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Abstract

In this paper, a new method is implemented based on the
Kriging interpolation to estimate the proximate parameters of
coal seams using the well logs. For this purpose, the data of
seven boreholes were employed through a case study to
explain the method and reliability of the results. According to
this method we assume the data of two or more well logs as
Cartesian coordinate axes and a proximate parameter as the
variable distributed in this coordinate system. At first, the
values of each log corresponding to the coal seams are
extracted from the reference borehole data, and the coordinate
axes are determined based on the type of logs. In the present
case study, given the integrity of gamma ray logs, sonic logs
and porosity logs in all the boreholes of the region, three
coordinate axes were defined and the distribution of proximate
parameters was modelled in the coordinate system. Given the
number of existing logs, it was possible to model all scenarios
by a triple combination of logs, and the best cross correlated
model was selected as the parameter distribution model. Using
this model, the proximate parameters were eventually
estimated in the borehole for which only well logging data were
available. The estimation of proximate parameters based on
the Kriging interpolation leads to improved results, especially
for estimation of the ash content, compared with the
conventional method which incorporates logs for estimation of
the parameters based on the correlation between the log and
the proximate parameter.

Keywords: Coal; Proximate Parameters; Well Logging;
Geostatistics; Kriging.

Introduction
In general, well-logging is the application of geophysical methods

in exploratory boreholes. Although these methods are more common
in oil and gas reservoir exploration, but utilization of some the well-
logging methods are common in mineral exploration, especially coal
exploration. Coal as a lithology responds well to most geophysical
methods because its properties contrast with those of others lithologies
commonly found in coal bearing sequences [1]. Coal beds, in
comparison with other surrounding layers, are lower in gamma

radiation and density. Therefore, well-logging methods which are
based on gamma radiation and density measurement; like gamma-
gamma method, along with resistivity, sonic and porosity
measurement methods are widely utilized in coal exploration.

Characteristics of the coal beds vary from seam to seam. Even
parameters like moisture, ash content, and volatile-matters could vary
along a single coal layer extension. The parameters are often reported
as the proximate or the ultimate analysis. Proximate analysis is a broad
analysis that determines the amounts of moisture, volatile-matters,
fixed carbon and ash. This is the most fundamental of all coal analyses
and is of great importance in the practical use of coal [2].

While a difference is expected in the values of well-logs between
the coal beds and the other layers, a steady and unchangeable log
cannot be expected for the coal beds. As well-log values are affected
by the characteristics of coal beds, the proximate parameters of coal
seams can be estimated from the values of coal geophysical well-logs.
In other words, the characteristics of coal beds can be estimated from
the well-logs.

It should be noted that the most accurate method for approximating
coal-beds’ parameters is through sampling and laboratory analysis.
Although, there are some advantages in application of well-logs for
coal-beds’ parameter estimation, such as:

Consistency in the results of well-logging operations; unlike
inevitable problems associated with core samples due to core washing
off and losing the sample, the well73 logs could demonstrate the
sample depth.

The results are instantaneous [3].

It could sample a much larger volume of the material surrounding
the borehole than. The core sample and therefore provides better
sampling statistics [3].

The cost of drilling open holes is less than that of the cored holes
[3].

