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Abstract
Predictors and features that are used in teleradiology and machine-
based auto diagnosis in medicine are often not put into consideration 
while evaluating medical image Steganography algorithms. In this 
paper, the effect of embedded security data in automated diagnosis 
was evaluated using Support Vector Machine (SVM) image 
classification of Chest X-rays Scan of Normal and Pneumonia 
patients. The goal is to quantify and qualify disease classification 

data in to the image. Four textural image features: Contrast, 
Homogeneity Energy, and Entropy were used as medical image 
biomarkers. Their statistical properties for the disease conditions 
(normal or pneumonia) were profiled and used in SVM training. The 
evaluation parameters for the machine learning models include 
accuracy, specificity, recall, and precision. The baseline (before 

82.18% recall, 90.10% specificity, and 89.25% precision while a 
typical performance after the addition of security data was 82.18% 
accuracy, 85.15% recall, 79.21% specificity, and 80.37% precision. 

region of embedding should be carefully selected to avoid changing 
the automated diagnostic outcome by a steganographic security 
algorithm applied to a medical   image.
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Introduction
According to Liang [1], a biomarker is an objectively measured 

characteristic indicator of either normal biological processes, 
pathogenic processes, or pharmacological response to medical 
treatment. Biomarker are generally classified based on how and where 
the characteristics are measured. There are radiological, molecular, 
histological, and physiological characteristic that could be measured 
as biomarkers [2]. Radiological characteristics are tissue properties 
measured from non-invasive radiological images or scans. These 
biomarkers are also called image biomarkers. In general, medical 
procedures combine image biomarkers as well as other biomarkers 
for diagnosis and health monitoring, including during clinical trials 
of new drugs [2]. In contemporary times, medical diagnosis and 
monitoring processes are increasingly becoming automated [3]. As 
part of these processes, various medical image scans that originate 

from patients are stored, transmitted, and used both locally and 
remotely. These raise security and privacy concerns.

Security and privacy are achieved technologically through 
Cryptography, Information Hiding, and Intrusion Prevention 
Systems. The cryptographic means are widely used and better accepted 
in medicine than data hiding techniques such as steganography. 
However, the work of [4] outlined the shortcomings of the existing 
security measures such as firewalls, VPN, encryption, use of header 
files in images and the use of cryptographic hash. Some of these 
shortcomings include: only internal security is provided and easily 
bypassed by hackers (Firewall and VPN), brings about suspicion 
(encryption), can easily be changed and pirated in both encrypted 
and unencrypted form (file headers), cannot localise tampered region 
(cryptographic hash) and always searching for a match, requiring 
access to a central database (perceptual hashing). The limitations of 
the existing security measures have led to the demand for an extra 
layer of security, especially for multimedia data (image, audio and 
video). This extra layer of security has been known to be data hiding 
in digital watermarking and Steganography. They are particularly 
important for robust authentication, unsuspected image integrity 
checks, text data privacy, and copyright protection. 

Steganography completely hides the data from suspicion and tries 
to maximize capacity and fidelity. With Steganography, the embedded 
message is of interest but not necessarily encoded in a robust manner. 
In digital watermarking, the cover is of interest to the receiver, and the 
embedded message only adds value to the cover either for the sender 
or for the receiver. The message is often encoded robustly.

As a steganographic technique often introduces extra data into 
an image, it is important to investigate how this possible image 
modification affects the performance of machine learning models 
developed using these stego images. This is the objective of this paper. 
Specifically, it quantified the effect of watermarking as well as image 
processing functions on the selected textural image biomarkers: 
Contrast, Energy, Homogeneity, and Entropy. We have chosen the 
Support Vector Machine (SVM) classification method. This is because, 
unlike the deep learning methods, it enables us to study the effect of 
each feature or biomarker separately. This enables our model to be 
utilised as a biomarker research tool as well as a disease prediction 
model. This provides greater insight both in this research and in 
order, kind of biomarker research study. Thus, we do not like to treat 
our prediction model as a black box. Instead, we want to know how 
each feature in the prediction model affects the diagnostic outcome.

