and gmax and gmin represent the largest and smallest values of gi 
respectively. Takens? theorem [27] gives a smooth, non-intersecting 
dynamical reconstruction in a sufficiently high dimensional space 
by a time- delay embedding. Thus, Takens? theorem allows the 
symbolized data to be converted into phase-space vec- tors yi:

yi = [si, si+L, ..., si+(d-1)L] 			              (2)

Takens’ theorem allows the yi states to capture the topology 
(connectivity) of the underlying dynamics. This theorem assumes the 
underlying observable is a real, twice-differentiable function of typical 
dynamics without special symmetries. The time-delay lag is L, which 
must not be too small (making si and si+L indistinguishable) or too 
large (making si and si+L independent by long- time unpredictability). 
The embedding dimension is d, which must be sufficiently large 
to capture the dynamics, but not too large to avoid over-fitting. 
Takens theorem also provides a metric (e.g., Euclidean distance in d 
dimensions) between the phase-space points. The states from Eq. (2) 
are nodes. The process flow, yi -> yi+M, forms state-to-state links, for 
some lag, M. The nodes and links form a ’’graph” with topologically-
invariant measures that are independent of any unique labeling of 
nodes and links. By dividing the data into cutsets, and representing 
each cutsets with as a graph, we can use dissimilarity measures 
between the graphs among the cutset compared to graphs from base 
cases (non-event) to predict a seizure event. Table 1 describes the 
properties of graphs produced in each cutset per parameter set.

Related Work
Epileptic seizure prediction has been studied significantly using 

a variety of techniques and a variety of psychological data. The first 

 
(a)  Before  Filter  (b) After  Filter  

Figure 1: Zero-Phase Quadratic Filter.
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attempt to predict seizures were made by Viglione and colleagues 
in 1970 [28]. Recent techniques used include frequency-based 
methods, statistical analysis, non-linear dynamics, and intelligent 
engineered systems [26]. Wackermann and Allefeld [29] used 
state space reconstruction to represent dynamics in neural activity 
from EEG data. Mirowski et al. [30] used bivariate features of EEG 
synchronization over consecutive time points to form patterns, and 
then used ma- chine learning-based classifiers, such as SVMs and 
neural networks, to correctly identify interictal and preictal patterns 
of features. Stam and Reijneveld [31] note that nonlinear dynamics, 
statistical physics, and graph theory are useful tool when analyzing 
complex networks such as the human brain, and discuss their 
applications to neuroscience through modeling neural dynamics, 
graph analysis of neuroanatomical networks and graph analysis of 
functional magnetic resonance imaging, electroencephalography, 
and magnetoencephalography. Drentrup et al. [32] showed improved 
prediction performance by combining mean phase coherence and 
dynamic similarity index to long-term continuous intracranial EEG 
data, and suggest combining prediction methods is a promising 
approach to enhance seizure prediction performance. Zijlmans 
et al. [33] use the presence of high frequency osculations in EEG 
readings sampled at (Figure 2) a frequency of at least 2,000Hz as 
a biomarker to identify the presence of epileptogenic tissue. By 
identi- fying these biomarkers, patients requiring surgery have a 
better chance of rehabilitation. Relying on patterns in EEG features 
prior to a seizure, Raghunathan et al. [34] proposed a two stage 

computationally efficient algorithm that detected seizures within 9% 
of their duration after onset. Mirowski et al. [35] used convolutional 
networks and wavelet coherence to successfully predict seizures 
based on bivariate features of EEG synchronization, including cross-
correlation, nonlinear interdependence, dynamical entrainment and 
wavelet synchrony. Their method showed pattern recognition could 
capture seizure pre- cursors through the spatiotemporal dynamics of 
EEG synchronization. Mirowski [36] also compared L1-regularized 
logistic regression, convolutional networks, and support vector 
machines on aggregated features among EEG channels, including 
cross-correlation, nonlinear interde- pendence, Lyapunov exponents, 
and wavelet analysis- based synchrony such as phase locking. Yuan 
et al. [37], state the behavior of embedding dimension reflects the 
variation of freedom degree of brain nonlinear dynamics during 
seizures, and based on Cao’s method, nor- mal EEG signals are 
somewhat random, whereas epileptic EEG signals have determinism. 
Astolfi et al. [38] used graph theory to interpret connectivity patterns 
estimated on the cortical surface in different frequency bands after 
imaging, which suggest their methodology could identify differences 
in functional connectivity patterns elicited by different tasks and 
conditions. D’Alessandro et al. [39] suggest a seizure prediction 
method using feature selection methods over multiple EEG channels. 
Their approach involves an individual based method for selecting 
EEG features and electrode channel locations based on precursors 
that occur within ten minutes of seizure onset using intelligent genetic 
search algorithms to EEG signals collected from multiple intracranial 