The idea of determining characteristics of coal-beds based on the
geophysical well-logs is not a new idea. The relationship between
geophysical well-logs and coal-beds characteristics was examined in
1975 [4]. In 1981 a relationship between the two sets of well-logging
and analysing data was tried [5]. The error factor in determining coal-
beds’ quality parameters according to the logs has been noticed too
[6]. While the correlation between the density logs and coal ash was
confirmed, the effect of well-logging tools on the error of estimated
amount of ash according to the values of gamma-gamma logs was
examined [7]. During last decade of previous century, several related
studies were conducted by researchers [8-10]. In another research via
the ACARP (Australian Coal Association Research Program) in 2007
the effective tools and equipment for an accurate estimation of coal’s
parameters according to the well-logs were reviewed [11]. In 2007,
researchers attempted to characterize the moisture and gas contents of
coal according to low-field nuclear magnetic resonance (NMR) logs
[12]. In 2010, Souza et al., considered only the gamma and resistivity
logs as the criteria for determining coal quality parameters [13].
Density logs were applied in coal gas reservoir modelling, thorough a
case study [14]. Webber et al. assayed the borehole geophysical data
as soft information in the Indicator Kriging for the estimation of coal
quality [15]. Two research developed aiming to estimate the coal
parameters from the well logs were recently conducted by Ghosh el al.
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[16] and Ghosh el al. [17]. They attempted to examine statistical
analysis and Neural Network Modelling for estimating proximate
parameters. Polynomial regression equations were used to improve
coal quality estimation through multiple log analysis [18]. During a
recent study, a combination of advanced numerical and statistical
methods is used for interpreting coal lithotypes from geophysical
wire-line logs. The study particularly aimed to discriminate between
bright and dull coal at similar densities [19]. In addition, determining
rock strength from well logging measurements is another solution for
estimating coal layers’ characteristics [20,21], since mechanical rock
properties could be modeled from rock features such as ash content,
density and acoustic velocities based on well logging tools [22].

The above references show that various methods have been tested
for estimation of the proximate parameters by the well logs, mainly
using the simple, multivariate statistical methods, and advanced
techniques such as the radial basis function (RBF) and the single- and
multi-layered neural networks. In this paper, a different method is
proposed for estimating the parameters using the logs based on the log
Ordinary Kriging interpolation.

Methodology
Geostatistical interpolation techniques provides the best linear,

unbiased prediction for the spatially dependent properties [23,24].
Among the most applied estimators for interpolation of the spatial data
are Kriging techniques. They are considered as the interpolation
methods for estimation of a regionalized variable at the selected grid
points that predict values from interpolation without bias, and with
minimum variance [25]. There are different types of Kriging
techniques, such as Ordinary Kriging (abbr. OK); that is the most
commonly used method, Universal Kriging (abbr. UK), Indicator
Kriging, Co-Kriging and others. Selecting the appropriate Kriging
method depends on the data characteristics. For a linear estimation,
spatial inference, or estimation, of a quantity Z(x0), at an unobserved
location x0, is calculated from a linear combination of the observed
values zi = Z(xi) and Kriging weights of wi [26]:

The Kriging weight factors of n observed point’s values are found
by solving the following system:

Where hi,j is the distance between input point i and input point j,
hx,i is the distance between the output point of x and input point i, γ
(hi,j) is the value of the semi-variogram model for the distance hi,j, wi
is a Kriging weight factor for input point i, μ is a Lagrange multiplier,
used to minimize possible estimation error.

The spatial variability was assessed using the semivariogram [24].

Where γ* 134 (h) is the experimental semivariance, N(h) is the
number of data pairs (Z (xi), Z (xi+h)) separated by the distance h.
The experimental semivariograms were fitted by theoretical models.

In estimation of the parameters using logs to be used in Kriging
technique, the log values are assumed as the local dimensions. In other
words, two or more logs are assumed as coordinate axes X, Y, etc. The
distribution of a parameter is then modelled in this two- or multi-
dimensional space by Kriging. The distribution model would be
created according to the reference borehole data, namely the boreholes
with available well-logging results and the proximate analysis data. In
the end, the ash content is extracted from the model for different log
values. For instance, three well logs of Short-Space Density, Neutron
Porosity, and Natural Gamma Ray are respectively applied as
coordinates of X, Y, and Z. From reference borehole data, for every
sampled coal layer, values of ash content, and three mentioned logs
are available. Therefore a discrete distribution of analyzed ash content
values is available in a 3D coordinate space with axes of Short-Space
Density log, Neutron Porosity log, and Natural Gamma Ray log. The
distribution of the ash content is modeled in the system using Kriging
technique. In a blind borehole; or borehole with just the log values
available, the ash content can be estimated by sampling from the
Kriged model in the grid point with coordinates of well logs of Short-
Space Density, Neutron Porosity, and Natural Gamma Ray.

