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Abstract
In this paper, we use Euclidian distance method to solve the tradeoff 
between Group delay Ripple (GDR) and Full Width Half Maximum 
(FWHM) Bandwidth. This method determines the optimum point by 
maximizing FWHM spectral bandwidth and minimizing GDR based 
on the value of sharpness parameters α and β. Three different 
apodization profiles were used to evaluate this method. The study 
shows that the best α and β is 16 and 2.25 respectively. The 
apodization profile that was optimized the most by this method is 
Tanh. 
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This work is the continuation of work done by Aladadi et al. 
[11,12]. An optimized apodization profile was formulated by solving 
the coupled mode equation of CDC structure. Subsequent work was 
presented by Aladadi et al. [11] where three apodization profiles 
were evaluated to find the best profiles to be used in developing the 
CDC. In this paper, Euclidean distance method is used to optimize 
the apodization profile. This method maximizes the Full Wave Half 
Maximum (FWHM) spectral bandwidth (BW) and minimizes the 
group delay ripple (GDR). Three different apodization profiles were 
used in evaluating this optimization method.

Apodization Profile
Three different apodization profiles were used in this work, 

namely Tanh, Exponential and Hamming. Figure 1 shows the effect 
of apodization process to the FWHM spectral BW and GDR. From 
the Figure 1, it is obvious that when the GDR is eliminated, the signal 
experiences huge BW loss, which is referred as BW filtering effect. This 
is a serious issue due to unoptimized apodization profile. This issue is 
very important to be solved because the signal distortion that is caused 
by the BW filtering effect will results in bits errors, and shortens the 
maximum achievable transmission distance. 

In this work, the following apodization profiles were used. 
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Introduction

Chromatic dispersion (CD) issues are very important to be dealt 
with in today high speed optical fiber transmission system, either in 
conventional S-, C-, and L-band, or the future 2000 nm long-band [1-
7]. CD occurs because different wavelength components of the carrier 
signal propagate with different velocities [8]. One of the solutions 
to combat chromatic dispersion is by using apodized chirped fiber 
Bragg grating (CFBG) based Chromatic Dispersion Compensator 
(CDC). This technique is very efficient and practical. It maintains all-
fiber network concept and at the same time operates at much lower 
insertion loss than the conventional Dispersion Compensating Fiber 
(DCF). CD compensation needs for large bandwidth; however, the 
bandwidth of CFBG is limited. It depends on the suppression of ripple 
in the profile, which is achieved at the cost of operating bandwidth. 
As a result, optimum performance cannot be achieved. Until today, 
several optimization techniques have been tested namely apodization 
window roll-off rate, asymptotic side lobe (SL) decay level, number 
of SLs, and average SL level (SLav) [9]. Discrete inverse scattering 
algorithm (DISA) was used to obtain the optimized long period 
gratings (LPG) apodization profiles [10]. 
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Figure 1: Reflectivity and corresponding group delay using apodized and 
unapodized profile.
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Figure 2: Tanh apodization profile with different sharpness parameters.
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Where neffδ is the refractive index change. α and β are the sharpness 
parameters that were used to control the shape of the reflectivity 
spectra and group delay ripple, and Lg is the grating length. The role of 
α and β on the apodization profiles is to control the profile sharpness. 
This role can be seen in Figures 2-4 which evaluate the value of neffδ
against the normalized grating length with several values of α and β. In 
the previous studies, the best value of α and β has never been reported, 
which shows the importance of our work. 

From Figure 2 (Tanh), we noticed that for different combination 
of α and β, the normalize grating length that produces maximum 
performance is different. For example, when α=2 and β=5, the 
maximum performance can be achieved at z/Lg=0.5. However, when 
α=5 and β=1, the maximum performance can be achieved not only 
at one value of z/Lg, but from z/Lg=0.35 to z/Lg=0.65. This can give 
us more flexibility in the design as we know that we have a range of 
grating length that can be used.

