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Abstract

The buffer capacity concept is extended on dynamic redox systems,
realized according to titrimetric mode, where changes in pH are
accompanied by changes in potential E values; it is the basic
novelty of this paper. Two examples of monotonic course of the
related curves of potential E vs. @ and pH vs. ® relationships were
considered. The systems were modeled according to GATES/GEB
principles.
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Introduction

The buffer capacity concept is usually referred to as a measure of
resistance of a solution (D) on pH change, affected by an acid or base,
added as a titrant T, i.e., according to titrimetric mode; in this case, D
is termed as titrand.

The titration is a dynamic procedure, where V mL of titrant T,
containing a reagent B (C mol/L), is added into V mL of titrand
D, containing a substance A (C; mol/L). The advance of a titration
B(C,V) = A(C,V,), denoted for brevity as B = A, is characterized
by the fraction titrated [1-4]

o=V M

Co- Vo

that introduces a kind of normalization (independence on V,
value) for titration curves, expressed by pH = pH(®), and E = E(D)
for potential E [V] expressed in SHE scale. The redox systems with
one, two or more electron-active elements are modeled according
to principles of Generalized Approach to Electrolytic Systems with
Generalized Electron Balance involved (GATES/GEB), described
in details in [5-16], and in references to other authors’ papers cited
therein.

According to earlier conviction expressed by Gran [17],
all titration curves: pH = pH(®) and E = E(®), were perceived
as monotonic; that generalizing statement is not true [7],
however. According to contemporary knowledge, full diversity
in this regard is stated, namely: (1°) monotonic pH = pH(®) and
monotonic E = E(®) [18-20]; (2°) monotonic pH = pH(®) and

*Corresponding author: Tadeusz Michatowski, Faculty of Chemical Engineering
and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow,
Poland, Tel: +48126282035; E-mail: michalot@o2.pl

Received: October 04, 2017 Accepted: October 19, 2017 Published: October
24,2017

non-monotonic E = E(P) [6]; (3°) non-monotonic pH = pH(®) and
monotonic E = E(®) [5]; (4°) non-monotonic pH = pH(®), and non-
monotonic E = E(D) [7].

Examples of titration curves pH = pH(®) and E = E(®) in
redox systems

In this paper, we refer to the disproportionating systems: (S1)
NaOH = HIO and (S2) HCl = NalO, characterized by monotonic
changes of pH and E values during the related titrations (i.e., the case
1°). In both instances, the values: V=100, C=0.01, and C=0.1 were
assumed. The set of equilibrium data [18-20] applied in calculations,
presented in Table 1, is completed by the solubility of solid iodine,
Iz(s), in water, equal 1.33-10° mol/L. The related algorithms, prepared
in MATLAB for S1 (NaOH = HIO) S2 (HCl = NalO) system
according to the GATES/GEB principles, are presented in Appendices
1and 2.

The titration curves: pH = pH(®) and E = E(®) presented in
Figure 1 and Figure 2 are the basis to formulation of dynamic buffer
capacities in the systems S1 and S2.

Dynamic acid-base buffer capacities B, and B,

Dynamic buffer capacity was referred previously only to acid-base
equilibria in non-redox systems [3,21-23]. However, the dynamic (3,
and windowed (B,) buffer capacities can be also related to acid-base
equilibria in redox systems. The B, is formulated as follows [3,21]

B, =4 )
dpH
where
- CV (3)
V,+V

is the current concentration of B in D+T mixture, at any point of
the titration. In the simplest case, D is a solution of one substance A
(C, mol/L), and then equation 3 can be rewritten as follows
Cc,C
c=@p.—0~ ( 4)
C+@-C,

where @ is the fraction titrated (equation 1). Then we get

pode [d@f ¢ 1 & )
V7 dd |dpH| (C+®-Cp)* |n| Co-|nl
where

_dpH 6
n——dq) (6)

is the sharpness index on the titration curve. For comparative
purposes, the absolute values, | |3V| and |n |, for B, (equations 1,5)
and n (equation 6) are considered. At C/C << 1 and small @ value,
from equation 3 we get