The dimensions of modelling space or the number of logs used for
modeling vary with the type of methods used for the well logging. For
example, there may be 15 logs for a borehole, including a variety of
density, sonic and porosity logs. Therefore, three logs of density,
sonic, and porosity are selected and the modelling is performed in a
three dimensional Cartesian coordinate system. Thus, several different
models can be created by different triple combinations of each log and
the most suitable model is selected by cross correlation. Figure 1
shows the possible coordinate systems for a set of well logs recorded
for a borehole.

Figure 1: Possible triple combinations as coordinate axes based 
on the number and type 161 of well logs.

Since various well log values have different ranges, it is necessary 
to normalize the values between 0 and 100. For example, the density 
log ranges between about 1 and 2.5 g/m³ in a coal seam, while the 
sonic log ranges from 2100 to 2500 m/s. Now the distribution of a 
proximate parameter in the Cartesian coordinate system is created by 
the coordinate axes using normalized values of several logs. The 
modeling method is then selected. If values of the parameter have a 
normal distribution, it is possible to apply ordinary Kriging. If the data 
distribution is normalized by applying a logarithmic function (the 
distribution function of log is normal), the log normal Kriging is used; 
otherwise the indicator Kriging is employed.
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The method is implemented and verified as follows using an 
example.

Case Study
The well logs and core samples from Hunter Coalfield, Manobalai, 

are chosen to apply the method. The Hunter Coalfield shown in Figure 
2 lies west of the Newcastle Coalfield and east of the Western 
Coalfield, with northern and southern boundaries defined by 
geographic features and the western margin by the adjacent Western 
Coalfield. It occupies an area of 21km2 towards the north-eastern 
margin of the Sydney Basin and is centred nominally over the 
catchment of the Hunter River. The coalfield extends for 
approximately50 km north-west from Cessnock to Muswellbrook and 
a further 120 km north to Murrurundi [27].

Preparation of data
In 2003, six boreholes were drilled within a distance of 10 km at the 

area (Figure 3) [28]. The proximate parameters analysis of core 
samples and well-logging data of boreholes were extracted and, the 
borehole number 10 (DDH10) was selected as the reference borehole. 
The well-logging methods that have been utilized in this borehole are 
summarized in Table 1. The data of all well-logs are available in Wire 
line log format (LAS1) files. Also, proximate analyses of the core 
samples from the boreholes, including ash content, moisture, and 
volatile-matters, on air-dried bases, have been thoroughly provided in 
the related reports.

In 1990, the Canadian Well Logging Society designed the LAS 
ASCII-type system for local Canadian markets to standardize the 
binary format used to digitize well logs. The simplicity and flexibility 
of the LAS ASCII-type encoding quickly led to its worldwide 
acceptance and use [29].

noteworthy to mention that the coal samples could be analysed on 
the ‘as received’ basis (a.r.), ‘air-dried’ basis (a.d.b.), ‘dry’ basis (dry), 
‘dry ash-free’ basis (d.a.f.), and ‘dry, mineral matter-free’ basis 
(d.m.m.f.). According to the Borehole completion reports [30], the 
proximate parameters were analysed on an air-dried basis and that is 
why in this paper, we ignored the fixed carbon estimation. 

The fixed carbon content of coal is the remaining carbon found in 
the residue, after the volatile-matters has been liberated. Fixed 
carbon is not determined directly, but is the difference, in an air-dried 
coal, between the total percentages of the other components including 
moisture, ash and volatile-matter, and 100%.

Figure 2: The Sydney-Gunnedah Basin and its recognized 
coalfields [27].

Figure 3: Location of the boreholes and study area within 
NSW, Australia [30].