Set ID Acyclic Biconnected Bipartite Connected Cyclic Forrest MEF BT Plannar RT LF Simple SC Tree
P1 False False False True True False False False False False True True T/F Falseeee
P2 False False False True True False False False False False True True T/F False
P3 False T/F False True True False False False False False True True T/F False
P4 False T/F False True True False False False False False True True T/F False
P5 False False False True True False False False False False True True True False
P6 False False False True True False False False False False True True T/F False
P7 False False False True True False False False False False True True T/F False
P8 False False False True True False False False False False True True T/F False
P9 False T/F False True True False False False False False True True True False
P10 False False False True True False False False False False True True T/F False

Table 1: Graph Properties.

MEF= Multi-Edge Free, BT= Binary Tree, RT= Rooted Tree, SLF= Loop Free, SC= Strongly Connected T/F indicates properties vary 
between cutsets

(a)  Full  Set (b) Top  1%

Figure 2: Frequency of prediction distance for full data set (left) and top 1% (right).
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readings and multiple features derived from these signals. Adeli et al. 
[40] presented a seizure prediction method based on quantifying the 
nonlinear dynamics of EEGs using the correlation dimension, which 
represents complexity, and the largest Lyapunov exponent, which 
represents chaoticity within the system. Their method isolated changes 
in correla- tion dimensions and Lyapunov exponents in specific sub- 
bands of EEG readings. Firpi et al. [41] used artificial features, created 
using genetic programming modules and a k-nearest neighbor 
classifier, to create synthetic features formed from reconstructed 
state-space trajectories of intracranial EEG signals to reveal patterns 
indicative of epileptic seizure onset. In a 2014 paper published by the 
National Institute of Health, Chiang et al. [42] stated graph theory 
allows for a network-based representation of temporal lobe epilepsy, 
and can potentially show characteristics of brain topology conducive 
to temporal lobe epilepsy pathophysiology, which includes seizure 
onset. Quaran et al. [43] showed that differences between control 
groups and patients in graph theory metrics showed a deviation from 
a small world network architecture. In theta band, epilepsy patients 
showed showed more of an orderly network, while in the alpha band, 
patients moved toward a random network. Haneef et al. [44] showed 
several possible biomarkers have been studied for identifying seizure. 
They note for localization, graph theory measures of centrality, 
betweenness centrality, outdegree, and graph index complexity 
show potential, and for prediction of seizure frequency, measures of 
synchronizability have shown the most potential.

There has also been significant research combining graph theory, 
machine learning, and classification. Ketkar et al. [45] showed the 
performance of various graph classification algorithms, including 
walk-based graph kernels, Subdue CL, FSG+SVM, FSG+AdaBoost, 
and DT- CLGBI. Petrosian et al. [46] used recurrent neural net- 
works and signal wavelet decomposition to scalp and in- tracranial 
EEG readings to demonstrate the existence of a preictal state. Chisci 
et al. [47] proposed a novel way of auto-regressive modeling of 
EEG readings. Their method combines a least-square parameter 
estimator feature ex- traction with support vector machine for binary 
classification between preictal and interictal states. Subasi et al. [48] 
used binary classification based on decomposed frequency subbands 
using discreet wavelet trans- forms. They then extracted a set of 
statistical features to represent the distribution of wavelet coefficients. 
Then, principal components analysis, independent components 
analysis, or linear discriminant analysis was used for di- mensionality 
reduction. The features were then used as input to support vector 
machines for binary classi- fication. Shoeb et al. [49] presented a 
machine learning- based method for detecting the termination of 
seizure activity Their method successfully detected the end of 132 
seizures within a few seconds of seizure termination. Yuan et al. [50] 
presents a detection method using a single hidden layer feed forward 
neural network. They note that nonlinear dynamics is a powerful 
tool for understanding brain electrical activities, and used nonlinear 
features extracted from EEG signals such as approximate entropy, 
Hurst exponents, and scaling exponent obtained with de- trended 
fluctuation analysis to train their neural network and characterize 
interictal and ictal EEGs. Their results indicate the differences of those 
nonlinear features between interictal and ictal EEGs are statistically 
significant. Rasekhi et al. [51] suggest a method involving combining 
twenty two linear univariate features to form a 132 dimensional 
feature space. After preprocessing and normalization, they use 
machine learning techniques for classification.

