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Abstract
Epigenomics encompasses studies of the chemical modifications 
of genomic DNA and associated histones, interactions between 
genomic DNA sequences and proteins, the dynamics of the 
chromosomal conformation, the functional relationships between 
these epigenetic events, and the regulatory impacts of these 
epigenetic events on gene expression in cells. In comparison 
to current techniques that are only capable of characterizing 
average epigenomics features across bulk cell ensembles, single-
cell epigenomics methodologies are emerging as powerful new 
techniques to study cellular plasticity and heterogeneity, as seen in 
stem cells and cancer. Here we summarize available techniques for 
studies of single-cell epigenomics, review their current applications 
to cancer research, and discuss future possibilities. This review also 
highlights that the full potential of single-cell epigenetic studies will 
be comprehended through integrating the multi-omics information 
of genomics, epigenomics and transcriptomics.
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Introduction
Epigenetics covers the study of molecular mechanisms driving 

heritable changes in gene expression without the involvement 
of changes in DNA sequences. These epigenetic events involve 
chemical modifications to DNA and the associated histone proteins, 
and changes in DNA accessibility and chromatin conformation. In 
addition to genetic alterations, epigenetic aberrations are another key 
pathological mechanism driving carcinogenesis. Epigenetic changes 
in cancer cells alter chromosomal conformation and accessibility 
to the transcriptional machinery and regulators, which can in turn 
activate oncogenesis and silence tumor-suppressive mechanisms 
by modulating the expression of protein-coding and non-coding 
(e.g. microRNA and long non-coding RNA) genes. These sequential 
epigenetic alterations lead to uncontrolled growth, invasion and 
metastasis of cancer cells. In contrast to genetic mutations that 
are stable and irreversible, epigenetic alterations are dynamic and 
reversible, leading to epigenetic heterogeneity within tumors during 
their development or in their responses to environmental stimuli or 

chemotherapeutic treatments [1]. This epigenomics variability leads 
to heterogeneity in cancer by creating cell-to-cell differences in the 
patterning of DNA methylation, histone modifications, or expression 
of protein coding genes or noncoding RNAs. In spite of the functional 
relevance of this epigenomics variability in cancer heterogeneity, this 
variation at the single-cell level is difficult to assess in the past due to a 
lack of methods capable of analyzing it.

Understanding of epigenetic events in the past was mostly based 
on studies involving techniques that measure average epigenetic states 
of bulk cell populations and tissues. Although these studies of bulk cell 
populations have revealed generalized epigenetic mechanisms (e.g. 
the roles of epigenetic marks in active or repressed transcriptional 
states) and established the mapping of epigenetic makeup in many 
bulk normal and cancerous cell types as well as tissues, it is difficult 
to use these average profiling measurements to examine epigenetic 
events occurring in poorly characterized cell populations and rare 
cell types (e.g. niches) within normal or tumor tissues. Due to the 
limitations of bulk epigenetic profiles, the study of epigenomics at 
a single-cell level is necessary. Owing to this need, new techniques 
for studying single-cell epigenomics have been developed [2,3]. 
Technological advances in single-cell epigenomics overall involve 
the development of indexing systems in genome-wide sequencing of 
the high throughput cell platform and techniques for improving the 
recovery yields of epigenetic materials isolated from a single cell or 
from the limited cell number [2]. This article summarizes these new 
single-cell techniques that measure the modifications of DNA and 
histones, chromatin accessibility and chromosome conformation, 
reviews their current applications to cancer research and discusses 
the future potential of single-cell epigenomics in addressing issues 
important for understanding of cancer.

Methodologies of Single-Cell Epigenomics
Newly developed single-cell techniques are concisely summarized 

in this section to provide readers with the overview of advances in 
single-cell epigenomics. The timeline for the evolution of technologies 
on single-cell epigenomics is shown in Figure 1. Advantages and 
disadvantages of these established single-cell epigenomics methods 
and their comparisons are summarized in Table 1. Comprehensive 
details of these techniques have been well reviewed elsewhere [2,3].