The depth of the reference borehole was 383.5 meters. Core 
sampling has been started from the depth of 170.6 m downwards. 
There were 53 coal beds, crossed by the core sampling path. Coal 
beds' depth and the proximate parameters were retrieved from the 
corresponding reports and summarized in Table 2 [30].

Depending on the coal bed thickness and the speed of well-logging 
probe, there would be a few values recorded for a single coal bed as 
the well-logging value. To define a single log value for each of coal 
beds, the recorded log values versus the layer were simply averaged. 
For example, the values of GRDE (Gamma from Density Tool) log, 
CODE (Compensated Density) log, and LSDU (Long Spaced Density) 
log for coal beds in DDH10, were averaged as given in Table 3. The 
values of other logs were averaged in a similar manner and defined for 
the coal beds. So, Table 3 was formed for all 17 well-logs of the 
reference boreholes.
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GAMMA & DENSITY LOGS GRDE (.GAPI): GAMMA FROM DENSITY TOOL

CODE (.G/C3): COMPENSATED DENSITY

LSDU (.SDU): LONG SPACED DENSITY

BRDU (.SDU): BED RESOLUTION DENSITY

DENL (.G/C3): DENSITY LONG SPACED

DENB (.G/C3): DENSITY SHORT SPACED

DEPO (.PERC): SANDST DENSITY POROSITY

ADEN (.G/C3): VECTAR PROCESSED DENSITY

VELOCITY LOGS VL2F (.M/S): 20 CM VELOCITY R1R2

VL4F (.M/S): 40 CM VELOCITY R2R4

VL6F (.M/S): 60 CM VELOCITY R1R4

VL2A (.M/S): 20 CM VELOCITY R3R4

POROSITY LOGS SPOR (.PERC): SANDST. SONIC POROSITY

LSN (.SNU): LONG SPACED NEUTRON

SSN (.SNU): SHORT SPACED NEUTRON

RPOR (.PERC): SANDST NEUTRON POROSITY

RESISTIVITY LOGS FE1 (.OHMM): FE RESISTIVITY SHALLOW

FE2 (.OHMM): FE RESISTIVITY DEEP

Table 1: Well logging methods applied in the study area.

Basin From To Recovery Relative
Density

M A VM FC

Great 170.58 171.23 90.4 1.45 6.4 10 27 56

Great 171.23 172.035 88.9 1.46 6.4 9.7 26 58.3

Great 172.065 172.61 92 1.48 6.1 14 24 55.5

Great 172.695 173.33 95.3 1.46 5.8 16 27 50.8

Great 173.33 174.535 91.6 1.45 5.8 12 27 55.3

Great 174.535 175.415 93.9 1.45 5.8 15 28 51.7

Great 175.415 175.505 90.7 1.66 4.6 37 24 34.8

Great 175.525 175.995 92.6 1.65 4.6 34 20 41

Fassifern 177.07 177.36 90.7 1.91 2.6 57 13 27.1

Fassifern 177.41 178.465 92 1.5 5.8 19 26 49.8

Fassifern 178.585 179.1 90.7 1.54 5.2 25 26 44.7

Fassifern 179.1 179.44 92.8 1.45 6.1 17 29 48.5

Fassifern 179.495 179.71 95.5 1.42 6.2 14 32 48.4

Fassifern 179.71 179.75 92.6 1.83 4.4 50 23 23.4

Fassifern 179.75 180.41 92.4 1.4 6.2 8.8 31 54.4

Fassifern 180.41 181.17 92.2 1.39 6.6 8.7 30 54.7

Fassifern 181.22 181.93 92.7 1.41 6.1 11 29 53.5

Fassifern 181.96 182.6 91.1 1.46 5.8 15 28 51

Fassifern 182.6 182.695 95.4 1.82 4.2 50 22 23.6

Fassifern 182.765 182.97 91.3 1.49 5.8 22 30 43

Fassifern 182.97 183.91 93.3 1.42 5.8 13 28 53.5
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Fassifern 183.91 184.26 89.8 1.43 5.7 14 29 50.6

Fassifern 184.26 184.455 95.9 1.52 4.8 26 26 43

Fassifern 184.54 184.78 92.4 1.69 3.6 40 20 36.4

Table 2: Proximate analysis of core samples of the reference borehole (DDH10). Manobolai, Hunter Coalfield, NSW [30].

