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Abstract

Dietary cation-anion difference (DCAD) drives a compensated
metabolic acidosis, which increases calcium (Ca) uptake and
mobilisation before calving and reduces clinical and subclinical
hypocalcemia postpartum. This approach is frequently
employed in conjunction with dietary Ca restriction, which has
traditionally been utilised to mobilise Ca prepartum in order to
prepare cows for lactation. Supplemental dietary Ca in
conjunction with a negative DCAD formulation that does not
restore compensated metabolic acidosis may be helpful. The
goal of this study was to see how mineral concentrations, blood
metabolites, endocrine state, and lactation performance were
affected by prepartum dietary cation-anion difference (DCAD
mEq [(Na + K - Cl + S)]/ kg of dry matter (DM) in postpartum
dairy cows. Forty-eight Holstein cows entering 1-5 lactation
with an average body weight of 685 kg 10 SD (n= 48) were
used in a randomised block with a three-treatment
arrangement to offer three prepartum diets with different DCAD
(0, -100, and -180 mEq/kg DM). Cows were kept on trial for a
total of 66 days after calving. Cows given -180 and -100 DCAD
had greater prepartum NEFA concentrations than cows fed 0.0
DCAD. Cows fed (-180 DCAD) had greater serum Ca
concentrations than cows fed (-100, 0.0 DCAD) owing to
impact therapy. Because of the influence of the day,
phosphorus content was greater at 0 and 2 days postpartum.
PTH levels were greater in cows fed (0.0 DCAD) than in cows
fed (-100, -180 DCAD). There are no changes in therapy or
interaction DCAD x day on blood BHB, Glucose, Mg, Na, K, Cl
between prepartum and postpartum. Milk protein was
significant owing to the interaction DCAD x L, and solid not fat
(SNF) was significant due to the impact of L. Milk yield, fat
corrected milk (FCM 3.5%), ECM, fat, total solid, lactose, and
milk urea nitrogen were not affected by treatment or interaction
(MUN). We discovered that supplementing nursing cows' diets
with anionic salts can enhance Ca availability postpartum and
reduce clinical and subclinical hypocalcemia.

Keywords: β-Hydroxybutyrate; None-esterified fatty acids;
Parathyroid hormone; Energy corrected milk; Lactation no; Milk
urea nitrogen; Solid-not fat

Introduction
Grummer defined the transition period as the three weeks preceding

and following parturition. Due to a higher risk of metabolic illness that
impacts output and fertility in later lactations, this phase is designated
as the most essential of the dairy cow's lactation. Most cows
experience hypocalcemia during or shortly after close calving.
Hypocalcemia has a detrimental influence on cow health and herd
profitability because it raises the risk of metabolic and viral disease,
lowers milk supply, lowers reproductive efficiency, and raises the risk
of culling cows early in lactation [1]. During the prepartum period, an
acidogenic diet has been utilised to prevent or minimise the severity
and duration of hypocalcemia around parturition. Increased calcium
mobilisation prepartum and restoring tissue sensitivity to parathyroid
hormone (PTH) stimulation are two mechanisms of action linked with
feeding an acidogenic diet prepartum. The commencement of lactation
changes metabolism to provide the nutrients required for milk
synthesis to the mammary tissues. Cows that are unable to change
their energy metabolism quickly enough for milk synthesis either
produce less milk than they should or are susceptible to metabolic
problems. During early lactation, body fat reserves are transported into
the bloodstream as NEFA, which contributes to overall energy needs.
By metabolising NEFA into ketone bodies like BHBA or re-
esterifying them into triglycerides, the liver eliminates a considerable
proportion of NEFA from the bloodstream. Previous research has
found a correlation between metabolite concentrations and milk
output. Increased ketone body concentrations in milk during early
lactation have been linked to a decrease in milk production. Early and
overall lactation milk losses were linked to increases in serum BHBA
in the first week after calving. Increased blood BHBA levels in the
second week after calving were linked to early lactation milk loss but
higher total milk output. Lower prepartum DMI caused by the addition
of anions commonly comes from decreased palatability, but it could
also be a response to metabolic acidosis induced by anionic
supplementation. Whatever mechanism anionic diets use to have their
negative effect on prepartum DMI, falling DMI might have a negative
contradictory effect on metabolism [2]. Cows with hypocalcemia
produce less milk and are more likely to have mastitis, a misplaced
abomasum, and a retained placenta, among other metabolic issues.
Subclinical hypocalcaemia reduces DMI and energy metabolism. The
purpose of this study was to see what influence lowering the DCAD of
the prepartum diet had on mineral status, energy metabolites, and
lactation performance. We expected that prepartum DCAD would
enhance Ca status and decrease negative energy balance, resulting in
higher DMI and milk production in the postpartum period.