By =®2'C0/‘n‘

The B, value is the point-assessment and then cannot be used in
the case of finite pH-changes (ApH) corresponding to an addition of
a finite volume of titrant (B, is a non-linear function of pH). For this
purpose, the ‘windowed’ buffer capacity, B, defined by the formula
[3,21]
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Table 1: Physicochemical data related to the systems S1 and S2

Volume 1 ¢ Issue 2 « 1000107

No. Reaction Equilibrium equation Equilibrium data
1 I, + 2e~" = 21 (for dissolved 1,) IFE = K, [L][e E, =0621V
2 I+ 2e = 31 [FP = K, [, e E,=0545V
3 107" + H,0 + 2¢~" = I + 20H [F][OH- = K [|10-"][e""? E, =049V
4 10, + 6H*" + 6e~' = I! + 3H,0 [F] = K_,-[10,I[H" e E, =108V
5 H,lO, + 7H" + 8" = I + 6H,0 [IF] = K o [Hy| O JIH"Te- ' E, =124V
6 H,I0,? + 3H,0 + 8¢~ = [ + 9OH" [FJIOH-T = K. [H,10, ][ E, =037V
7 HIO = H*' + 10~ [H]I0] = K, [HIO] pK,, =106
8 HIO, = H*! + 10, H0,] = K, [HIO,] pK,, =0.79
9 H,I0," = H* + H,10, [H*][H,10, 2 = K, [H,I0, ] pK, =33
10 Cl, + 26" = 2CI [CHP = K_-[CL][e" E,=1359V
1 CIO™' +H,0 + 26" = CI' + 20H" [CHI[OH-T = K_,-[CIO-"][e']2 E,=088V
12 CIO, " +2H,0 + 4! = CI' + 40H-" [CH[OH-"}* = K_-[CIO, ][e-'}* E,=077V
13 HCIO = H*'+ CIO™" [H[CIO] = K, [HCIO] pK, =73
14 HCIO, + 3H*! + 4e-'= CI' + 2H,0 [CH] = K, [HCIO,JIH*Fle1]* E,,=156V
15 ClO, + 4H* + 5e! = CI' + 4H,0 [CF] = K., [CIO,JH"}[e"]° E, =150V
16 CIO, " + 6H*T + 6~ = CI*' + 3H,0 [CF] = K, [CIO, |5 P E,, =145V
17 CIO, " + 8H*T + 8¢~ = CI"' + 4H,0 [CF] = K, [CIO, "][H*"e""T? E,,=138V
18 2ICl + 2¢' = 1, + 2CI ILJICHF = K., [ICI[e"? E,,=1.105V
19 I, = I+ CI [LJICH] = K,[1,CI] logK, = 0.2
20 ICL = ICl + CI [ICN[CI] = K,-[ICI,"] logK, = 2.2
21 H,0 = H*! + OH" [H[OH] = K, pK,, = 14.0
Ac Ac d“p AE)*
- 0 A _pr (9B} (GBS (13)
ApH AE = dET ) (k+1)!
where where
k k-InE
Ac 1 "“*f"“ B, - dpH c(pH + ApH) — ¢(pH) ®) d ° - [d kB]V j (14)
T v’ = dE dE*”
ApH ApH 5 ApH E
S . Graphical presentation of dynamic buffer capacities in
has been suggested. From extension in Taylor series we have P P Y P
) ) ) . redox systems
Ac g dBy ApH  d'By (ApH) g +i[d ij )" g
ApH "' dpH 2 dpH® 6 YOG dpHY ) k1) Referring to dynamic redox systems represented by titration
where curves presented in Figures 1,2, we plot the relationships:
de dHBv [SV vs. O, [SV vs. pH, ﬁv vs. E, and B\E, vs. O, 35 vs. pH, B\E/ vs. E for the
preerl Bl e (10)  systems: (S1) NaOH = HIO; (S2) HCl = NalO. The relations: (A)
PE on P pH B, vs. @, (B) B, vs. pH, (C) B, vs. E and (D) By vs. ®, (E) B vs. pH,

From equations 7 and 9 we see that 3, is the first approximation
of B,. One should take here into account that finite changes (ApH)
in pH, e.g. ApH = 1, are involved with addition of a finite volume of
a reagent endowed with acid-base properties, here: base NaOH, of a
finite concentration, C.