However, seizure detection and prediction is not limited to EEG 
data. Zijlmans et al. [52] observed ECG abnormalities in 26% of 

seizures, an increase in heart rate of at least 10 beats/minute in 73% 
of seizures, and in 23% of seizures the rate increase preceded both the 
electrographic and clinical onset. Using statistical classifier models, 
Greene et al. [53] used the combination of simultaneously-recorded 
electroencephalogram and electrocardiogram to detect neonatal 
seizures in newborns. Using a neuro-fuzzy inference system, Guler 
and Ubeyli [54] proposed a new method of seizure detection based 
on features extracted from electroencephalogram data using wavelet 
transform, and was trained with back propagation gradient descent 
method in combination with least squares. Kolsal et al. [55] state it is 
possible that heart rate variability could be used to predict seizures, 
and note from their study that heart rate variability during and before 
seizures revealed higher nLF and LF/HF ratio and lower nHF values 
demonstrating increased sympathetic activity. Hashimoto et al. [56] 
stated the fluctuation of the R-R interval of an electrocardiogram 
reflects the autonomic nervous function, an epileptic seizure may be 
predicted through monitoring heart rate variability data of patients with 
epilepsy. Their study showed that frequency heart rate variability features 
(LF and LF/HF) changed at least one minute before a seizure occurred in 
all studied seizure episodes. Osorio [57] demonstrated automated EKG-
based seizure detection is feasible and has potential utility given its ease 
of acquisition, processing, and ergonomic advantages.

Graph Theory
Our analysis involves studying the various graph features and 

how they relate to the changing dynamics in the brain. Our algorithm 
uses dissimilarity of base case and test case graphs based on these 
features to identify seizure activity. While previous studies have 
focused only on node and link dissimilarity, we analyze these areas, as 
well as centrality, cycles, and connections. The purpose of this section 
is to identify the graph features used in our analysis, and define their 
meaning and interpretation.

The following graph features were used in our analysis to measure 
dissimilarity:

•	 Node Difference: Nodes in graph A not in graph B, Nodes in 
graph B not in graph A;

•	 Link Difference: Edges in graph A not in graph B, Edges in 
graph B not in graph A;

•	 Node Directed: Nodes in base case graph not in test case 
graph

•	 Link Directed: Edges in base case graph not in test case graph

•	 Inverted Node: Nodes in test case graph not in base case graph

•	 Inverted Link: Edges in test case graph not in base case graph

•	 Graph Centrality: Most influential vertices in base case graph 
not in graph base case graph;

•	 Degree Centrality: Difference in the number of links incident 
upon nodes in base case graph and test case graph;

•	 Number of Cycles (size Lambda): Difference in number of 
cycles size Lambda in base case graph and test case graph;

•	 Number of Cycles (size Mu): Difference in number of cycles 
size Mu in base case graph and test case graph;

•	 Number of Bi-connected Groups: Difference in number of 
Bi-connected components in base case graph and test case 
graph;
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•	 Number of Strongly Connected Components: Difference in 
number of strongly connected components in base case graph 
and test case graph;

•	 Average Size of Strongly Connected Components: Difference 
in average size of strongly con- nected components in base 
case graph and test case graph;

•	 Average Clustering Coefficient: Difference in average of the 
local clustering coefficients of all vertices in base case graph 
and test case graph [58];

•	 Node Edge Betweenness Centrality: Nodes central in base 
case graph not in test case graph.

