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Abstract

Changing air temperature trends within urban regions deserve 
careful monitoring as they may reflect modifications in the thermal 
environment, including the development of an urban heat island. 
Air temperature fields need to be dense in order the state of the 
thermal environment to be adequately assessed; yet in most cases, 
the networks of ground measuring stations are sparse. This paper 
attempts to define the relationship between downscaled land 
surface temperature (LST) at resolution 1 km as deduced from 
MSG-SEVIRI satellite images, and air temperature (Tair) in the urban 
agglomeration of Athens, for varying land cover types. Polynomial 
regression and artificial neural networks are used to estimate Tair 
from LST at a particular time, whereas the LST values for several 
hours before are also used. In this way, the “memory” of the 
surface materials is taken into consideration, practically reflecting 
the thermal inertia associated with land cover. For urban stations, 
an average R2 of 0.85 and an RMSE of 1.0-1.2˚C was achieved 
for the majority of the examined time period, an indication of both 
the capacity of the methodology to define Tair fields in the area 
under consideration as well as of the fact that LST is the controlling 
parameter for Tair. The parametric relations as extracted from the 
above methodology are in principle applicable for a specific station, 
as they depend on the land cover and the associated land surface 
characteristics. They may be also used for stations in areas with 
similar land cover and in the same climatic zone. 
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Introduction
The thermal environment is a significant part of the urban 

environment; it is a reflection of the surface and atmosphere energy 
balance as well as of the energy fluxes between the surface and the 
atmosphere close to the surface [1]. Elevated temperatures in urban 
areas enhance photochemical pollution and increase the energy needs 
for cooling [2,3]. In addition, a well-documented phenomenon in 
cities is the urban heat island (UHI), which refers to higher LST and air 
temperatures (Tair) in the city as compared to the rural surroundings 
[1]. For Athens a mean intensity of 5.6˚C has been reported for the 

surface urban heat island (SUHI) during summer months using 
satellite remote sensing [4], while a summer daytime UHI amplitude 
growing rate of 0.8˚C per decade has also been found [5]. The much 
higher sensible heat flux values compared to latent heat flux expected 
in Athens have been validated in energy budget experiments [6]. 
LST has been found to be up to 5˚C lower than Tair during summer 
nights and up to 15˚C higher during the rest of the day [7]. Weather 
prediction models have recently also been used in order to simulate 
the thermal environment of Athens [8,9]. Studies attempting to assess 
the effect of local scale and mesoscale phenomena on the UHI of the 
area have reported that both sea breeze and anticyclonic conditions 
tend to reduce the UHI intensity [10].

The ambient temperature in urban areas presents a strong 
spatial variability because of the variable thermal balance of the 
various urban zones [11]. Several studies have shown that the 
ambient temperature may fluctuate several degrees even in small 
zones of several hundred meters [12]. Knowledge of the exact spatial 
distribution of the ambient temperature is of crucial importance 
for energy, comfort and environmental reasons. Higher urban 
temperatures have a serious impact on the energy consumption of 
buildings spent for cooling purposes and may increase up to 100% 
the corresponding energy demand [13]. Proper design of the auxiliary 
heating and cooling systems requires a full knowledge of the local 
temperature conditions in order to avoid over or under sizing of the 
auxiliary energy components. In parallel, design and implementation 
of adequate mitigation systems in open spaces and buildings 
requires a complete knowledge of the local thermal conditions in 
order to counterbalance properly the impact of urban heat island 
[14]. Furthermore, it is well known that higher local temperatures 
affect strongly local comfort conditions while may cause increased 
pollution levels and in particular higher ozone concentrations 
[15,16]. Thus, knowledge of the local thermal conditions is essential 
for the planning and implementation of the urban resilience plans. 
Finally, the study of Tair in the urban environment is highly important 
in view of the observed worldwide urbanization trends. Correlation 
analysis between LST, albedo, emissivity and land cover indices has 
been found to provide important insights regarding urban UHI [17], 
while the use of gridded Tair values could be a further aid.

Tair is provided by ground measuring stations; yet in many urban 
areas the network of ground measuring stations is sparse, a fact which 
limits a full depiction of the Tair field within the urban boundaries. 
Satellite remote sensing on the other hand allows the estimation of 
LST at spatial resolutions ranging from 60 m × 60 m to 1 km × 1 
km, with the respective temporal resolutions ranging from 16 days 
to few hours. To this end, it is important to examine the relationship 
between LST and Tair in an urban area, taken that a statistically 
significant relationship may in practice allow the construction of Tair 
fields at higher spatial resolution compared to the respective one of 
the network of ground stations. 