Analysis of single-cell DNA modifications

Methylation at cytosine residues of CpG dinucleotide in the 
genome is a major type of DNA modifications, which is involved in 
silencing gene expression. Among methods used to analyze DNA 
methylation, bisulfite sequencing (BS-seq) that involves the chemical 
conversion of unmethylated cytosine into uracil is a powerful tool to 
measure CpG methylation in a single-base resolution [4,5]. Recent 
technical advances enable BS-seq to measure DNA methylation 
at a single-cell level. To reach the single-cell level, single cells are 
isolated and transferred into separate PCR tubes/wells (e.g. the 96-
well platform) by serial dilution, micromanipulation (e.g. mouth 
pipetting), fluorescence-activated cell sorting (FACS), laser-capture 
microdissection (LCM) and microfluidic devices [6]. The extracted 
DNA derived from single cells can be processed either by reduced-
representation bisulfite sequencing (RRBS) or by post-bisulfite 
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adaptor tagging (PBAT) to create indexed sequencing libraries 
wherein well-specific barcodes that can be traced back to particular 
single cells are incorporated into bisulfite-converted sequence reads 
(Figure 2) [7-10]. In the scRRBS method, five DNA processing steps 
before PCR amplification, including genomic DNA purification, 
restriction enzyme digestion, end repair/dA tailing, adapter ligation 
and bisulfite conversion, are prepared in a single tube to avoid loss of 
single-cell DNA (Figure 2) [7]. To increase the sequencing coverage 
of methylated DNA, bisulfite treatment in PBAT-based single-cell 
BS-seq (scBS-seq) is performed before incorporation of indexed 
sequencing primers into DNA libraries (Figure 2) [8-10]. This new 
procedure of PBAT prevents the degradation of indexed sequencing 
libraries caused by bisulfite treatment [8-10]. In addition to these 
bisulfite-dependent methods, a bisulfite-independent method called 
genome wide CpG island (CGI) methylation sequencing for single 
cells (scCGI-seq) has been invented to profile DNA methylation 
patterns in a single cell, a new technique combining methylation-
sensitive restriction enzyme digestion and multiple displacement 
amplification (MDA) for selective detection of methylated CGIs 

(Figure 2)  [11]. The MDA is an experimental step that selectively 
amplifies methylated CGI-containing long DNA strands but not 
short unmethylated CGI fragments. These single-cell methods 
preserve long-range DNA methylation profiles across a sparse, 
diploid genomic landscape. By comparing scBS-seq to scRRBS, 
scBS-seq provides the higher coverage of CpG dinucleotide (~3.7 
million CpGs) than that of scRRBS (~one million CpGs) [7,9,12]. 
Therefore, scBS-seq includes more CpG-sparse regions than scRRBS. 
Nevertheless, the coverage of CGI from scRRBS analysis is higher 
than that from scBS-seq analysis [7,12]. Moreover, scRRBS profiles 
the genome in a relatively consistent and less random manner when 
compared to scBS-seq. This advantage allows scRRBS to provide the 
higher overlap between the individual CpG sites covered in different 
single cells [12]. Due to both methods offering their common and 
unique DNA methylation information, these two techniques are 
complementary to each other. Therefore, the choice of which method 
to use relies on the interest of specific studies. With regard to the 
most recent scCGI-seq, it offers the higher coverage of CGIs (>70% 
of all CGIs) than that of scRRBS [11]. This improved coverage from 
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Figure 1: The timeline diagram for illustrating the evolution of technologies on single-cell epigenomics and their derived multi-omics methods.

Application Technique Advantage Disadvantage

DNA methylation scBS-seq The higher coverage of sparse CpG dinucleotides The lower coverage of CGIs.

scRRBS The higher coverage of CGIs. The lower coverage of sparse CpG dinucleotides

sc-CGI-seq The higher coverage of CGIs.
Higher consistency in profiled CGIs across individual cells

The lower coverage of sparse CpG dinucleotides

Histone 
modifications scChIP-seq High-throughput analysis of large numbers of single cells The low coverage of sequencing reads

scDamID An antibody-independent method for mapping protein-DNA 
interactions Low sequencing resolution