Dynamic redox buffer capacities B% and By,

In similar manner, one can formulate dynamic buffer capacities
Bf] and B\E, , involved with infinitesimal and finite changes of
potential E values:

dc
By = E (11)
BE = 2—]‘; (12)
where c is defined by equation 2, and then we have
2 LM gy oE+AD) —o(E)
AE AE {7V AE

(F) By vs. E are plotted in Figures 3,4.

Discussion

Disproportionation of the solutes considered (HIO or NalO)
in D occurs directly after introducing them into pure water. The
disproportionation is intensified, by greater pH changes, after addition of
the respective titrants: NaOH (in S1) or HCI (in S2), and the monotonic
changes of E = E(®) and pH = pH(®) occur in all instances.

All attainable equilibrium data related to these systems are
included in the algorithms implemented in the MATLAB computer
program (Appendices 1 and 2). In all instances, the system of equations
was composed of: generalized electron balance (GEB), charge balance
(ChB) and concentration balances for particular elements = H,O.

In the system S, the precipitate of solid iodine, I, , is formed
(Figure 5). In the (relatively simple) redox system S2, we have all
four basic kinds of reactions; except redox and acid-base reactions,
the solid iodine (12(5)) is precipitated and soluble complexes: I,CI", ICI
and ICL, " are formed (Figure 6A). Note that L+ I =1,"is also the
complexation reaction.
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Figure 2: (A) pH = pH(®) and (B) E = E(®) relationships plotted for the system HCI = NalO.

In the system S2, all oxidized forms of Cl' were involved,
ie. the oxidation of CI' ions was thus pre-assumed. This way,
full “democracy” was assumed, with no simplifications [18-20].
However, from the calculations we see that HCI acts primarily as a
disproportionating, and not as reducing agent. The oxidation of CI
occurred here only in an insignificant degree (Figure 6B); the main
product of the oxidation was Clz, whose concentration was on the
level ca. 10'¢ - 107 mol/L.

Final comments

The redox buffer capacity concepts: By, and [3]\3, can be principally
related to monotonic functions. This concept looks awkwardly for
non-monotonic functions pH = pH(®) and/or E = E(®) specified
above (2°- 4°) and exemplified in Figures 7,8,9. For comparison, in
isohydric (acid-base) systems, the buffer capacity strives for infinity.

In particular, it occurs in the titration HB (C,V) = HL (CO,VO), where
HB is a strong monoprotic acid HB and HL is a weak monoprotic
acid characterized by the dissociation constant K, = [H™'][L"']/[HL];
at 4K /C°«<1, the isohydricity condition is expressed here by the
Michatowski formula ¢, =C+C?*-10™ [24-26].

The formula for the buffer capacity, suggested in [27] after
[28], is not correct. Moreover, it involves formal potential value,
perceived as a kind of conditional equilibrium constant idea, put
in (apparent) analogy with the simplest static acid-base buffer
capacity, see criticizing remarks in [29]; it is not adaptable for real
redox systems.

Buffered solutions are commonly applied in different procedures
involved with classical (titrimetric, gravimetric) and instrumental
analyses [30-33]. There are in close relevance to isohydric solutions
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Figure 6: Speciation diagram for the system (S2) HCI = NalO: (A) for iodine species; (B) for oxidized forms of chlorine species.
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Figure 7: Case (2°): (A) monotonic pH = pH(V) and (B) non-monotonic E = E(V) plots on the step 3 of the process presented in [6].

[24-26] and pH-static titration [4,34], and titration in binary-solvent bubbles formation in reaction 2H.O = O+ 4H"! + 4e"! at the outlet
systems [12,35]. Buffering property is usually referred to an action  gjaoctrode in CE (36-39]. : e

of an external agent (mainly: strong acid, HB, or strong base, MOH)
inducing pH change, ApH, of the solution. Redox buffer capacity is In Baicu et al. [40], a nice proposal of “slyke”, as the name for
also involved with the problem of interfacing in CE-MS analysis,and ~ (acid-base, pH) buffer capacity unit, has been raised.
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Figure 9: Case (4°): the (A) non-monotonic pH = pH(®) and (B) non-monotonic E = E(®) functions for the system HI = KIO, presented in [7].
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