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Abstract
The buffer capacity concept is extended on dynamic redox systems, 
realized according to titrimetric mode, where changes in pH are 
accompanied by changes in potential E values; it is the basic 
novelty of this paper. Two examples of monotonic course of the 
related curves of potential E vs. Φ and pH vs. Φ relationships were 
considered. The systems were modeled according to GATES/GEB 
principles.  
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Introduction
The buffer capacity concept is usually referred to as a measure of 

resistance of a solution (D) on pH change, affected by an acid or base, 
added as a titrant T, i.e., according to titrimetric mode; in this case, D 
is termed as titrand. 

The titration is a dynamic procedure, where V mL of titrant T, 
containing a reagent B (C mol/L), is added into V0 mL of  titrand 
D, containing a substance A (C0 mol/L). The advance of a titration 
B(C,V) ⟹ A(C0,V0), denoted for brevity as B ⟹ A, is characterized 
by the fraction titrated [1-4]
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⋅
⋅
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that introduces a kind of normalization (independence on V0 
value) for titration curves, expressed by pH = pH(Φ), and E = E(Φ) 
for potential E [V] expressed in SHE scale. The redox systems with 
one, two or more electron-active elements are modeled according 
to principles of Generalized Approach to Electrolytic Systems with 
Generalized Electron Balance involved (GATES/GEB), described 
in details in [5-16], and in references to other authors’ papers cited 
therein.

According to earlier conviction expressed by Gran [17], 
all titration curves: pH = pH(Φ) and E = E(Φ), were perceived 
as monotonic; that generalizing statement is not true [7], 
however. According to contemporary knowledge, full diversity 
in this regard is stated, namely: (1o) monotonic pH = pH(Φ) and 
monotonic E = E(Φ) [18-20]; (2o) monotonic pH = pH(Φ) and 

non-monotonic E = E(Φ) [6]; (3o) non-monotonic pH = pH(Φ) and 
monotonic E = E(Φ) [5]; (4o) non-monotonic pH = pH(Φ), and non-
monotonic E = E(Φ) [7].

Examples of titration curves pH = pH(Φ) and E = E(Φ) in 
redox systems

In this paper, we refer to the disproportionating systems: (S1) 
NaOH ⟹ HIO and (S2) HCl ⟹ NaIO, characterized by monotonic 
changes of pH and E values during the related titrations (i.e., the case 
1o). In both instances, the values: V0=100, C0=0.01, and C=0.1 were 
assumed. The set of equilibrium data [18-20] applied in calculations, 
presented in Table 1, is  completed by the solubility of solid iodine, 
I2(s)  , in water, equal 1.33∙10-3 mol/L. The related algorithms, prepared 
in  MATLAB for S1 (NaOH ⟹ HIO) S2 (HCl ⟹ NaIO) system 
according to the GATES/GEB principles, are presented in Appendices 
1 and 2. 

The titration curves: pH = pH(Φ) and E = E(Φ) presented in 
Figure 1 and Figure 2 are the basis to formulation of dynamic buffer 
capacities in the systems S1 and S2. 

Dynamic acid-base buffer capacities βV and BV

Dynamic buffer capacity was referred previously only to acid-base 
equilibria in non-redox systems [3,21-23]. However, the dynamic (βV) 
and windowed (BV) buffer capacities can be also related to acid-base 
equilibria in redox systems. The βV is formulated as follows [3,21] 

V
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dpH
β =                  (2)

where 
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is the current concentration of B in D+T mixture, at any point of 
the titration. In the simplest case, D is a solution of one substance A 
(C0 mol/L), and then equation 3 can be rewritten as follows
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where Φ is the fraction titrated (equation 1). Then we get
2 2

0
V 2

0 0

dc d C C 1 c
d dpH (C C ) C

Φ ⋅
β = ⋅ = ⋅ =

Φ + Φ ⋅ η ⋅ η
               (5)

where
dpH
d

η =
Φ

               (6)

is  the sharpness index on the titration curve. For comparative 
purposes, the absolute values,βV and η, for βV (equations 1,5) 
and η (equation 6) are considered. At C0/C << 1 and small Φ value, 
from equation 3 we get 

η⋅Φ=β /C0
2

V

The βV value is the point–assessment and then cannot be used in 
the case of finite pH–changes (∆pH) corresponding to an addition of 
a finite volume of titrant (βV is a non–linear function of pH). For this 
purpose, the ‘windowed’ buffer capacity, BV, defined by the formula 
[3,21]
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has been suggested. From extension in Taylor series we have 
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From equations 7 and 9 we see that βV is the first approximation 
of BV. One should take here into account that finite changes (∆pH) 
in pH, e.g. ∆pH = 1, are involved with addition of a finite volume of 
a reagent endowed with acid–base properties, here: base NaOH, of a 
finite concentration, C.