Analysis
Our analysis involved the use of 10 parameter sets, which are 

listed in Table 2, as well as 3 more parameter sets used for validation 
also listed in Table 2. The data was uniformly sampled at 250 Hz. All 
parameter sets used scalp EEG data in the 10-20 system from electrode 
channels F8 and FP2. Data acquisition was under standard human-
studies protocols from 41 temporal- lobe- epilepsy patients. Ages ranged 
from 4 to 57 years old. 36 datasets were from females, while 24 datasets 
were from males. The datasets range in length from 1.4 to 8.2 hours with 
an average of 4.4 hours. Forty datasets had seizures, and twenty had no 
event. At that point each parameter set listed in Table 2 was run on the 
60 data sets using the algorithm described above. We measures success 
based on the number of true positives (TP) for known event data sets 
(Ev), yielding sensitivity of TP/Ev, and the number of true negatives (TN) 
for known non-event data sets (NEv), yielding specificity of TN/NEv. The 
goal is a similar sensitivity and specificity rate, and to minimizing the 
distance (D = prediction distance):

( )
( ) ( )

2 2 1/2( ){[1 ] [1 ] }
TP TND
E NEυ υ

= − + − 			              (3)

Every combination of the graph features listed above was

run on the 10 parameter sets for all 60 data files. Each parameter 
set produced 32767 prediction distances corresponding to the 
combination of all features. We also produced data related to the 
graph properties listed in Table 2 for every graph produced. All 
parameter sets combined resulted in a true positive rate of 55%, a true 
negative rate of 25%, a false positive rate of 8%, and a false negative 
rate of 12%, yielding an accuracy of 80% and 87% precision. The 
mean prediction distance was

0.3 with a standard deviation of 0.06. Figure 2 shows the histogram 
of the prediction distances in the full data set, and the top 1%, which 
is described next.

The first step in our analysis involved taking the 325 lowest 
prediction distances from each parameter set and combining them 
to form a set of 3250 prediction distances. This data set represents the 
best performing 1% of prediction distances with their corresponding 
feature sets used for dissimilarity analysis from all ten parameter sets, 
resulting in a true positive rate of 59%, a true negative rate of 29%, a 
false positive rate of 5%, and a false negative rate of 7%, yielding an 
accuracy of 88% and 92% precision. The mean prediction distance 
was 0.18 with a standard deviation of 0.03. This represents a 67% 
improvement in mean prediction distance and a 50% improvement 
in variance over the full data set. We based the performance of each 
graph feature on the frequency of occurrence in the data set. Table 3 
lists the results. The most frequently occurring dissimilarity feature 
is node inverted with 74% frequency. Within the range of 60%-69% 
was node, link inverted, and average strongly connected components. 
Within the range of 50%-59% was node directed and link directed. 
Within the range of 40%-49% was link, cycle size lambda, graph 
centrality, node edge betweenness centrality, and number of strongly 
connected components. The remaining features occurred less than 
40% of the time. Clearly, the best results were achieved while using 
node inverted, node, link inverted, and average strongly connected 
components. However, in all of the top 1% of cases, no feature set 
contained only one dissimilarity measure. All feature sets contained 
two or more features.

In order to further identify best performing features, we combined 
the full data set from all ten parameters yielding 327670 prediction 
distances and dissimilarity features. We then performed stepwise 
regression on the data by treating the dissimilarity features as binary 
predictor variables and the prediction distance as the out- come 
variable. It is important to note the goal of per- forming stepwise 
regression was not to fit a regression equation or attempt predictive 
modeling. The nature of the data is nonlinear and chaotic, and as 
stated previously, typical statistical methods, such as regression, are 
ineffective. However, some insight about the data can be gained by 
performing stepwise regression. First, for the regression equation, the 
R squared value was 16.97% with a standard error of 0.05. It should 
be noted that the extremely low R squared value is partially due to the 
fact that the data set came from ten different parameter sets. When 
stepwise regression was performed on data from a single parameter 

Set ID Dimensions Symbols Lag Mu Half Width Window Size Number Base Cases
P1 7 3 56 77 29 49812 12
P2 7 3 47 77 29 49725 12
P3 10 2 50 24 19 22320 12
P4 10 2 50 52 19 22304 12
P5 7 3 56 35 29 49699 12
P6 8 3 70 22 28 49996 14
P7 7 3 56 19 29 49721 12
P8 7 3 56 21 29 49725 12
P9 2 8 56 21 29 20000 12
P10 7 3 56 77 29 49716 12
V1 6 4 40 25 20 49000 15
V2 4 6 48 40 30 35000 10
V3 5 7 60 30 25 25000 8

Table 2: Parameter Sets.