Materials and Methods

Cows and Diets
The field experiment of this study was conducted from December

to March 2021 at private dairy farm, Ismailia Desert Road, which
belongs to Ismailia governorate of Egypt. Forty-eight multiparous
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Holstein cows within 3 to 4 wk of expected parturition were selected 
from the herd and blocked with 3 treatments 16 cows each treatment 
by expected calving date, parity, and previous 305-d mature-
equivalent production [3]. Cows had completed 1-5 lactation and 
average 685 kg ±10 SD body weight. Data were collected beginning 
22 d prepartum through 66 d postpartum. Cows were fed twice daily at 
7:00 and 17:00 hours. Prepartum diets were formulated to provide 0.0 
mEq DCAD/kg DM as a control, -100 mEq/kg DM or -180 mEq 
DCAD/kg DM. 
Immediately after calving cows fed a lactation diet formulated to 
contain +250 mEq DCAD/kg DM throughout the remainder of 
the trial. Cows were housed in an open yard and milked three times 
daily 08:00, 16:00 and 24:00 h. Prepartum and postpartum diets were 
formulated as show using the Cornell Net Carbohydrate and Protein 
System (CNCPS version 6.5, Cornell University, Ithaca, NY) ration 
evaluator [4]. Dry matter was determined using a forced-air drying 
oven set at 55°C for 48 h. Dietary ingredients were analyzed for 
CP, EE, Ash, minerals (AOAC 2000), neutral detergent fiber 
(NDF), acid detergent fiber (ADF) and lignin, TDN, NEL and NFC 
were calculated according to NRC, 2001 (Tables 1 and 2).

Prepartum DCAD

Corn silage

0 -100 -180 250

39.35 38.94 38.68 32.07

Wheat
straw

8.93 8.83 8.77

Alfalfa hay 8.05

Corn,
ground

19.69 19.49 19.35 25.08

Soybean
meal, 44%
CP

7.75 7.67 7.62 20.43

Beet pulp,
dried

7.2 7.12 7.08

Corn gluten
feed

8.45

Sunflower
meal, 36%
CP

14.15 14 13.91

Energizer-
Gold1

0.85

OleoFat2 0.89

Limestone 1.06 1.11 1.14 0.54

Salt 0.3 0.3 0.3 0.41

Sodium
bicarbonate

1.15

M and V
Dry Cow
premix3

0.31 0.3 0.3

Magnesium
oxide

0.23 0.22 0.22 0.19

Free feed
silica4

0.19

Mycofix5 0.07

Diamond V
Yeast XP6

0.07

Organic
zinc

0.02

Potassium
carbonate

0.27

Magnesium
sulphate

0.15 0.45 0.82

Dicalcium
phosphate

0.22 0.22 0.22 0.09

M and V
premix7

0.27

MegAnion8 0.37 0.51 0.54

Calcium
chloride

0.31 0.82 1.06

DCAD
mEq/kg
DM9

0 -100 -180 250

Table 1: Ingredient composition of experimental diets 
formulated to differ in dietary cation-anion difference (DCAD).