Dynamic redox buffer capacities E
Vβ  and E

VB

In similar manner, one can formulate dynamic buffer capacities 
E
Vβ  and E

VB , involved with infinitesimal and finite changes of 
potential E values:
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where c is defined by equation 2, and then we have
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Graphical presentation of dynamic buffer capacities in 
redox systems

Referring to dynamic redox systems represented by titration 
curves presented in Figures 1,2, we plot the relationships: 
βV vs. Φ, βV vs. pH, βV vs. E, and E

Vβ  vs. Φ, E
Vβ vs. pH, E

Vβ  vs. E for the 
systems: (S1) NaOH ⟹ HIO; (S2) HCl ⟹ NaIO. The relations: (A) 
βV vs. Φ, (B) βV vs. pH, (C) βV vs. E and (D) E

Vβ  vs. Φ, (E) E
Vβ vs. pH, 

(F) E
Vβ  vs. E are plotted in Figures 3,4.

Discussion
Disproportionation of the solutes considered (HIO or NaIO) 

in D occurs directly after introducing them into pure water. The 
disproportionation is intensified, by greater pH changes, after addition of 
the respective titrants: NaOH (in S1) or HCl (in S2), and the monotonic 
changes of E = E(Φ) and pH = pH(Φ) occur in all instances.

All attainable equilibrium data related to these systems are 
included in the algorithms implemented in the MATLAB computer 
program (Appendices 1 and 2). In all instances, the system of equations 
was composed of: generalized electron balance (GEB), charge balance 
(ChB) and concentration balances for particular elements ≠ H,O. 

In the system S1, the precipitate of solid iodine, I2(s), is formed 
(Figure 5). In the (relatively simple) redox system S2, we have all 
four basic kinds of reactions; except redox and acid-base reactions, 
the solid iodine (I2(s)) is precipitated and soluble complexes: I2Cl-1, ICl 
and ICl2

-1 are formed (Figure 6A). Note that I2(s) + I-1 = I3
-1 is also the 

complexation reaction.

No. Reaction Equilibrium equation Equilibrium data
1 I2 + 2e–1 = 2I–1 (for dissolved I2) [I–1]2 = Ke1·[I 2][e

–1]2 E01 = 0.621 V
2 I3

–1 + 2e–1 = 3I–1 [I–1]3 = Ke2·[I 3
–1][e–1]2 E02 = 0.545 V

3 IO–1 + H2O + 2e–1 = I–1 + 2OH–1 [I–1][OH–1]2 = Ke3·[IO
–1][e–1]2 E03 = 0.49 V

4 IO3
–1 + 6H+1 + 6e–1 = I–1 + 3H2O [I–1] = Ke4·[IO3

–1][H+1]6[e–1]6 E04 = 1.08 V
5 H5IO6 + 7H+1 + 8e–1 = I–1 + 6H2O [I–1] = Ke5·[H5IO6][H

+1]7[e–1]8 E05 = 1.24 V
6 H3IO6

–2 + 3H2O + 8e–1 = I–1 + 9OH–1 [I–1][OH–1]9 = Ke6·[H3IO6
–2][e–1]8 E06 = 0.37 V

7 HIO = H+1 + IO–1 [H+1][IO–1] = K11I·[HIO] pK11I = 10.6
8 HIO3 = H+1 + IO3

–1 [H+1][IO3
–1] = K51I·[HIO3] pK51I = 0.79

9 H4IO6
–1 = H+1 + H3IO6

–2  [H+1][H3IO6
–2] = K72·[H4IO6

–1] pK72 = 3.3
10 Cl2 + 2e–1 = 2Cl–1 [Cl–1]2 = Ke7·[Cl 2][e

–1]2 E07 = 1.359 V
11 ClO–1 + H2O + 2e–1 = Cl–1 + 2OH–1 [Cl–1][OH–1]2 = Ke8·[ClO–1][e–1]2 E08 = 0.88 V
12 ClO2

–1 + 2H2O + 4e–1 = Cl–1 + 4OH–1 [Cl–1][OH–1]4 = Ke9·[ClO2
–1][e–1]4 E09 = 0.77 V

13 HClO = H+1+ ClO–1 [H+1][ClO–1] = K11Cl·[HClO] pK11Cl = 7.3
14 HClO2 + 3H+1 + 4e–1 = Cl–1 + 2H2O [Cl–1] = Ke10·[HClO2][H

+1]3[e–1]4 E010 = 1.56 V
15 ClO2 + 4H+1 + 5e–1 = Cl–1 + 4H2O [Cl–1] = Ke11·[ClO2][H