This study is necessitated by the fact that the use of generic 
evaluation parameters originally utilised in Digital Signal Processing 
(DSP) is no longer adequate for health-related bio data. This practice 
has limited the option for Medical Image Watermarking (MIW/S) to 
reversible watermarking only. There is  a little chance for MIW/S where 
medical ethics forbids modification of any sort, whether reversible 
or irreversible. Hence, we stress that more objective evaluation 
with medical- specific biomarkers and parameters will enhance the 
adoption of data hiding methods for medical data security for remote 
auto diagnosis.

Therefore, along the line of capacity-distortion (diagnostic 
distortion) performance analysis in the field of steganography, the 

parameters  because  of  the  addition of  steganographic  security

the  addition  of  security  data) performance  was  86.14%  accuracy,

We  conclude  that  embedding  strength,  watermark  payload,  and
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following question is answered: how do steganographic algorithms 
affect selected medical image biomarkers employed for auto-
diagnosis? Answering this question is important for applications in 
which patient data are transmitted to remote Artificial Intelligence 
(AI) systems for automated diagnosis. An example is during this 
era of COVID-19 [5] pandemic when the health system is being 
overwhelmed in various nations of the world. We could employ 
machine learning algorithms for initial diagnosis, but the security of 
patients’ health records will need to be preserved. The application of 
this evaluation technique has been incorporated in a wider medical 
image information hiding evaluation algorithm [6].

The rest of this paper is organized thus: Section Related Work  
covers existing works in both watermark evaluation in auto-diagnosis 
as well as some existing works that used textural features for disease 
classification. This was followed by our evaluation method in Section 
Proposed Method. Section Experimental Setup is a description of 
the Pneumonia diagnosis case study, the employed watermarking 
algorithm, and the experimental setup. The results from the 
Pneumonia dataset classification using SVM is presented in Section 
Results and then discussed in Discussion and Comparison with 
some comparisons with existing methods. The paper is concluded in 

Related Work

Though lots of works have been done on Medical Image 
watermarking (MIW) and Medical Image Steganography (MIS ) [7-
10]. The evaluation of the effect of water marking on diagnosis by 
the use of image biomarkers and machine learning models has been 
under-researched .Existing evaluations are largely limited to the use 
of parameters such as Peak Signal-to-Noise ratio(PSNR), Mean Square 
Error(MSE),Structural Similarity Index Measure (KLD), Kullback-
Leibler Divergence (KLD)and other measures of distance used in core 
digital signal processing (DSP).Predictors and features which are used 
in teleradiology and machine-based auto diagnosis in medicine are not 
usually put into consideration and ,therefore, often do not convince 
medical practitioners about data hiding security techniques.

In [11] made a case for why we should not rule out MIW. 
They described how it could be used to bring evidence in the case 
of telemedicine litigation. In this technique, the watermark should 
not be removed from the medical image, and even many should 
not be aware of its existence in the first place. They quickly added 
that it remains a challenge to convince both the legal and medical 
practitioners that watermarking and steganography can provide 
trusted evidence without compromising diagnosis. The difficulty 
arises from the stringent constraints generally placed on the integrity 
of data used for medical, military and legal applications [12]. This 
justified further research by [12] on digital watermarking techniques 
that may not violate this stringent constraint. The shortcoming of the 
research in [12] is that it is subjective, and only a few experts were 
involved. The criteria used for evaluation do not apply to machine 
learning algorithms [13]. Performed an objective evaluation of the 
impact of watermarking on computer-aided diagnosis in medical 
imaging. They used about 500Breast Ultrasound as their dataset. 
Two watermarking algorithms were used on half of the samples. The 
evaluation parameters included PSNR, Watson Parameter and bits-
per-pixel. They tried to establish the effect of spread Spectrum DCT 
(SS-DCT) and High Capacity Data Hiding (HCDH) watermarking 
on the segmentation and classification accuracy of the lesions in the 
image. They found that with an appropriate choice of parameters, 

both water marking systems can perform well without any adverse 
effect on segmentation and classification accuracy. However, SS-
DCT could alter the accuracy if high embedding strength is used. 
Their approach is most related to our work but not in the area of 
pneumonia disease classification using X-ray scans.