Prepartum DCAD

0 -100 -180 250

DM% 56 57 57 53

CP 15 14.8 14.8 17.5

Soluble
protein, %
of CP1

30 31 31 26

Ether
extract

3 3 3 4.5

NDF 42.2 41.9 41.7 28

NFC2 31.8 31.8 31.8 40.8

TDN 70 69 69 78

peNDF3 31 31 30 23

NEl,
Mcal/kg4

1.51 1.52 1.51 1.73

Ash 8 8.9 9 9.2

Ca 0.99 1.1 1.2 0.89

P 0.36 0.37 0.36 0.41

Mg 0.38 0.42 0.48 0.3

K 1 1 1 1.23

Na 0.2 0.2 0.2 0.56

Cl 0.51 0.7 0.8 0.34

S 0.32 0.4 0.48 0.34
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DCAD5
(mEq/kg
DM)

0 -103.8 -181.9 250.6

Table 2: Chemical composition of experimental diets 
formulated to differ in dietary cation-anion difference (DCAD).

Mycofix5 0.07



Blood Samples Minerals and Hormones procedures
Blood samples were collected from via coccygeal venipuncture on 

-14, -7, -2, 0, 2, 7, 14 and 22 d relative to predicted calving and were 
collected via coccygeal venipuncture from cows into vacutainers 
containing either sodium heparin and plain vacutainer serum tubes. 
Sampling time (approximately 1300 h) corresponded to approximately 
5 h after morning feeding [5]. Plasma and serum were separated after 
centrifugation at 2000 × g for 20 min at 5°C, and frozen at −80°C until 
analysis. Sampling time (approximately 1300 h) corresponded 
to approximately 5 h after morning feeding. 

The analyses were performed in Veterinary Diagnostic Lab of 
Animal Reproductive Research Institute, Agriculture Research 
Center, Ministry of Agriculture, Al-Harm, Egypt. Blood serum 
samples were used for analyzed sifors of parathyroid hormone (PTH) 
and insulin were determined using bovine ELISA kit (No. 18, 
Keyuan Road, DaXing Industry Zone, Beijing, China) [6]. 
Concentrations of Ca, P, Mg, Na, K, Cl, urea and creatinine were 
determined colorimetrically using a RA-50 chemistry analyzer 
(Bayer, address) according to the manufacture’s instruction (RA-50 
chemistry analyzer (Bayer, China) using readymade commercial 
chemical (kits), (CAT. No. CA 1210, PH 1710, MG 1610, SO 1910, PT 
1820, CL 1211, UR 2110 and CR 1251 Biodiagnostic co. Egypt). Total 
protein and albumin were determined colorimetrically (RA-50 
chemistry analyzer (Bayer, China) using a commercial readymade 
chemical (kits), (CAT. No. TO 2020, AB 1010 Biodiagnostic co. 
Egypt). Globulin was mathematically calculated (globulin = total 
protein – albumin). Glucose and BHB were measured immediately in 
whole blood by using a portable Free-Style Optium Neo reader with 
blood glucose and ketone test strips (Abbott Diabetes Care Ltd, Range 
Road, UK). Plasma NEFA was measured determined according to 
the procedures of Johnson and Peters (1993) using a C kit from 
Wako Chemicals USA Inc. (Richmond, VA). 

Concentrations of alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) were determined using an automated 
biochemistry analyzer [7].

Milk samples
Milk samples were collected from 3 consecutive milking every two 

weeks. Samples from individual cows were composited (200 to 250 
mL) stored at 4°C until analysis within 72 h after 
collection concentrations of (milk fat, protein, lactose, TS, and 
SNF and milk urea nitrogen (MUN)] using pre-calibrated 
ultrasonic milk analyzer [LACTOSCAN LA, 8900 Zagora 
BULGARIA). Milk urea nitrogen (MUN) was analyzed using mid-
infrared techniques (method 972.16, AOAC International, 2006). 
The current experiment was conducted according to the guidelines of 
Kafr El-Sheikh University and approved by the local experimental 
animal care committee, Faculty of Agriculture, Kafr El-Sheikh 
University, Egypt (id 4/2016 EC). All precautions were taken to 
reduce suffering throughout the trial period [8].