GRDE CODE LSDU BRDU

From To Ave (.GAPI) Ave (.G/C3) Ave (.SDU) Ave (.SDU)

170.58 171.23 57.45258 1.37545 8695.516 32957.47

171.23 172.035 60.66099 1.40617 8242.501 32472.89

172.065 172.61 124.65 1.55 6049.097 27376.64

172.695 173.33 113.8458 1.50164 6793.877 31466.26

173.33 174.535 196.8511 1.64222 4766.002 23992.7

174.535 175.415 108.8302 1.42797 7872.658 32414.96

175.415 175.505 55.01504 1.37306 8654.34 32630.76

175.525 175.995 54.74489 1.41216 8125.314 32593.23

177.07 177.36 119.6356 1.55667 5775.884 28165.39

177.41 178.465 115.14 1.56 5672.835 28519.96

178.585 179.1 94.45787 1.65319 5041.804 29634.85

179.1 179.44 222.4053 2.07579 1917.729 22776.51

179.495 179.71 124.9443 1.84233 3300.5 26003.03

179.71 179.75 132.9867 1.63833 4742.003 27400.09

179.75 180.41 82.48264 1.49292 6928.439 31550.6

180.41 181.17 227.8225 1.7825 3623.903 22603.02

181.22 181.93 76.22 1.52404 6728.989 31757.32

181.96 182.6 108.2874 1.48571 6964.015 31230.98

182.6 182.695 167.74 1.53667 6068.218 27041.06

182.765 182.97 102.3941 1.44864 7395.172 32710.63

182.97 183.91 70.22 1.36 8658.108 31098.51

183.91 184.26 36.95134 1.34716 9196.861 33125.28

Well logging data were normalized according to the equation 
below:

Where lmax is the maximum log value in the reference borehole,
lmin is the minimum log value in the reference borehole, l is the log
value and ln is the normalized log value. Thus the log values are
normalized between 0 and 100.

For example, the probability distribution plot, and the normalized 
probability distribution plot of ash content in the reference borehole 
are presented in figures 4 (a) and (b), respectively.
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Table 3: Average of some the well-log values, extracted from the LAS log file, borehole number 10, Manobolai, Hunter Coalfield, NSW.

Investigation of data distribution
The probability distribution plot for the parameter was investigated 

with the aim of decision making for the interpolation method.
Figure 4: Probability distribution (a) and normalized probability 
distribution (b) plot for the ash contents obtained from analysis of 
the core sample taken from the reference borehole.



According to the plot, although two different statistical populations 
could be distinguished for the ash contents less than 57% (two 
statistical populations with the ash contents of less than 23% and more 
than 23%), they were assumed as a single statistical population with a 
normalized probability distribution due to the proximity of plot slopes 
corresponding to both statistical populations. So modeling was 
performed by log-Kriging. According to Figure 4, this assumption did 
not include ash contents higher than 57%. Therefore, the data of 
reference borehole used in the modeling were limited to samples with 
the ash contents of less than 57%.

Modelling
The well logging data that were available in all the boreholes of this 

case study were the log values listed in Table 1. Since a variety of 
gamma ray, sonic, and porosity logs were measured in all the 
boreholes, modeling was carried out in a three-dimensional system 
where the coordinate axes represented density, sonic, and porosity 
logs. Since resistivity logs were not recorded in some boreholes, the 
logs were not applied.

Given the number of logs, it was possible to create 128 triple 
combinations of gamma-sonic-porosity logs. The variogram and 
Kriging models were generated for all possible combinations and 
cross correlation was then performed to find the best model.