Set IDs beginning with P indicate testing sets Set IDs beginning with V indicate validation sets
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•	 node inverted and average size strongly connected 
components;

•	 link inverted and node;

•	 link inverted and link directed;

•	 node and average size Strongly connected components.

All of these pairs occurred at a co-occurrence frequency greater 
than 40%. The combination of node and node inverted, node and link 
inverted, and node and average size strongly connected components 
improved mean pre- diction distance by 15%, node inverted and node 
directed and node inverted and link inverted improved mean pre- 
diction distance by 11%, node inverted and link directed and link 
inverted and link directed both improved mean prediction distance 
by 7%, and node inverted and aver- age size strongly connected 
components improved mean prediction distance by 15%.

Validation
In order to validate our results, we ran three more parameter 

sets. These sets were specifically picked in order to not duplicate any 
parameters used in the previous ten test sets. Validation was achieved 
by testing the improvement in prediction distance using node, node 
directed, node inverted, link inverted, and average number strongly 
connected components versus prediction distances not using those 
dissimilarity features. All features were tested individually and as a 
whole. All individual dissimilarity features showed improvement in 
mean pre- diction distance when used versus not used. The average 
improvement was 8.5%. When all features were used together, there 
was a 13.3% improvement of mean prediction distance.

Discussion
We have presented three metrics for judging the dis- similarity 

measures that produce the best results. First, we look for the most 
frequently occurring dissimilarity measures used in the best 1% of 
prediction distances. Second, we look at what dissimilarity measures 
produce prediction distances that are significantly lower than the 
mean prediction distance. Third, we look at what dissimilarity 
measures have a lower median prediction distance when used versus 
not used.

Our first step was to evaluate the frequency analysis of 
graph features. Our results indicate the graph features that most 

set, the R squared value in- creased to 49%. Next, and most important 
for validation, we analyzed the T values of the individual dissimilarity 
features. For node, node directed, node inverted, link inverted, and 
average strongly connected components, the T values were large 
negative numbers. This indicates as a whole, those features resulted in 
a prediction distance that was less than the mean prediction distance. 
With the exception of link directed, these results coincide with the 
results from the frequency analysis of the best prediction distances. 
It should also be noted that the variance inflation factor for all 
dissimilarity measures was 1, indicating that there is no collinearity in 
the different dissimilarity features. Based on the results of the T values, 
we compare the mean prediction distances from test that used the 
dissimilarity feature to test that did not use the dissimilarity feature. 
Using node as a feature improved mean prediction distance by 11%, 
using node directed improved mean prediction distance by 4%, node 
inverted and link inverted both improved average prediction distance 
by 7%, and average strongly connected components improved 
prediction distance by 11%. These analysis were performed using 
Minitab 17. We also performed nonparametric test on the data to 
identify the best performers. Where the previous methods describe 
results based on mean, nonparametric test, such as Mood0s Median 
test, test the equality of medians from two or more populations [59]. 
Results from performing Mood0s Median test are as follows: The 
median prediction distance for test that used node as a dissimilarity 
measure improved results by 10%, node directed improved results 
by 3%, node inverted and link inverted improved results by 7%, and 
average number strongly connected components improved results by 
10%. The remaining features had little or no impact, or a negative 
impact. The fact that the improvement from both mean and median 
are nearly identical is due to the approximate symmetry of the data 
distribution.

The next step of our analysis involved the frequency of co-
occurrence. We evaluated how often pairs of dis- similarity features 
occurred together within the best per- forming 1% of prediction 
distances. The frequency of co-occurrence and percent of co-
occurrence are listed in Tables 4 and 5 respectively. Of all the pairs, 
the following occurred together most often:

•	 node inverted and node;

•	 node inverted and node directed;

•	 node inverted and link directed;

Feature Frequency % Frequency
Node 2204 68
Link 1393 43
Node Directed 1882 58
Link Directed 1890 58
Node Inverted 2401 74
Link Inverted 2112 65
Average Clustering Coefficient 921 28
Cycles Size Lambda 1488 46
Cycles Size Mu 839 26
Graph Centrality 1481 46
Degree Centrality 1248 38
Node Edge Betweenness Centrality 1306 40
Number of Strongly Connected Components 1606 49
Average Size Strongly Connected Components 2066 64
Number of Bi-connected Groups 1252 38