Statistical analysis
Statistical analysis of experimental data was carried out through the 

SPSS V23 (https://www.ibm.com/eg-en/analytics/spss-statistics-

software). Software package by analyzing the data through one-way
ANOVA. The effect of treatment (0.0, -100 and -180 mEq/kg), period
( - 14, - 7, - 2, 0, 2, 7. 14 a nd 2 1) , treatment x period interaction was
determined by two- way Analysis of variance (ANOVA). The obtained
results were analyzed statistically of block design according to using
general linear models procedure adapted by SPSS V23. Prepartum and
postpartum data were analyzed separately Significance was declared at
P< 0.05, and a trend was declared when P ≥0.05 and <0.1.

Results
Cows fed on DCAD have a significant effect on concentrations of

serum Ca, NEFA, tended to have higher with increasing negative
DCAD for 0.0, -100, -180, Means ±SD (8.38 ±0.289, 8.85 ±0.499,
9.40 ±0.557 mg/dL), P < 0.05, for the treatment and day of sample as
shown but there is no interaction effect on Ca concentration.
Postpartum Ca there significant effects of treatment and day of sample
and interaction DCAD x day P < 0.05 as presented, (8.59 ± 1.04, 8.89
± 0.741, 9.27 ± 0.513 mg/dL). Prepartum plasma concentration of
NEFA as show, means (231 ± 26.48, 256 ± 27.83, 275.83 ± 39.18
µmol/L), there is effect of treatment and day as shown (Figure 4) but
there is no effect for interaction P > 0.05, but postpartum plasma
NEFA means ±SD (788.66 ±218.56, 790.66 ±181.50, 854.2 ± 203.577
µmol/L), there is effect of treatment and day but there is no effect for
interaction DCAD x day, P >0.05. Serum phosphorus concentration
there is effect of interaction DCAD x day as shown, means ±SD (6.23
± 0.196, 6.207 ± 0.271, 6.36 ± 0.279 mg/dL), P <0.05, postpartum
phosphorus there is effect of day but neither DCAD nor interaction
DCAD x day were affected on Phosphorus, P > 0.05. While
concentration of PTH was higher in cows fed prepartum 0.0 DCAD
compared with cows fed -100 and -180 DCAD. Means for diets 0.0,
-100 and -180 DCAD (48.45 ± 4.11, 31.28 ± 3.83, 39.46 ± 2.45 pg/ml)
P <0.05, in postpartum PTH no effect were observed of DCAD
treatment. There is no effect prior to calving of treatment or
interaction DCAD x day on blood glucose P > 0.05, but after calving
the effect on blood glucose was obvious of interaction DCAD x day P
< 0.05, means glucose for diets 0.0. -100 and -180 DCAD (61.90
±6.13, 59.40 ± 6.10, 60.66 ±7.89 mg/dL). Milk protein as presented
was affected by interaction of DCAD x L lactation number and
treatment P<0.05 (3.10 ± 0.206, 3.22 ± 0.158, 3.21 ± 0.146 %). We
were observed effect of lactation on milk lactose (4.62 ±0.110, 4.74
±0.196, 4.75 ± 0.144 %) and SNF (8.54 ±0.312, 8.90 ± 0.401, 8.81 ±
0.225 %) as shown. Mineral concentrations of Mg, Na, K, Cl not
changed by treatment and interaction DCAD x day in both prepartum
and postpartum. Liver and kidney functions like ALT, AST, Albumin,
Total protein, urea and creatinine not affected by treatment and
interaction. Blood metabolites like Insulin, BHB also didn’t change by
DCAD treatment or interaction P>0.05 [9-15].