Drawbacks may well arise, mostly with respect to modifications in 
land cover, a fact which may impose constraints to the applicability of 
the defined relationship as the type of land cover influences latent and 
sensible heat, the emission of thermal radiation from the ground and 
finally the capacity of the ground surface to retain heat once acquired. 
To this end, relationships of this kind need also to indirectly integrate 
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depending on the distance from the sub-satellite nadir viewpoint. 

(b) Cloud-free data are then used for estimating LST by employing 
the Operational version of the Automatized Atmospheric Absorption 
Atlas (4A/OP) line-by-line radiative transfer model and a support 
vector regression (SVR) machine, and 

(c) downscaling of the LST images is succeeded by employing 
an algorithm that upscales ancillary static and dynamic datasets (e.g. 
land cover, elevation, slope, vegetation indices, etc.) with fine spatial 
resolution (1 km) to the MSG-SEVIRI geometry and then uses a 
regression model to fine scale ancillary datasets. 

The improvement of the initial coarse spatial resolution of MSG-
SEVIRI imagery is considered necessary due to the need for detailed 
spatial information. 

In terms of the ground data, air temperature observations 
from 7 weather stations (Figure 2), part of NOA network stations, 
were acquired. The selection of the stations was made taking into 
account their location so as to include areas of varying land cover. In 
particular, three stations are located in the most densely populated 
region of the city, two stations in the suburban area and two stations 
in peri-urban areas. Further details of the stations can be seen in  
Table 1. The temperature sensors used, were part of the Davis Vantage 
Pro2 weather stations installed at the selected case study locations.

Finally, the Urban Atlas land cover data from the European 
Environment Agency were also used [28]. The initial 20 land cover 
classes of the database were merged into the 3 classes of study interest 
(urban, suburban, peri-urban) (Figure 3). Land cover data were 
upscaled to 1 km and projected to the same coordinate system (UTM, 
ED50) with MSG-SEVIRI images in order to be used in conjunction 
with the latter.

Methodology and Results
The relationship between Tair and LST is rather complex, determined 

mostly by the surface energy budget. The vast number of parameters 
involved (e.g. wind speed, surface roughness, atmospheric stability) as 
well as the complicated urban geometry makes an analytical approach 
to the problem very demanding. A simplification can be achieved 

the “memory” of the thermal state of the surface, i.e. the temperature 
values of LST at times prior to the estimation time. Such integration 
may reflect the type of land cover and the thermal capacity of the 
ground. 

In the last decades several studies have attempted to estimate 
Tair using satellite remote sensing data. Chen et al. [18] used simple 
linear regression models between LST from GOESS satellites and air 
temperature at 1.5 m height, over a four winter period (1978-1981) 
in Florida, USA. They reported a mean correlation coefficient of 0.87 
and an average sample standard deviation from regression of 1.57˚C. 
Green et al. [19] used the normalized difference vegetation index 
(NDVI) together with LST. The data used were from the AVHRR 
sensor of NOAA satellites, between 1988 and 1992, over Africa and 
Europe and the root mean square error (RMSE) found ranged from 
1.83˚C to 3.18˚C. Many other studies have also used vegetation data 
and several of them have followed the Temperature Vegetation Index 
(TVX) method [20,21], which assumes that NDVI presents a linear 
correlation with LST. Moreover, remote sensing techniques have 
been used in order to estimate air temperatures in a UHI. For example 
Pichierri et al. [22] made use of MODIS brightness temperature, 
in order to monitor canopy layer temperatures for the years 2007-
2010. The study domain was the city of Milan, Italy; an RMSE from 
1.2˚C to 1.8˚C was estimated. Bechtel et al. [23] used multi temporal 
MSG-SEVIRI LST data over Hamburg, Germany and reached an 
RMSE of 1.5-1.8˚C with explained variances of 97-98%. Good [24] 
estimated daily air temperature minima and maxima over Europe for 
2012-2013 with the use of such predictor variables as LST, fraction 
of vegetation, latitude, elevation and urban fraction. The latter were 
regressed against air temperature resulting in RMSE of about 2.5˚C. 
Sun et al. [25] used a different approach than most studies, as they 
utilized thermodynamic parameters along with MODIS data for the 
North China Plain. They succeeded an accuracy of better than 3˚C for 
80% of the derived air temperatures.