+1]4[e–1]5 E011 = 1.50 V
16 ClO3

–1 + 6H+1 + 6e–1 = Cl–1 + 3H2O [Cl–1] = Ke12·[ClO3
–1][H+1]6[e–1]6 E012 = 1.45 V

17 ClO4
–1 + 8H+1 + 8e–1 = Cl–1 + 4H2O [Cl–1] = Ke13·[ClO4

–1][H+1]8[e–1]8 E013 = 1.38 V
18 2ICl + 2e–1 = I2 + 2Cl–1 [I2][Cl–1]2 = Ke14·[ICl]2[e–1]2 E014 = 1.105 V
19 I2Cl–1 = I2 + Cl–1 [I2][Cl–1] = K1·[I2Cl–1] logK1 = 0.2
20 ICl2

–1 = ICl + Cl–1 [ICl][Cl–1] = K2·[ICl2
–1] logK2 = 2.2

21 H2O = H+1 + OH-1 [H+1][OH-1] = KW pKW = 14.0

Table 1: Physicochemical data related to the systems S1 and S2
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Figure 2: (A) pH = pH(Φ) and (B) E = E(Φ) relationships plotted for the system HCl ⟹ NaIO. 

Figure 1: (A) pH = pH(Φ) and (B) E = E(Φ) relationships plotted for the system NaOH ⟹ HIO.

In the system S2, all oxidized forms of Cl-1 were involved, 
i.e. the oxidation of Cl-1 ions was thus pre-assumed. This way, 
full “democracy” was assumed, with no simplifications [18-20]. 
However, from the calculations we see that HCl acts primarily as a 
disproportionating, and not as reducing agent. The oxidation of Cl-1 
occurred here only in an insignificant degree (Figure 6B); the main 
product of the oxidation was Cl2, whose concentration was on the 
level ca. 10-16 - 10-17 mol/L.

Final comments

The redox buffer capacity concepts: Vβ  and E
Vβ  can be principally 

related to monotonic functions. This concept looks awkwardly for 
non-monotonic functions pH = pH(Φ) and/or E = E(Φ) specified 
above (2o - 4o) and exemplified in Figures 7,8,9. For comparison, in 
isohydric (acid-base) systems, the buffer capacity strives for infinity. 

In particular, it occurs in the titration HB (C,V) ⟹ HL (C0,V0), where 
HB is a strong monoprotic acid HB and HL is a weak monoprotic 
acid characterized by the dissociation constant K1 = [H+1][L-1]/[HL]; 
at 4KW/C2≪1, the isohydricity condition is expressed here by the 
Michałowski formula 1pK2

0C C C 10= + ⋅ [24-26].

The formula for the buffer capacity, suggested in [27] after 
[28], is not correct. Moreover, it involves formal potential value, 
perceived as a kind of conditional equilibrium constant idea, put 
in (apparent) analogy with the simplest static acid-base buffer 
capacity, see criticizing remarks in [29]; it is not adaptable for real 
redox systems.

Buffered solutions are commonly applied in different procedures 
involved with classical (titrimetric, gravimetric) and instrumental 
analyses [30-33]. There are in close relevance to isohydric solutions 
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Figure 3: The relations: (A) βV vs. Φ, (B) βV vs. pH, (C) βV vs. E and (D) E
Vβ  vs. Φ, (E) E

Vβ  vs. pH, (F) E
Vβ  vs. E for (S1) NaOH ⟹ HIO.

Figure 4: The relations: (A) βV vs. Φ, (B) βV vs. pH, (C) βV vs. E and (D) E
Vβ

 
vs. Φ, (E) E

Vβ
 
vs. pH, (F)

 
E
Vβ  vs. E for (S2) HCl ⟹ NaIO.
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Figure 6: Speciation diagram for the system (S2) HCl ⟹ NaIO: (A) for iodine species; (B) for oxidized forms of chlorine species.

Figure 7: Case (2o): (A) monotonic pH = pH(V) and (B) non-monotonic E = E(V) plots on the step 3 of the process presented in [6].

Figure 5: Speciation diagram for the system (S1) NaOH ⟹ HIO.

[24-26] and pH-static titration [4,34], and titration in binary-solvent 
systems [12,35]. Buffering property is usually referred to an action 
of an external agent (mainly: strong acid, HB, or strong base, MOH) 
inducing pH change, ∆pH, of the solution. Redox buffer capacity is 
also involved with the problem of interfacing in CE-MS analysis, and 

bubbles formation in reaction 2H2O = O2(g) + 4H+1 + 4e-1 at the outlet 
electrode in CE [36-39].

In Baicu et al. [40], a nice proposal of “slyke”, as the name for 
(acid-base, pH) buffer capacity unit, has been raised. 
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Figure 8: Case (3o): (A) non-monotonic pH = pH(Φ) and (B) monotonic E = E(Φ) functions for the system KBrO3 ⟹ NaBr presented in [5]. 

Figure 9: Case (4o): the (A) non-monotonic pH = pH(Φ) and (B) non-monotonic E = E(Φ) functions for the system HI ⟹ KIO3 presented in [7].
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