Mineral Status
There was no incidence of hypocalcemia in both cows pre and

postpartum, as serum Ca never fell below the 8 mg/dL for cows fed
(0.0, -100, -180 DCAD) as shown. The increased serum Ca level as
shown in described effect of interaction DCAD x day for cows
consuming -180 and -100 DCAD diet compared to the lowest level for
0.0 DCAD diet might be due to mild metabolic acidosis has been
induced by anionic salt supplementations. Bones act as a major
storage of buffers for acid-base regulation of body fluids. When dairy
cows are placed on acidifying diets, the blood pH drops. Frick et al.
concluded that an acidic extracellular pH activate osteoclastic bone
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resorption which may result in higher plasma Ca concentrations. We 
noticed that P concentrations in blood increased at the time of calving 
0 d (8.79 ±0.490 mg/dL) and 2 d postpartum ( 8.77 ±0.499 mg/dL) due 
to the effect of day as presented in this is compatible with several of 
the individual studies that had significant increases in blood P 
concentrations at calving. Bone P resorption is controlled by PTH 
activity, blood concentrations of Ca and P, and by 1,25(OH)2 vitamin 
D3. If increased bone resorption is stimulated by the diets with lower 
DCAD, it is likely that P concentrations in the blood would raise along 
with Ca concentrations. However, other mechanisms, such as a likely 
increased absorption of P in the intestinal tract, could contribute to the 
increased P concentrations [16-25].

Discussion

Plasma NEFA Concentrations
Peak plasma NEFA concentrations occur around the time of calving 

as shown, start decline as feed intake increases after calving [26-30]. 
In our present trial higher concentration of NEFA was in the day of 
calving in cows fed -180 compared with 0.0 and -100 mEq/kg DM of 
DCAD this due to low dry matter intake in cows fed low DCAD diets. 
No difference were observed in blood BHB as shown due to treatment, 
day or interaction. 

Reason of increasing prepartum non-esterified fatty acid due to 
negative effect of anionic salts on reduction of dry matter intake, 
whereas BHB indicate that short-term energy balance was not altered 
among treatments or interaction [31-39]. This would be 
expected in the absence of any metabolic challenge that typically 
occurs at or immediately after calving unless DMI declined 
significantly to cause an extended negative energy balance that was 
not apparent based on BHB. Compared with NEFA prepartum 
concentrations, all values were higher postpartum as shown due effect 
of DCAD and day, which would be expected [40-50].

Parathyroid Hormone
The effects of lowering DCAD in prepartum diets (-100 and -180 

mEq/kg DM) have been reviewed, and include increased parathyroid 
hormone sensitivity in cows; increased renal output of 1,25(OH)2 
vitamin D3; and increased responsiveness of target Ca resorption from 
bone; and higher plasma ionised Ca concentrations (Figure 1).

Prepartum DCAD P -value

DCA
D

0 -100 -180 SEM T Day T x
day

Ca
mg/d
L

8.38c 8.85b 9.40a 0.048 0.001 0.001 0.17

P
mg/d
L

6.23 6.2 6.26 0.032 0.103 0.82 0.011

Mg
mg/d
L

2.85 2.86 2.85 0.014 0.981 0.284 0.98

Na
mEq/
L

142.1
2

142.1
9

141.6
6

0.137 0.945 0.575 0.377

K
mEq/
L

4.94 4.9 4.93 0.012 0.276 0.825 0.675

CL
mEq/
L

104.5
8

105.2
2

103.6
6

0.305 0.124 0.869 0.93

Gluco
se
mg/d
L

63.41 61 60.5 0.633 0.653 0.328 0.543

BHB
mmol
/L

0.525 0.566 0.575 0.019 0.539 0.399 0.656

NEFA
µmol/
L

231.6
6b

256.0
0a

275.8
3a

4.378 0.001 0.001 0.181

Postpartum

Ca
mg/d
L

8.59c 8.89b 9.27a 0.042 0.001 0.001 0.001

P
mg/d
L

7.62 8.01 7.59 0.089 0.096 0.001 0.477

Mg
mg/d
L

2.83 2.84 2.88 0.011 0.155 0.069 0.065

Na
mEq/
L

143.2
8

142.9
9

142.8
8

0.213 0.729 0.029 0.975

K
mEq/
L

5.38 5.37 5.36 0.033 0.976 0.139 0.937

CL
mEq/
L

104.8
5

105.2
2

104.3
2

0.255 0.356 0.916 0.97

Gluco
se
mg/d
L

61.90
a

59.40
b

60.66
b

0.607 0.247 0.001 0.025
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Figure 1: Model of the tissues and hormones associated with 
calcium homeostasis a cow 500 kg (McNeil et al 2002).