Area of Study and Data Sources
The study region of this paper is the urban agglomeration 

of Athens, Greece (37˚58’N, 23˚43’E), an area of about 412 km2 
with population of four million inhabitants. Athens is located in 
the southeastern end of the Greek mainland, in the Attica basin  
(Figure 1). The city is bounded by mountains to the north, northeast 
and east directions and by the Saronic Gulf to the southwest. Athens 
experiences a typical Mediterranean climate with mild, relatively 
wet winters and hot, dry summers. The average temperature during 
summer is about 28˚C, while the daily maximum temperature in July 
and August exceeds 33˚C.

For the purposes of the study, satellite (in total 8092 LST images 
for the summers of 2014 and 2015) and ground data were used for 
a selected period. Satellite data originate from the geostationary 
Spinning Enhanced Visible Infra-Red Imager (SEVIRI) sensor onboard 
the Meteosat Second Generation (MSG) satellites. SEVIRI has twelve 
spectral channels covering visible and infrared wavelengths with a 
high temporal resolution of 15 minutes and a spatial resolution of 3-5 
km. An operational LST product at an enhanced spatial resolution (1 
km) was used, provided by the Institute for Astronomy, Astrophysics, 
Space Applications and Remote Sensing (IAASARS) of the National 
Observatory of Athens (NOA). The methodology of the NOA/IAASARS 
system is described in Keramitsoglou et al. [26,27]. In brief:

(a) Real time acquisition and preprocessing of raw MSG-SEVIRI 
data results in radiance images at a spatial resolution of 3-5 km 

 
Figure 1: Study area.
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considering statistically based methods and artificial neural networks. 
In this study, the estimation of Tair from LST on the basis of the 
multitemporal approach of [23] was attempted with the use of:

Polynomial regression
In particular and taking advantage of the high temporal resolution 

of MSG-SEVIRI data, a multi-temporal approach was followed 
leading to sets of parametric relations. According to this method, 
Tair at a particular hour is calculated using the LST value of the same 
hour, as well as the LSTs of previous hours (acting as predictors). The 
physical basis of this approach lies to the fact that part of the heat 
stored in urban structures will be released a few hours later, warming 
the air above. 

Artificial neural networks

A feed forward network was developed using as input and output 
layer entries LST and Tair respectively, with a hidden layer of 10 
neurons. The network was trained by adjusting the weights in the 
hidden layer so as the output values errors to be as small as possible. 
The architecture of the two-layer neural network is described as 
follows: The LST values were used as the vector input of the network, 
where each neuron of the hidden neurons layer is connected with 
the individual vector elements, as the latter are multiplied with the 
adjustable neuron weights. The weighted values are then summed 
with the neuron bias to form a net input. This value is then the 
argument of the sigmoid transfer function selected for the hidden 
layer. The output of this layer subsequently serves as the input of 
the following layer where the previous procedure is repeated, this 
time using a linear transfer function. The final output of the neural 
network is programmed to be equal to the air temperature data of the 
weather station selected in each particular case. The training of the 
neural networks was accomplished using the Levenberg-Marquardt 
algorithm as it can provide fast convergence. The multitemporal 
approach described in the previous paragraph, was also employed.

At a first stage, the missing, due to cloud cover, LST images 
were detected and the gaps were filled using blank values in order to 
construct a continuous time series. Following and on the basis of the 
geographical coordinates of the weather stations, the corresponding 
pixels from the stack of images were extracted and the Tair time series 
were resampled and synchronized with the created LST series. Finally, 
the data were divided into a training dataset used for the derivation 
of parametric relationships between LST and Tair (01.06.2014 – 
15.08.2014) and testing sets used for validation of these relations 
(16.08.2014 – 31.08.2014, 01.07.2015 – 31.08.2015).

In order to assess the accuracy of the models output, a number 
of different statistical measures were used such as the coefficient of 
determination (R2), the Root mean square error (RMSE) and the 
Mean absolute error (MAE). R2 gives the fraction of the total air 
temperature variance that can be explained by the predictors, RMSE 
is defined as the square root of the mean of squared differences 
between the air temperature values predicted from the model and 
those measured at the weather stations and MAE is the mean of the 
absolute differences between the two above mentioned temperatures. 
Mean error (ME) was also used, defined as the mean of the differences 
between the model and station temperatures. Finally and in order 
to use an error metric which is not dependent on the values scale, 
the normalized mean absolute error was calculated (NMAE). The 
normalization was performed dividing MAE with the mean value of 
the in situ air temperature observations. Following the same logic the 
normalized mean error (NME) in % was also calculated.