Chromatin 
Accessibility scATAC-seq

The combinatorial indexing method:
Suitable for high-throughput

The microfluidics method:
The high coverage of sequencing reads
High sequencing resolution

The combinatorial indexing method:
The low coverage of sequencing reads
Low sequencing resolution

The microfluidics method:
Low throughput

scDNase-seq High sequencing resolution low mapping efficiency and lower throughput
scNOMe-seq/
scCOOL-seq

Simultaneously detect chromatin accessibility and DNA 
methylation

No selectivity for open chromatin
The lower coverage of genome wide cytosines

Chromatin 
conformation scHi-C

A powerful method for defining the individual chromosome 
organization, compartmentalization, and interchromosomal 
interactions

Limited resolution

Table 1: Advantages and disadvantages of current developed single-cell epigenomics technologies.

Citation: Lo PK, Zhou Q (2020) Emerging Techniques in Single-Cell Epigenomics and their Applications to Cancer Research. J Clin Genom. 1:1.



• Page 3 of 8 •Volume 1 • Issue 1 • 1000103

scCGI-seq represents a 66-fold increase in the fraction of consistently 
profiled CGIs across individual cells when compared to scRRBS [11]. 
Owing to this substantial improvement, scCGI-seq has become a 
powerful and reliable method to profile DNA methylation of CGIs 
in a single cell.

Given that the outcome of DNA methylation is to alter gene 
expression, concurrent profiling analysis of both DNA methylome 
and RNA transcriptome at a single-cell level is critical for 
understanding the relationship between DNA methylation patterns 
and RNA expression profiles in a single cell. Recently, two techniques, 
called scMT-seq and scM&T-seq, have been established for parallel 
single-cell sequencing analysis of both methylome and transcriptome 
[13,14]. scMT-seq is a combination of both scRRBS and scRNA-
seq (Smart2-seq) and scM&T-seq is a technique integrating scBS-seq 
with scRNA-seq [13,14]. Both single-cell techniques have taken the 
advantage of the method capable of simultaneously isolating cytosolic 
RNA for RNA-seq and nuclear genomic DNA for DNA methylome 
profiling [13,14]. These multi-omics methods have opened a window of 
opportunity for dissecting the mechanisms of epigenetic gene regulation.

In addition to methylated cytosine (5mC), the other minor types of 
DNA modifications have been identified, such as hydroxymethylated 

cytosine (5hmC) that is generated by oxidation of 5-methylcytosine, a 
reaction mediated by ten-eleven translocation (TET) methylcytosine 
dioxygenase. 5hmC has been known to contribute to the active 
demethylation of the paternal chromosomes during early embryonic 
stages [15]. The currently established methods for measuring these 
minor DNA modifications, such as TET-assisted bisulfite sequencing 
(TAB-seq) and Aba-seq, could potentially be compatible with single-
cell approaches. Indeed, Mooijman and colleagues presented a 
single-cell Aba-seq technology, based on 5hmC glucosylation and 
glucosylation-dependent digestion of DNA, to analyze genome-wide 
and strand-specific 5hmC. Their studies have revealed chromosome-
wide cell-to-cell variability in 5hmC profiles [16-18].

Analysis of single-cell histone modifications

The various covalent modifications of histones have been 
discovered and they are functionally involved in regulating genomic 
characteristics and transcriptional states [19]. These histone marks are 
routinely mapped using chromatin immunoprecipitation sequencing 
(ChIP-seq), which involves chromatin immunoprecipitation with 
antibodies specific to these histone marks. Although this method 
is powerful, high background noise is problematic for performing 
ChIP-seq at the single-cell level. To overcome this issue, genomic 
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Figure 2: The flow diagram for showing the technical procedures of scBS-seq, scRRBS and scCGI-seq methods that profile DNA methylation 
in a single cell.
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DNA from a pool of single cells is processed through micrococcal 
nuclease (MNase) digestion and barcoding steps before the 
immunoprecipitation step. This improved approach enables pull-
down to be effectively performed on thousands of cells. Although the 
low coverage of sequencing reads is the disadvantage of scChIP-seq, 
this limited coverage potentially enables this technique to concurrently 
assess a large number of single cells. Indeed, by combination with a 
droplet-based microfluidics setup, this approach can process large 
numbers of single cells in parallel [20]. 