BHB
mmol
/L

0.827 0.767 0.827 0.016 0.229 0.888 0.27

NEFA
µmol/
L

788.6
6b

790.1
0b

854.2
0a

9.072 0.005 0.001 0.118

Table 3: Prepartum and postpartum Mineral concentrations and 
blood metabolites for cows fed anionic salts diets (0.0, -100 and 
-180 mEq/kg DM) during experimental diets.



Milk Production and Composition
According to West (1992), boosting DCAD increased milk fat %

without affecting milk production. On the other hand, other studies 
have found that milk output has increased without a change in milk fat
%. 

Other investigations have shown no variation in lactose % owing to 
changes in DCAD [51-55]. According to Beede et al., adding 
anionic salts to the prepartum diet improved milk production by 3.6 
percent in the subsequent lactation, which contradicts our findings. 
Moore (2000) gave anionic salts to cows and found no difference in 
milk production between 7 and 70 DIM. Martinez et al., 
examined daily milk production and weekly milk fat and protein 
content in 79 cows and found no effect of DCAD treatment on 
milk yield, ECM, or true protein content.

 But they did find that cows fed negative DCAD prepartum 
had approximately 0.23 percentage points more fat in the first 49 
postpartum days [56-60]. Who evaluated three dairy cow diets (DCAD 
of +183, +59, or 74 mEq/kg of DM) and found that 
decreasing prepartum DCAD increased milk production and ECM 
in the first three weeks postpartum. We concur with who showed 
that whereas fat content did not differ across DCAD groups in 
multiparous cows, milk protein content rose when an acidogenic 
diet was fed prepartum.

 Our results disagree with a meta- analysis that 
characterized improved milk yields (+1.7 kg/d) and increased FCM 
(+1.1 kg/d) in multiparous cows (Table 3).

The composition of diets are shown and average dry matter intake 
in different treatments of prepartum diet DCAD 0.0, -100, or 
-180 mEq/kg DM, (13, 13.1, 13.2 kg DM/day) and postpartum 
(22.5 kg DM/day) respectively. 

Serum metabolites are presented in (Tables 4 and 5).

Prepartu
m

DCAD

-100 -180 SEM P -Value

AST u/L 73.8 73.88 71.66 0.451 0.108

ALT u/L 30.76 31.59 30.8 0.28 0.276

Total
protein
g/dL

6.39 6.4 6.5 0.04 0.474

Albumin
g/dL

3.14 3.11 3.13 0.023 0.921

Globulin
g/dL

3.25 3.28 3.37 0.033 0.335

Urea
mg/dL

32 31.61 3.11 0.178 0.154

Creatinin
e mg/dL

1.21 1.21 1.2 0.005 0.53

PTH
pg/ml

48.45 31.28 39.46 1.873 0.001

Postpart
um

DCAD

AST u/L 71.84 71.47 69.02 0.707 0.218

ALT u/L 28.25 28.36 28.21 0.249 0.973

Total
protein
g/dL

6.5 6.51 6.65 0.033 0.138

Albumin
g/dL

3.13 3.25 3.82 0.177 0.25

Globulin
g/dL

3.37 3.25 3.82 0.173 0.385

Urea
mg/dL

29.16 28.8 29.24 0.165 0.541

Creatinin
e mg/dL

1.24 1.21 1.22 0.01 0.513

Insulin
pmol/L

82.33 83.33 85.5 0.799 0.269

PTH
pg/ml

51.8 50.57 47.38 1.232 0.339

Table 4: Prepartum and postpartum liver, kidney functions and
blood hormones for cows fed anionic salts diets (0.0, -100 and -180
mEq/kg DM) during experimental diets.