In a recent study by [14], some watermarked Fundus eye scans 
were tested against some models [15-18] used to classify Healthily, 
Macular Edema and Central Serous Chorio Retinopathy (CSCR) eyes 
diseases. The original accuracy of their models ranged from 95% to 
100%. Their results show that there was no difference in classification 
accuracy for the original and watermarked test set. However, few test 
data were used (15 to 45). Also, it was not clear if the original model 
was trained and the watermarked training set. Again, this study failed 
to recognize that if watermarking is adopted for integrity checks, future 
training sets would contain watermarked data and not just the test data.

In recent times, the interpretation of medical scans and 
computation of biomarkers used for diagnosis is done by machines. 
This use of automated diagnosis would help one to perform a 
repeatable and objective evaluation for different steganographic 
algorithms. Specifically, we have explored a larger dataset (2400 train 
set and 202 test set) for Pneumonia to study the effect of watermarked 
medical image on medical auto diagnosis. The goal is to bring out 
these effects for medical decisions and establish parameters that 
should be directly used to accept or reject data hiding algorithms for 
image security through data hiding. In other to put our work and 
choice of biomarkers in context, we will go further to review other 
works that used textural biomarkers that are like the ones chosen for 
this research.

Texture analysis using textural biomarkers have been used in 
several image analysis to study the health of patients. The study by 
Kim [19] used heterogeneity (or homogeneity) and entropy texture 
analysis to study survival outcomes for patients with breast cancer. It 
was established that there is a relationship between the level of entropy 
and heterogeneity of T2-weighted images and the recurrence-free 
survival (RFS) rate of patients.

Among other image features (biomarkers), textural image 
biomarkers were used in [20] to differentiate between three types of 
mouse xenograft tumour models automatically. Up to thirty textural 
image biomarkers obtained from contrast-enhanced Ultrasound 
scans were used. Similarly, Xu [21] employed 96 features (52 features 
of the gray-level co-occurrence matrix (GLCM) and 44 features of the 
gray-level run-length matrix (GLRLM)) extracted from the regions of 
interest (ROIs) of ultrasound images to classify two liver diseases of 
hepatocellular carcinoma and liver abscess. They used the extracted 
features to train a Support-Vector Machine (SVM), which had 
88.88% classification accuracy.

In this paper, we limit our study to four textural biomarkers 
that are commonly used in literature [19-21] for medical image 
classification for computer-aided diagnosis. They include Energy, 
Contrast, Homogeneity and Entropy. These features are a subset of 
the fourteen [22] texture feature operators from the Gray-Level Co-
Occurrence Matrix (GLCM) of the ROI image [23-24] They can be 
employed for both content and diagnostic information integrity 
checks. We have selected these features for various reasons: (i) they 
are considered closer to the medical profession than the PSNR, 
and SSIM image quality check parameters, (ii) they represent good 
examples of the robust(Energy and Entropy) and the non-robust 
feature types used in machine learning algorithms.

Section Conclusion.
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(iii) the curse of dimensionality problem [25] where the performance 
of classification systems set in due to the use of too many features, could 
be solved with few relevant features, and (iv) they are unique features 
that can characterize the disease and thus their validity as Pneumonia 
biomarkers can be established. This fourth reason is why the deep 
machine learning method was not adopted in this research as it masks 
the effect of specific features used in classification. In the next section, we 
will present the details of our evaluation method.

Proposed Method
The conceptual framework for the proposed evaluation system is 

shown in [Figure.1]. Only one model known as the  baseline model 
(Model-1) will be trained using the original dataset. Various models 

original data at various levels of data pay load as well as different 
embedding strengths, 𝛼.