In addition to single-cell ChIP-seq (scChIP-seq), another method 
called DamID has been developed to map protein-DNA interactions 
at a single-cell level. This new method involves the expression of 
a fusion protein of Escherichia coli deoxyadenosine methylase 
(Dam) and the interested protein in cells. This design allows Dam 
to methylate DNA on adenine residues in close proximity to the 
sites of protein binding. Methylated sites are then digested by the 
methylation-sensitive restriction enzyme DpnI, followed by ligation 
with sequencing adapters to generate sequencing libraries. This new 
method has been successfully applied to the study of genomic DNA 
interactions with the nuclear lamina in single cells [21]. Moreover, 
single-cell DamID could be an alternative for genome-wide analysis 
of histone modifications by fusing Dam with specific histone readers 
or modifiers. Due to the current sequencing resolution of single-
cell DamID limited to the order of 100 kb, this disadvantage to 
some extent restricts its application. Therefore, future optimizations 
and improvements are needed for enabling this technique to map 
transcription factor binding sites in single cells.

Analysis of single-cell chromatin accessibility and confor-
mation

Transcriptional activation is known to result in disruption 
of nucleosome organization at promoters, enhancers, silencers, 
insulators and locus control regions due to transcription factor 
binding. Therefore, these regulatory DNA regions coincide with 
open/accessible genomic sites of remodeled chromatin. Mapping of 
these accessible chromatin regions is relevant to understanding of 
regulation of gene expression, cell proliferation, cell differentiation, 
functional diversification and disease development. Several 
techniques have been developed to map accessible chromatin 
regions in a single cell. The first mapping method called the assay 
for transposase-accessible chromatin using sequencing (ATAC-
seq) is based on the employment of a Tn5 transposase enzyme to 
simultaneously cleave DNA within accessible open chromatin regions 
and the followed ligation of fragmented DNA with adapter sequences 
(a process called tagmentation) [22,23]. To achieve the single-cell 
level, ATAC-seq adopts a “combinatorial indexing” strategy in which 
the tagmentation is performed on 96 pools of a few thousand nuclei 
with the incorporation of a unique barcode into each pool and then 
these 96 pools are mixed and split again before a second barcode 
is incorporated into each new pool via polymerase chain reaction 
(PCR) (Figure 3). Optimized two-round barcode indexing enables a 
particular barcode combination to be specific to a single cell (Figure 3) 
[24]. Therefore, this approach allows the ATAC-seq data to represent 
the epigenomics information of a single cell. Another modified single-
cell ATAC-seq method employs a microfluidics device to generate 
single-cell pools instead of using the combinatorial indexing method 
[25]. Although its throughput is substantially lower, this modified 
technique has substantially improved the sequencing resolution and 
coverage, encompassing 70,000 reads per cell compared with 3000 
reads from the prior method. 

In addition to the transposase-based method, a DNase I-based 
single-cell sequencing (scDNase-seq) has been applied to analysis 
of chromatin accessibility in a single cell [26]. The design of this 
method is based on the fact that open/accessible chromatin regions 
are vulnerable to DNase I digestion. This technique offers a high 
sequencing resolution (300,000 mapped reads per single cell), but 
low mapping efficiency and lower throughput are its disadvantages. 
In particular, scDNase-seq and aforementioned scATAC-seq could 
be potentially conducted in parallel with scRNA-seq through the 
effective separation of DNA from RNA or parallel amplification of 
both materials [14,27]. Moreover, an attractive technique called 
nucleosome occupancy and methylome sequencing (NOMe-seq) 
is capable of simultaneously analyzing nucleosome positioning, 
accessible chromatin and DNA methylation on a genome-wide scale 
[28]. NOMe-seq exploits a methyltransferase enzyme to methylate 
GpC dinucleotides within open/accessible genomic regions, but 
not those within nucleosome-bound DNA regions. After the GpC 
methylation reaction, DNA is treated with bisulfite and processed as 
BS-seq for next-generation sequencing analysis. Due to the difference 
between enzymatic (GpC) and endogenous (CpG) DNA methylation, 
NOMe-seq is able to map both methylation patterns in a single-base 
resolution. By integrating scNOMe-seq with PBAT-based scBS-seq, 
a novel multi-omics method called single-cell COOL-seq has been 
developed for parallel analysis of the chromatin state/nucleosome 
positioning, DNA methylation, copy number variation and ploidy 
in single cells (Figure 4) [29]. scCOOL-seq has been utilized to 
analyze the reprogramming of the chromatin state and DNA 
methylation in mouse preimplantation embryos [29]. This new 
multi-omics methodology offers the first single-cell and parental 
allele-specific analysis of the global chromatin state and DNA 
methylation dynamics at single-base resolution in early mouse 
embryos and provides new insights into this embryonic process 
involving the heterogeneous yet highly ordered features of 
epigenomics reprogramming. 