DCAD P -Value

Item 0 -100 -180 SEM DCA
D

L DCA
D x L

Milk
yield
kg/d

38 38.92 39.57 1.008 0.837 0.994 0.757

1FC
M 3.5
kg/d

39.17 40.08 40.92 1.079 0.843 0.988 0.853

2EC
M
kg/d

40 40.56 41.53 1.131 0.889 0.998 0.817

Fat % 3.69 3.67 3.71 0.024 0.547 0.186 0.254

Protei
n %

3.23a 3.11b 3.14b 0.028 0.428 0.186 0.034

Lacto
se %

4.7 4.68 4.68 0.025 0.654 0.05 0.748

Total
Solid
%

12.56 12.21 12.39 0.52 0.133 0.071 0.055

SNF
%

8.87a 8.53b 8.68a 0.049 0.129 0.021 0.232
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MUN
mg/d
L

11.71 12.42 11.57 0.441 0.669 0.06 0.108

Table 5: Milk yield, FCM3.5% and milk composition for cows fed 
anionic salts diets (0.0, -100 and -180 mEq/kg DM) during 
experimental diets.

Insulin
pmol/L

179.16 178.66 179.66 0.416 0.738



    DCAD had no significant impact on milk output, FCM 3.5 percent, 
ECM, or milk fat percent related to treatment or interaction DCAD 
x L, as indicated, P>0.05. 

This could be related to genetic potential or the production of 
a slightly acidic environment in the rumen by a lower DCAD 
diet. We agree with results [16]. 

Found that prepartum negative DCAD feeding had no effect 
on postparturient milk productionIncreased milk protein could be 
attributable to the effect of interaction DCAD x L, P=0.034, whereas 
increased SNF percentages in cows fed 0.0 vs. -100 and -180 
mEq/kg DCAD diets could be attributed to the effect of DCAD, 
P=0.021 [60-65]. 

Others have established a favourable connection between DCAD 
and milk fat test, however our findings contradict [18]. Adding 
dietary rumen buffers
such NaHCO3 and K2CO3 to the diet has been demonstrated 
in multiple trials to enhance milk fat percentage, especially when 
milk fat is low (Figures 2 and 3).

Figure 2: Ca concentrations in different days before calving -14 to 
-2 day and postpartum from 0 to 21 day for cows fed DCAD diets 
( 0.0, -100 and -180 mEq/dL), there is significant effect of DCAD and 
interaction between DCAD x day on Ca level, p < 0.05

Figure 3: Phosphorus concentrations in different days before
calving -14 to -2 day and postpartum from 0 to 21 day for cows fed

DCAD diets ( 0.0, -100 and -180 mEq/dL), there is significant effect
of day of sample p < 0.05 but there is no interaction effect between
DCAD x day on P concentrations, p > 0.05.

Blood NEFA concentrations have been used as an estimate of
energy balance [66]. The plasma NEFA concentration was higher
prepartum cows fed DCAD -100 and -180 mEq/dL we are in line with
Previous studies have shown that plasma NEFA concentrations begin
to increase from the last 2 wk of gestation to the last 2 to 3 d before
parturition (Figures 4 and 5).

Figure 4: plasma NEFA µmol/L concentrations in different days
before calving -14 to -2 day and postpartum from 0 to 21 day for cows
fed DCAD diets ( 0.0, -100 and -180 mEq/dL), there is significant
effect of day of sample p < 0.05 but there is no interaction effect
between DCAD x day on P concentrations, p > 0.05

Figure 5: Blood BHB concentrations in different days before
calving -14 to -2 day and postpartum from 0 to 21 day for cows fed
DCAD diets (0.0, -100 and -180 mEq/dL), there is significant effect of
day of sample p < 0.05 but there is no interaction effect between
DCAD x day on P concentrations,

Conclusion
Feeding anionic salts in prepartum dairy cows improves Ca

availability probably induced a similar state of compensated metabolic
acidosis in cows fed -100 and -180 mEq/kg DM. Postpartum serum Ca
concentrations raised significantly with different prepartum DCAD.
Reducing the DCAD of the prepartum was not affect on Mg, Na, K,
Cl, lactation performance, Insulin, BHB, and Glucose in the early
postpartum period. Prepartum plasma concentrations of NEFA were
increased in cows fed -180 DCAD than in cows fed 0.0 and -100
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DCAD. These results indicate that effective of diets contain anionic
salts to induce metabolic acidosis in prepartum dairy cows.
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