Using the training dataset, an examination of the influence of the 
order of regression to the quality of the fit between Tair and LST was 
made, while using a monotemporal approach. It was estimated that 
the use of 5th order compared to 1st order regression improved R2 by 
0.04-0.05 for the majority of the stations (Figure 4), while RMSE and 
MAE errors were reduced by an average value of 0.2˚C. In addition, 
by dividing the results into daytime and nighttime hours, it was 
deduced that the order of regression played an important role mostly 
in the nighttime data. 

The different partitioning of energy into sensible and latent heat 
led to distinct relations depending on the station land cover type. 
For instance, a linear relationship of the form Tair = 0.43·LST + 15.96 

Figure 2: Locations of the 7 used weather stations.

Figure 3: Land cover types of Athens agglomeration used in this study.

Location Latitude Longitude Elevation (m) Type
Ampelokipoi 37˚ 59' 06" N 23˚ 45' 14" E 136 urban
Athens 37˚ 58' 42" N 23˚ 42' 56" E 50 urban
Kantza 37˚ 58' 45" N 23˚ 51' 56" E 221 peri-urban
Markopoulo 37˚ 52' 37" N 23˚ 56' 13" E 104 peri-urban
Maroussi 38˚ 03' 06" N 23˚ 48' 47" E 235 suburban
Penteli 37˚ 02' 50" N 23˚ 51' 53" E 495 suburban
Peristeri 37˚ 00' 06" N 23˚ 42' 14" E 55 urban

Table 1: Characteristics of weather stations.
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was derived for an urban station (Ampelokipoi), while for suburban 
(Penteli) and peri-urban (Kantza) stations the respective relations 
were Tair = 0.41·LST + 13.87 and Tair = 0.52·LST + 12.59.

It was also found that the transfer of parametric relationships 
between stations with similar land cover (and subsequently land 
surface characteristics) resulted in slight error increases (0.05-0.2˚C 
for urban stations).

Following, the multi-temporal approach was used, with the results 
being significantly better, as R2 improved by 0.15. The adjusted R2 was 
also calculated so as to ensure than the improvement was not artificial 
due to the increasing number of degrees of freedom and found almost 
equal to R2. The error values when adding more independent variables 
were constantly decreasing. Detailed results for 2nd order regression 
can be seen in Table 2, where the following notation is followed: LST-
0 corresponds to the monotemporal model, while, for example, LST-4 
stands for a predictor set of the LST value simultaneous to Tair and for 
1, 2, 3 and 4 hours before.

It should be mentioned that the ME error s approximately zero, as 
at this stage of the study the model uses the training dataset and thus 
has almost no bias. 

Errors for all cases were about 0.4˚C lower at night in comparison 
with day, due to the weak turbulent advection during those hours. 
Moreover, the performance of the multitemporal models was 
substantially better for the stations located in the most populated 
region of the city, especially for the hours after sunset. 

NMAE errors ranged from 4.5% for Athens to 6.1% for Penteli 
for the monotemporal 2nd order model while for the LST-8 model the 
respective errors were 3.4% and 4.7%. 

Table 3 shows the derived parametric relations for multiple linear 
regression using the LST-4 predictor set. The use of artificial neural 
networks gave slightly better results compared to regression models 
for all weather stations. The average results for all predictor sets for 
both regression and neural networks models are shown in Figure 5. 

For validation purposes, the performance of the derived 
parametric relationships between LST and Tair was assessed using 
an independent data set of the same year (16.08.2014-31.08.2014). 
Results of the validation for this case were highly satisfactory 
reaching an MAE below 1˚C for 6 of the 7 stations using the best 
performing algorithm. Similar findings as in the training phase were 
observed, i.e. improved model output values for nighttime data 
and for urban stations as well as smaller errors when using neural 
networks. ME ranged from about -0.3˚C (underestimation) to 0.2˚C 
(overestimation) depending on the model and the station. 

Figure 6 shows that the modeled Tair (neural networks, predictor 
set: LST-8) for an urban weather station, follows very well the in situ 
measured temperature with no particular systematic bias. Detailed 
statistical metrics for the multitemporal LST-8, 2nd order regression 
model are presented in Table 4. As seen from ME and NME, all 
stations suffer a small overestimation in this predictor set, while 
the use of NMAE reinforces the previous findings, namely that the 
models have better accuracy for the urban stations compared to 
suburban and peri-urban ones.