Table 3: Frequency of Features.
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commonly occur within the best per- forming prediction distances 
are node inverted, node, link inverted, average strongly connected 
components, node directed, link directed, link, cycle size lambda, 
graph centrality, node edge betweenness centrality, and number of 

S. No. Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 Node - 917 1085 1196          1526 1428 740 1036 600 1075 851 891 1093 1450 868
2 Link - - 816 777 986 883 352 677 360 632 576 548 660 894 541
3 Node Directed - - - 1101 1538 1211 465 792 402 728 509 760 908 1155 722
4 Link Directed - - - - 1542 1351 509 770 470 760 623 793 947 1207 711
5 Node Inverted - - - - - 1556 624 1012 494 1008 801 820 1191 1507 941
6 Link Inverted - - - - - - 592 975 530 1095 904 754 1085 1277 792

7
Average 
Clustering 
Coefficient

- - - - - - - 592 921 436 386 469 471 727 426

8 Cycles Size 
Lambda - - - - - - - - 454 763 627 663 736 950 496

9 Cycles Size Mu - - - - - - - - - 434 453 440 452 570 350
10 Graph Centrality - - - - - - - - - - 600 542 757 840 546

11 Degree 
Centrality - - - - - - - - - - - 470 663 750 577

12
Node Edge 
Betweenness 
Centrality

- - - - - - - - - - - - 643 870 430

13
Number Strongly 
Connected 
Components

- - - - - - - - - - - - - 1053 663

14

Average 
Size Strongly 
Connected 
Components

- - - - - - - - - - - - - - 829

15
Number Bi-
connected 
Groups

- - - - - - - - - - - - - - -

Table 4: Co-Frequency of Features.

S. No. Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 Node - 0.28 0.33 0.37          0.47 0.45 0.23 0.32 0.19 0.33 0.26 0.27 0.33 0.44 0.27
2 Link - - 0.25 0.24 0.30 0.27 0.11 0.21 0.11 0.2 0.18 0.17 0.20 0.28 0.17
3 Node Directed - - - 0.34 0.47 0.37 0.14 0.24 0.12 0.22 0.16 0.23 0.28 0.35 0.22
4 Link Directed - - - - 0.47 0.42 0.16 0.24 0.15 0.23 0.19 0.24 0.29 0.37 0.22
5 Node Inverted - - - - - 0.48 0.19 0.31 0.15 0.31 0.25 0.25 0.37 0.46 0.29
6 Link Inverted - - - - - - 0.18 0.192 0.31 0.15 0.31 0.25 0.25 0.36 0.46

7
Average 
Clustering 
Coefficient

- - - - - - - 0.18 0.3 0.16 0.34 0.27 0.23 0.33 0.39

8 Cycles Size 
Lambda - - - - - - - - 0.18 0.28 0.13 0.12 0.14 0.15 0.22

9 Cycles Size Mu - - - - - - - - - 0.14 0.24 0.19 0.2 0.23 0.29
10 Graph Centrality - - - - - - - - - - 0.13 0.14 0.14 0.14 0.18

11 Degree 
Centrality - - - - - - - - - - - 0.19 0.17 0.24 0.26

12
Node Edge 
Betweenness 
Centrality

- - - - - - - - - - - - 0.15 0.2 0.23

13
Number Strongly 
Connected 
Components

- - - - - - - - - - - - - 0.2 0.27

14

Average 
Size Strongly 
Connected 
Components

- - - - - - - - - - - - - - 0.32

15
Number Bi-
connected 
Groups

- - - - - - - - - - - - - - -

Table 5: Percent Co-Frequency of Features.

strongly connected components. All these features occurred with 
more than 40% frequency, and by limiting future test to only these 
features, we reduce our computational load by 27%. If we further 
narrow the scope, and consider frequent as occurring more often 
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than not (at least 50%), we are left with node inverted, node, link 
inverted, average strongly connected components, node directed and 
link directed. Limiting future test to only these features will reduce 
computational load by 60%, and result in an average improvement in 
prediction distance by 8%. Further evaluation shows that these sets 
of features represent 1.7% of the top 1% best prediction distances. As 
previously noted, we chose parameter sets that historically performed 
well, performed average, as well as some random parameter sets. We 
checked to ensure the most frequent 1.7% of the top 1% did not all 
come from the best performing parameter sets, and found that was 
not the case.