For example, in Figure 5, the variogram of ash content distributions 
is shown for a variety of selected logs as the coordinate axes. The 
spherical model is acceptable as the variogram model. Modelling was 
done only for the combinations where the variogram was bounded and 
it was possible to eliminate the local trend in their variogram by 
changing the search direction and the angle [31]. Variogram is the tool 
to study the structure of a regionalized variable and bounded 
variogram must be achieved for every triple combination, which is 
used in modelling. Because only stationary regionalized variables 
have bounded variograms [32,33]. It means the “hypothesis of second 
order-stationary”; that is a pre-requirement for application of 
geostatistical techniques, is valid for the models of Figure 6. The 
Figure 6 shows the log Kriging model for ash content distribution in 
the coordinate axes defined above. All models were produced in the 
three-dimensional system, but just the first layer of 3D models was 
displayed for simplicity. To estimate the ash content using three well 
logs that contribute to the modeling, the sampling from the model will 
be adequate. For instance, the model (a) in Figure 6 shows the 
distribution of ash content values in a 3D system with the axes of 
Density log (DENB), Sonic log (VL2F), and Porosity log (RPOR). In a 
borehole lacking the core sampling data, the value of ash content can 
be extracted from the model by three values of the mentioned logs.

For every Kriging model, the estimated ash content values were 
cross correlated versus the analysed values. Figure 7 shows the cross 
correlation results for models illustrated in Figure 6. The most 
accurate cross correlation was obtained for the model with coordinate 
axes of LSDU (Long Spaced Density), VL2F (20 Cm Velocity) and 
LSN (Long Spaced Neutron). Therefore, the model was selected as a 
criterion for estimating the ash contents using the well logs. The most 
accurate cross correlation selected based on the average deviation of 
estimated values from the sampled values. The least deviated

estimates resulted from the model of Figure 6(b), as it concluded form
the Figure 7(b) (Dev. = 5.5%).

In the boreholes except the reference borehole, the ash content can
be extracted from distribution of ash values in the Kriging model with
three log values of LSDU, VL2F and LSN axes.

Reliability of method
Consequently, it was initially assumed that data of sampling

analysis were not available for boreholes, except for the reference
borehole. The well logging data were normalized for other boreholes
using the LAS files in accordance with Equation (4) and the ash
content was extracted from the model illustrated in Figure 6(b), based
on the log values represented on LSDU, VL2F and LSN axes. These
values were compared with actual values obtained from the proximate
analysis. The average deviation of this estimation in the boreholes was
as presented in Table 5. The average deviation of ash content
estimation was 23.97% for the seams with the ash content equal or
less than 57%. Similarly, Kriging model for distribution of volatile-
matters and moisture values were performed. Comparing the estimated
and analysed values, the average deviation from analysed values was
8.55% for volatile-matters estimation, and 25.06% for moisture
estimation. The results are summarized in Table 4. On the other hand,
it is possible to estimate each parameter through the regression
equation between the parameter and the log with the highest
regression coefficient. The best regressed well-log against ash content
of the coal beds in the reference boreholes was DENB (Density Short
Spaced) log. The regression equation was as follows:

A = 81.197 DENB – 101.000 (5)

The equations for the parameters of volatile-matters and moisture
are presented as follows:

V = -0.030 SSN + 84.974 (6)

M = -5.824 ADEN + 14.139 (7)

Where SSN is the Short Space Neutron log value, and ADEN is the
Vectar Processed Density log value. For instance, the ash content,
volatile-matters, and moisture content of the first coal bed in DDH10
could be estimated using Equations (5), (6), and (7).