A slight increase in the error (about 0.1-0.2˚C) was observed once 
LST was estimated from the values of LST in the previous 4 hours 
and thereafter used for the estimation of Tair. Transferring the derived 
parametric relations from one station to another of similar land cover 

types resulted in a small increase in error, for instance an average 
increase of 0.1˚C was found between urban stations. 

Validation results for July and August of 2015 were also 
satisfactory as the estimated MAE using the best performing model 
for these months was approximately 1.2˚C for the urban stations 
and up to 2˚C for the suburban ones. As seen in the distribution of 
residuals (predicted Tair minus observed Tair), a slight overestimation 
was found (Figure 7). It should be mentioned however that larger 
errors may arise in the event of limited available data (for instance 
due to extended cloud cover) as well as of higher than average LSTs 
during the study period. It is also important to note that in 2015, the 
neural network models performed worse than the regression, a fact 
which may be attributed to over-fitting problems. A heat wave event 
which occurred during this study period (at 30th and 31st of July) was 
selected for the development of 1 km spatial resolution LST and Tair 
maps. The previously derived parametric relations (LST-3 regression 
model) for the most representative station of each land type (urban: 
Ampelokipoi, suburban: Maroussi, peri-urban: Kantza) were applied 
in every image pixel. The selection of the suitable relation was made 
detecting each pixel land cover type using the Urban Atlas data. 
As seen in Figure 8, both surface and (simulated) air temperature 
spatial patterns reveal that during daytime (12.00 UTC, 15.00 local 
time) the highest temperatures are found outside the urban center. 
In particular, two hot spots are located western of Athens (Megara, 
Elefsina-Aspropyrgos) and one eastern of the city (Mesogeia). Megara 
and Mesogeia are mostly agricultural lands composed of low vegetation 
while Elefsinsina-Aspropyrgos is an industrial zone. These areas warm up 
faster than the urban center where the high thermal capacity of building 
materials results in a negative heat island (Cool Island) at 12.00 UTC. 
The air temperature map provides more information regarding points 
of high thermal stress, as the parametric relations between LST and Tair 
have potentially incorporated additional heating effects often correlated 
with land cover, for example anthropogenic heat sources due to road 
traffic or cooling units. The lower temperatures at the coastline could 
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Ampelokipoi 0.77 1.59 1.24 0.81 1.41 1.10 0.83 1.36 1.04 0.86 1.21 0.90

Athens 0.78 1.55 1.19 0.81 1.44 1.08 0.82 1.40 1.05 0.85 1.27 0.93

Kantza 0.82 1.86 1.43 0.84 1.78 1.35 0.85 1.74 1.33 0.87 1.62 1.23

Markopoulo 0.81 1.66 1.30 0.84 1.51 1.16 0.85 1.44 1.10 0.88 1.31 0.98

Maroussi 0.77 1.69 1.31 0.83 1.44 1.12 0.85 1.37 1.05 0.88 1.21 0.89

Penteli 0.72 1.88 1.49 0.76 1.74 1.36 0.78 1.67 1.29 0.81 1.51 1.14

Peristeri 0.76 1.59 1.23 0.79 1.49 1.13 0.80 1.46 1.10 0.82 1.37 1.03

Table 2: Results of 2nd order regression multitemporal models, (training set: 
01.06.14-15.08.14).

Stations
Coefficients
α α0 α1 α2 α3 α4

Ampelokipoi (urban) 14.04 0.34 0.05 0.00 -0.03 0.16
Penteli (suburban) 12.55 0.33 0.06 0.00 -0.02 0.12
Kantza (peri-urban) 10.77 0.49 0.18 -0.15 -0.20 0.28

Table 3: Multiple regression coefficients of the parametric relationship Tair = α + 
α0·LST0 + α1·LST1 + α2·LST2 + α3·LST3 + α4·LST4, LST subscript corresponds to 
hours before Tair measurement.
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be ascribed to sea breeze. At night (00.00 UTC, 03.00 local time) 
the situation is reversed and the city center exhibits the highest 
LST and (simulated) air temperatures (Figure 9). In particular, 
the residential zones at the center and the south part of the city 
are subjected to a very strong heat island effect which can be seen 
more distinctly at the air temperature spatial map, as the heat 
being absorbed and stored within the urban fabric during daytime 
is released warming up the canopy layer air.