Next, we analyzed the T values produced for each dissimilarity 
feature by performing stepwise regression. Results indicate that 
when node, node directed, node inverted, link inverted, and average 
strongly connected components are used in an analysis, the resulting 
prediction distance is significantly lower than the mean prediction 
distance for the entire data set.

Finally, by performing Moodrs Median test, we are able to judge 
which dissimilarity features produce a lower median prediction 
distance when used. Results indicate these were node, node directed, 
node inverted, link in- verted, and average number strongly connected 
compo- nents.

When combined, these tests give the overall best features to use 
when evaluating graph dissimilarity. We consider the frequency test 
as T1, mean test as T2, and median test as T3. The best features are 
those who in- tersect the sets produced from all test:

BestFeatures = T 1 ∩ T 2 ∩ T 3			             (4)

 After comparison, we find the best features are node, node 
directed, node inverted, link inverted, and average number strongly 
connected components. While link directed was common to some of 
the test, it was not common to all three, and was therefore removed.

 After identifying the best performing dissimilarity features, we 
analyzed what combinations of these features occurred together 
most often. For this test we only considered combinations formed 
in the best 1% of prediction distances. We found node and node 
directed occur together at a frequency of 33%, and improved 
prediction distance by 15%. Node and node inverted occur together 
at a frequency of 47%, and improved prediction distance by 15%. 
Node and link inverted occur at a frequency of 45%, and improved 
prediction distance by 15%. Node and average number strongly 
connected components occur at a frequency of 44%, and improved 
prediction distance by 15%. Node directed and node inverted occurs 
at a frequency of 47%, and improved pre- diction distance by 11%. 
Node directed and link inverted occur at a frequency of 37%, and 
improved prediction distance by 7%. Node directed and average 
number strongly connected components occur at a frequency of 
35%, and improved prediction distance by 7%. Node inverted and 
link inverted occur at a frequency of 48%, and improved prediction 
distance by 11%. Node inverted and average number strongly 
connected components occur at a frequency of 46%, and improved 
prediction distance by 15%. Link inverted and average number of 
strongly connected components occurs at a frequency of 36%, and 
improved prediction distance by 7%. Based on these findings the 
average percent frequency is 41.8% with a standard deviation of 5.8. 
Because none of these frequencies would be considered outliers, we 
assume all pairs of features are significant. When all these features 
were used together, the mean prediction distance was 25 which was a 
24% improvement over the prediction distances as a whole.

 Finally, results were validated using three parameter sets picked 
at random. These parameter sets did not use any parameters used 
in the previous test. Results of the validation check indicate similar 
results as were found in initial test.

Future Work
 Our future work related to graph dissimilarity features is three 

fold. First, further validation is needed to ensure the accuracy of 
what we consider the best performing graph features. This can only 
be achieved by testing the various graph features on more parameter 
sets, and evaluating these test as described earlier. Further, more 
parameter sets should be run using only the graph features we consider 
best performers, and statistical validation of mean prediction distance 
should be evaluated to verify significant improvement using these 
features. Second, these test should also evaluate the co-occurrence 
frequency of parameter sets as described earlier, and at- tempt 
to further identify/validate the best subsets of graph dissimilarity 
features. Last, as mentioned earlier, significant research has been 
proposed to model the human brain using graph and network theory. 
Our algorithm uses phase space graphs to represent the changing 
dynamics within the brain. Further research should con- sider the 
meaning of dissimilarity measures we observe to be non-frequent. A 
dissimilarity measure being non frequent in our evaluation does not 
necessarily imply those graph features are common or not common, 
but that they remain static throughout phase space reconstruction. 
Further research should consider the implications of these results.

Conclusion
A reliable algorithm is needed to predict and detect the onset 

of epileptic seizures. However, realistic implementation of such an 
algorithm requires not only accuracy, but also minimal computational 
complexity. This paper serves as a stepping stone for future works. By 
evaluating the performance of dissimilarity measures, we now have a 
better understanding of what graph features to use when evaluating 
the phase space formed by EEG data to achieve better accuracy, and 
what graph features not to use to reduce computational complexity.
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