Due to no selectivity for open chromatin, the high depth of 
sequencing may be necessary for scNOMe-seq to guarantee coverage 
of genomic regions of interest. Moreover, given the need of filtering 
out some ambiguous nucleotide positions (e.g. C-C-G and G-C-G), 
this reduces the coverage of genome-wide cytosines from scNOMe-
seq analysis by ~50% when compared to that from scBS-seq analysis. 
However, despite this reduced coverage, scNOME-seq is still able 
to profile a large proportion of the genomic loci with important 
regulatory roles (e.g. promoters and enhancers). In addition to 
characterizing linear chromatin organization, studies of chromosomal 
conformation have become important as the three-dimensional 
topology of chromosomes determines the interactions of gene 
promoters with enhancers, silencers, and insulators. A genome-scale 
technique called Hi-C has been developed to define the conformation 
of chromosomes. In Hi-C, cellular chromatin DNA is fixed and then 
digested by sequence-specific restriction enzymes while maintaining 
intact protein–protein and protein-DNA interactions. Re-ligation of 
digested DNA ends generates DNA chimaeras, which preserve spatial 
proximity interactions between different genomic loci. Given that 
Hi-C analysis of bulk cell populations may result in some ambiguity 
in interpretation of the results, single-cell Hi-C (scHiC) has been 
developed as a cutting-edge technique to assess chromosomal 
conformation in a single cell [30,31]. scHi-C is currently limited 
in its resolution but still able to define the individual chromosome 
organization, compartmentalization, and interchromosomal 
interactions.

Citation: Lo PK, Zhou Q (2020) Emerging Techniques in Single-Cell Epigenomics and their Applications to Cancer Research. J Clin Genom. 1:1.



Citation: Lo PK, Zhou Q (2018) Emerging Techniques in Single-Cell Epigenomics and their Applications to Cancer Research. J Clin Genom. 1:1.

• Page 5 of 8 •Volume 1 • Issue 1 • 1000103

Isolation of nuclei

+Tn5 & Tagmentation
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Figure 3: The schematic flow diagram of combinatorial cellular indexing in scATAC-seq for measuring single-cell chromatin accessibility. In the first indexing, 
nuclei are isolated and molecularly tagged in bulk with barcoded Tn5 transposases in wells. After the first indexing, nuclei are then pooled and a limited number 
of nuclei are redistributed into a second set of wells via cell sorting. In the second indexing, a second unique barcode is introduced during PCR in each well.

Single-cell epigenomics and cancer
The study of intratumor heterogeneity is important as it relates 

to tumor microenvironment, genetic as well as epigenetic diversity 
resulting from clonal evolution of tumor cells, and cancer progression 
to invasive/metastatic disease (Figure 5) [32]. To determine whether 
intratumor heterogeneity can be defined by their genomic, epigenomic 
and transcriptomic profiles, single-cell sequencing technologies are 
mandatory. Indeed, single-cell DNA sequencing (scGenome-seq) 
was successfully employed to reveal that multiple cancer types can 
undergo clonal evolution, and to identify founder mutations and 
subclonal mutations that are implicated in cancer progression (Figure 
5) [33,34]. Similarly, single-cell transcriptome profiling has been 
exploited to discover stem-cell-like subpopulations within cancers 
(Figure 5) [35,36]. These single-cell-based studies have provided new 
insights into how cancer progresses and whether single-cell profiling 
can be used to predict disease outcome.