A = 81.197 × 1.353 – 101.000 = 8.860

V = -0.030 × 1942.452 + 84.974 = 26.700

M = -5.824 × 1.345 + 14.139 = 6.306

Theses estimations were implemented for all the coal beds in the
boreholes except for the reference bore hole. Comparing the estimated
and the proximate analysed values of parameters, showed an average
deviation of 20.24% for the volatile-matters, 34.51% for the ash
content, and 51.03% for the moisture content. The results are
summarized in Table 5. Comparing the contents of Table 4 and Table 5
exhibits an improvement in estimation when the geostatistical
estimation method was applied. It means a more accurate estimation,
especially for the ash content, has been achieved through application
of the geostatistical estimation method.
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Figure 5: Variogram of ash content distributions for a variety 
of geophysical well logs, defined as the coordinate axes.

Figure 7: Cross correlation results for models illustrated in Figure6.
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Figure 6: Log-Kriging distribution model for ash content in 
the coordinate system, with geophysical well logs as the axes.



Contributed logs Borehole ID Deviation %

LSDU-VL2A-LSN DDH07 24.36

LSDU-VL2A-LSN DDH08 23.5

LSDU-VL2A-LSN DDH09 28.8

LSDU-VL2A-LSN DDH11 22.05

LSDU-VL2A-LSN DDH12 29.18

LSDU-VL2A-LSN DDH13 18.88

LSDU-VL2A-LSN Ave. Deviation 23.97

(a) Average deviation form analysed ash content

Contributed logs Borehole ID Deviation %

ADEN-VL2A-SPOR DDH07 22.71

ADEN-VL2A-SPOR DDH08 15.99

ADEN-VL2A-SPOR DDH09 17.91

ADEN-VL2A-SPOR DDH11 20.88

ADEN-VL2A-SPOR DDH12 50.2

ADEN-VL2A-SPOR DDH13 16.97

ADEN-VL2A-SPOR Ave. Deviation 25.06

(b) Average deviation form analysed moisture values

Contributed logs Borehole ID Deviation %

ADEN-VL6F-SSN DDH07 11.67

ADEN-VL6F-SSN DDH08 4.26

ADEN-VL6F-SSN DDH09 8.09

ADEN-VL6F-SSN DDH11 4.64

ADEN-VL6F-SSN DDH12 9.05

ADEN.VL6F.SSN DDH13 10.95

ADEN-VL6F-SSN Ave. Deviation 8.55

(c) Average deviation form analysed volatile matter

Table 4: Deviation of the estimated proximate parameters incorporating the geostatistical method from the analysed values.

Borehole ID Deviation (%)

DDH07 25.15

DDH08 30.29

DDH09 51.73

DDH11 23.65

DDH12 47.37

DDH13 28.84

Ave. Deviation 34.51

(a) Average deviation form analysed ash content

Borehole ID Deviation (%)

DDH07 36.2

DDH08 24.97

DDH09 60.14
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DDH11 27.8

DDH12 118.27

DDH13 38.79

Ave. Deviation 51.03

(b) Average deviation form analysed moisture values

Borehole ID Deviation (%)

DDH07 23.25

DDH08 6.61

DDH09 33.19

DDH11 13.17

DDH12 32.24

DDH13 13

Ave. Deviation 20.24

(c) Average deviation form analysed volatile matter

Conclusion
Estimating proximate parameters from well logs was performed 

based on the Kriging interpolation technique. By applying the method 
and creating the distribution model of the parameter in the defined 
coordinate system, the Kriging models obtained, and the most accurate 
model selected through the application of cross correlation. Then, for 
the logs used as the coordinate axis, the parameter value could be 
extracted from the distribution model.

In the performed case study, the estimated value of ash content 
deviation from the proximate analyzed values was up to 23.97% on 
average. The deviation was 8.55% for the volatile-matters and 25.06%
for the moisture while the figures were 34.51%, 20.24%, and 51.03%, 
respectively for the ash content, volatile matter, and moisture 
estimated values using the regression equation. It means the Kriging 
estimated ash content, in compared against those obtained using the 
regression equations have 10.54% less deviated and it means an 
improvement in ash content estimation. The increase was 11.69% for 
volatile matter estimation and 25.97% for moisture estimation.
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