Conclusions
In this study, a methodology for estimating urban Tair from 

LST, the latter extracted from satellite measurements, is applied. 
Polynomial regression and neural network models were developed 
using downscaled 1 km LST SEVIRI data and in situ air temperature 
measurements from ground-based stations in the urban agglomeration 
of Athens. Results highlighted that adopting a multi-temporal 
approach, i.e. estimating Tair taking into account the same time LST as 
well as the LSTs of previous hours, improved substantially the model 
output. For urban stations an average R2 of 0.85 and an RMSE of 1.0-
1.2˚C was achieved for the majority of the examined time period, 
using the best performing algorithms. The accuracy of the models 
was found to be higher for stations at the most densely populated 
area of the city, a fact which can be explained by the high thermal 
capacity of urban surfaces and by the higher land cover homogeneity 
within the corresponding pixels in comparison to pixels reflecting 
peri-urban stations. Moreover, the study demonstrated that higher-
order regression and neural networks models resulted in consistent 
improvement in terms of the error values as compared to linear 
models which are typically used in literature. The use of the derived 
parametric relationships to datasets of the following year was also 
considered satisfactory. The general performance of the developed 
models indicate that satellite data of high temporal resolution are 
an invaluable tool for the estimation of real time, spatially dense Tair 
fields, with relatively small error. 

Nevertheless, there are some methodology limitations that need 
to be acknowledged. At first, the estimation of Tair using passive 
remote sensing may be limited due to the presence of clouds. Even in 
a region like the Athens agglomeration where excessive cloudiness is 
rather rare especially during summer months, a considerable amount 
of data was missing (approximately 20%). This results in gaps in the 
constructed modeled air temperature series, which may set limits 
to their exploitation. In addition, due to the large spatial variability 
of the urban thermal environment, it is of great importance to 
downscale satellite data of coarse resolution, a process that introduces 
a further error in the calculations. Despite the above limitations, 
results were satisfactory even for 1 km x 1 km spatial resolutions, at 
the precondition that the land cover is to a good extent homogeneous, 
which was the case for most of the examined stations. However 
larger errors as found in a number of stations may be attributed to 
inhomogeneous land cover with the pixel of 1 km × 1 km. One more 

 
Figure 4: Scatter plot, Athens station (01.06.14-15.08.14): a) Linear regression, b) 5th order regression.

Figure 5: Mean performance of all used predictor sets (training phase), MAE 
(˚C).

 
Figure 6: In situ and modeled air temperature for Ampelokipoi station, 
16.08.14-31.08.14 (neural networks, LST-8 predictor set).
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Figure 7: Residuals histogram, Ampelokipoi station, 01.07.15 - 31.08.15 (2nd order regression, LST-4 predictor set).

Figure 8: Daytime temperature map of Athens agglomeration during heat wave (30.07.2015, 12.00 UTC): a) LST (˚C), b) Simulated air temperature (˚C).

Figure 9: Night-time temperature map of Athens agglomeration during heat wave (31.08.2015, 00.00 UTC): a) LST (˚C), b) Simulated air temperature (˚C).
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R2 0.86 0.85 0.87 0.88 0.88 0.81 0.82
Adjusted R2 0.86 0.85 0.87 0.88 0.88 0.81 0.82
RMSE (˚C) 1.17 1.11 1.44 1.31 1.22 1.96 1.14
MAE (˚C) 0.91 0.84 1.14 1.03 0.97 1.62 0.87
ME (˚C) 0.07 0.12 0.17 0.12 0.13 0.10 0.18
NMAE (%) 3.17 2.93 4.19 3.86 3.52 6.25 3.06
NME (%) 0.24 0.41 0.69 0.44 0.47 0.38 0.63

Table 4: Results of 2nd order, LST-8 regression model, (validation set: 16.08.14-31.08.14).
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methodological limitation of the study is that the effect of synoptic 
scale processes on Tair calculations is not considered. The derived 
parametric relations describe an average coupling between LST and 
Tair, but for instance in the case of a strong advection or a frontal 
passage, a quite different correlation between LST and Tair should be 
expected. Errors are expected to decrease, if weather conditions area 
also considered.

Τhe methodology reflects a valuable approach for the estimation 
of Tair from LST whereas it facilitates a wide variety of applications 
for the examined urban agglomerations, including the estimation 
of thermal discomfort, the cooling/heating degree days, the spatial 
variability of energy needs, etc. It should be mentioned, that the 
parametric relations as extracted from the above methodology are 
in principle applicable for a specific station, as they depend on the 
land cover and the associated land surface characteristics. However 
the performed analysis has shown that they may be also used for 
stations in areas with similar land cover and in the same climatic 
zone. Further research is needed to this direction, taking also into 
consideration additional parameters (such as urban density, type of 
surface materials) with the potential to influence the relationship 
between LST and Tair. 
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