The cancer epigenome has been known to be substantially 
remodeled during tumorigenesis, metastasis and drug resistance 
(Figure 5). As therapeutic drugs targeting epigenetic enzymes (e.g. 
DNA methyltransferases and histone deacetylases) have been 
demonstrated to be effective in treatment of several cancer types, 
these indicate that epigenomic alterations play a critical role in disease 

progression [37]. It has been shown that DNA hypomethylation 
occurs on a global scale in cancer. In contrast, DNA hypermethylation 
occurs at specific genomic loci, which are associated with aberrant 
nucleosome positioning and chromatin modifications. Recently, 
genome-wide profiling of methylome in triple-negative breast cancers 
(TNBCs) has stratified TNBCs into three distinct methylation clusters, 
which are associated with patients’ prognosis [38]. Nevertheless, the 
important question regarding whether intratumor heterogeneity 
can be reflected by epigenetic heterogeneity can only be addressed 
by single-cell epigenomic analyses. Two recent studies have reported 
the potential of single-cell epigenomic techniques in addressing the 
role of epigenetic heterogeneity in cancer. By employing a single-
cell triple omics sequencing technique called scTrio-seq that can 
simultaneously assess the genomic copy-number variations (CNVs), 
DNA methylome, and transcriptome of 25 single cancer cells, Hou 
and colleagues have identified two subpopulations present within 
cells isolated from a human hepatocellular carcinoma tissue sample 
[39]. Another study by Litzenburger and colleagues employed 
scATAC-seq combined with scRNA-seq to reveal that in K562 
leukemic cells, the levels of the cell surface marker CD24 correlated 
with chromatin accessibility changes linked to GATA transcription 
factors in single cells [40]. Their finding is clinically relevant as the 
status of GATA/CD24 in leukemic cells was related to drug sensitivity 
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and differential self-renewal capacity. Their study suggests that GATA 
factors are critically involved in determining cell phenotypes through 
modulating epigenomic plasticity. Evidence from these single-cell 
epigenomic studies demonstrates that single-cell epigenomic features 
can be utilized to characterize intratumor heterogeneity and its roles 
in drug sensitivity and the clonal evolution of cancer cells.

Perspectives
Numerous single-cell epigenomic technologies have been 

developed to profile the distinct types of epigenomic alterations 
occurring at a single-cell level in heterogeneous tumor tissue 
(Figure 5). By combining these single-cell epigenomic techniques 
with other omics technologies, several multi-omics methods (e.g. 
scMT-seq, scM&T-seq, scATAC&T-seq, scCOOL-seq, scTrio-
seq) have been established to analyze two to three different omics 
in a same single cell (Figure 5). It can be imagined that new multi-
omics technologies with ability to analyze genomic, epigenomic and 
transcriptomic profiles in parallel will be rapidly developed in the 
future to identify rare subpopulations of cancer cells within a tumor. 
Some of aforementioned studies have demonstrated this possibility. 
Studies of cancer stem cells (CSCs) are clinically important as CSCs 
have been considered to contribute to intratumor heterogeneity, 
invasive progression, metastasis, and drug resistance. Due to dynamic 
self-renewal, differentiation and dormancy of CSCs in the tumor 
microenvironment, single-cell epigenomic techniques will be 
powerful tools to effectively trace CSC plasticity in a tumor. Single-
cell technologies will be also very useful to analyze multi-omic 
profiles of circulating tumor cells (CTCs), representing metastatic 
cancer cells, in comparison to those from primary tumors. 
Multi-omic analyses of CTCs are crucial for understanding the 
mechanisms underlying cancer metastasis. Moreover, single-cell 
epigenomic studies may potentially guide the development of novel 
therapeutics targeting subpopulations with clinical significance in 
cancer. Particularly, single-cell analysis of DNA methylation is an 
attractive strategy for cancer screening as the DNA methylation 
information in the genome is more stable than RNA that is used in 
transcriptomic profiling.
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