Similar characteristic can be observed for Exponential (Figure 
3) and Hamming (Figure 4) apodization profiles. Between the three 
apodization profiles, the response differs. For example, the range 
of z/Lg that produces maximum performance for Exponential and 
Hamming is smaller in comparison to Tanh.

Euclidian Distance Method
Euclidean distance method analyses the normalized GDR 
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Figure 3: Exponential apodization profile with different sharpness parameters.
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Figure 4: Hamming apodization profile with different sharpness parameters.
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Figure 5: Reflectivity and corresponding group delay for Tanh apodization 
profile in case α=1 and β=2.25.

and normalized FWHM spectral BW as shown in Equation 4 and 
Equation 5 [11,12]. 
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Where Aapod and Aunapod represent the amplitude of apodized 
and unapodized group delay ripple. BWapod and BWunapod represent 
the FWHM spectral BW of apodized and unapodized reflectivity 
spectrum. 

From the relationship between Fripple and FBW, the Euclidian 
distance is derived, which is shown in Equation 6. 

2 2( , ) ( , ) (1 ( , ))ripple BWd F Fα β α β α β= + −    		              (6)

To visualized the effect of α and β to the GDR and FWHM BW, 
the corresponding reflectivity and group delay at three different values 
of α were plotted with β=2.25. Figures 5-7 show the reflectivity and 
corresponding GDR for Tanh apodization profile at α=1, 40 and 16 
respectively. Figure 5 shows when α=1, GDR is minimized but at the 
same time the FWHM BW is very narrow. In contrast, when large 
value of α was used huge GDR can be witnessed but with large FWHM 

BW. Based on these observations, it can be understood that trade-off 
between GDR and FWHM BW needs to be formulated. In Figure 7, 
the partially optimized apodization profile is shown when both GDR 
and FWHM BW are at tolerated values.

Based on Equation (6), the optimum point of α is obtained at the 
minimum value of d, denoted as dmin. Figures 8-10 show the values of 
d at different value of α and β for different apodization profile.

The values of dmin for Tanh, Exponential and Hamming profiles 
are 0.123, 0.283 and 0.257 respectively. These results are recorded at 
α=16 and β=2.25 for Tanh, α=66.67 and β=0.5 for Exponential, and 
α=1 and β=0.333 for Hamming profile.

The Euclidean distance was measured as follows. First, we fix β to 
2.25, 0.5 and 0.333 for Tanh, Exponential and Hamming respectively. 
Next, by varying α, we plotted Fripple against FBW. 

Figure 11 shows the relationship between FBW and Fripple for 
Tanh, Exponential and Hamming where the distance from the 
right bottom corner (FBW=1, Fripple=0) to any point in the curve is 
the Euclidean distance. From the Figure 11, it can be seen that the 
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Figure 6: Reflectivity and corresponding group delay for Tanh apodization 
profile in case α=40 and β=2.25.
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Figure 7: Reflectivity and corresponding group delay for tanh apodization 
profile in case α=16 and β=2.25.
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Figure 8: Euclidian distance, d, versus sharpness parameter, α, for tanh 
apodization profile.
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Figure 9: Euclidian distance, d, versus sharpness parameter, α, for 
exponential apodization profile.
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minimum Euclidian distance is at FBW=0.937 and Fripple=0.105 for 
Tanh, FBW=0.768 and Fripple=0.163 for Exponential, and FB=0.771 and 
Fripple=0.119 for Hamming apodization profile. From the results, it is 
clear that the best apodization profile is Tanh, while the best α and β is 
16 and 2.25 respectively. 

Conclusions
The optimization of apodization profile using Minimum Euclidean 

Distance method was formulated and tested. This method allows for 
accurate optimization of GDR and FWHM BW of the CDC. Our 
results also show that among the tested apodization profiles, Tanh was 
optimized the most by this new technique. The output of this paper 
is very important to the CD research and industry as it highlights an 
alternative solution to simplify the optimization process of CFBG-
based CD Compensator. 
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Figure 10: Euclidian distance, d versus sharpness parameter, α for hamming 
apodization profile.
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