The baseline model was developed for medical image classification 
using the original dataset without any watermark inserted in the ROI 
and without any form of pre-processing. After this, different levels 
of water marking (leading to different embedding strengths) were 

applied to the original image. For each of the water marking levels, a 
new model is created using the corresponding watermarked image as 
training data. Each of the models was used to classify a test set, which 
is not part of the training set. Were corded the magnitude of changes 
in any of the performance parameters due to the models created from 
watermarked images compared to the baseline model.

In the next sub- sections, we will provide the details of the feature 
extraction and SVM training process.

Feature Extraction
GLCM provides information about the positions of pixel pairs 

having gray level values, (i, j) at a distance, d measured in one of 
the directions, 𝜃=00,450,900,1350 about the reference pixel. This is 
depicted in Figure 2 with d=1. Equation 1 is then used to generate 
the co-occurrence matrix, from which three out of the four texture 
features are computed.

GLM = Gd,𝜃 [i,j] = Ci,j   				                        (1)

.The features are computed from the ROI of the image after 
proper image segmentation such as the one shown in [Figure.3] The 

Figure 1: Evaluation Framework. The result from each model is compared with the baseline model before the algorithm and its parameters are accepted or 
rejected. 

Figure 2: GLCM Computation for Textural features. This is taken from the ROI of the medical image. The ROIs were determined based on the recommendations 
of the doctors who first worked on this dataset.

(Models 2 to n)were trained using the watermarked versions of the



Citation: Eze P, Parampalli U, Evans R, Dongxi L (2020) Evaluation of the Effect of Steganography on Medical Image Classification Accuracy. J Appl 
Bioinforma Comput Biol 9:4.

• Page 4 of 9 •

doi: 10.37532/jabcb.2020.9(4).176

Volume 9 • Issue 4 • 1000176

textural changes in the ribs of the patient are the indicators of having 
or not having pneumonia.

The features that were extracted from the above Co-occurrence 
matrix are (1-3):

ROI Contrast, Ct: Contrast is a measure of the local variations 
present in an image. 

Ct = ∑i ∑j (i-j)
2 Gd,𝜃 [i, j]      			             (2)

ROI Energy, Ce : Energy is computed from the Angular Second 
Moment(ASM):

Ce = 	          				                   (3)

Where: ASM = ∑i ∑j (Gd,𝜃 [i, j])2            		            (4)

ROI Homogeneity, Ch: Homogeneity refers to how continuous 
a pixel value spans along a given direction without meeting corners 
or edges. A homogeneous surface has all the pixel having the same 
gray value.

				                (5)

ROI Entropy H(X):  T is the entropy of the ROI region. This is 
computed as a feature as:

𝐻(𝑋) =∑i p(i) log p(i)            			                 (6)

Where p (.) is the probability density function (pdf) or probability 
mass (pmf) of image, X. This function is already implemente  in  
MATLAB as entropy  ( ) function.

The existence of well-established libraries for extracting them 
from a medical image also influenced our choice of these biomarkers. 
The features extracted in this way are used individually to train the 
SVM  Classifier as discussed in the next section.

7 Support Vector Machine (SVM) Classification

SVM supports binary (only two classes) classification where each 
subject is either in the positive or negative class. For this study, the 
positive class is pneumonia while  the  negative class  is  normal.

This classification by an SVM is performed through a kernel 
f unction, Φ, that can map the training examples, xi in to a higher 
dimensional space. For a training example 𝑥𝑖   with a corresponding 
label 𝑥𝑗,   the general form of a Kernal function is given as:

𝐾(𝑥𝑖,𝑥𝑗)=Φ(𝑥𝑖)𝑇Φ(𝑥𝑗)				              (7)

Four types of kernel are in common use:

LinearKernel: 𝐾(𝑥𝑖,𝑥𝑗)=xi
Txj

PolynomiaKernel: 𝐾(𝑥𝑖,𝑥𝑗)=(𝑥𝑖,𝑥𝑗)𝑑. Where d is the 
degree of the polynomial.
Gaussian Kernel or Radial basis function (RBF):

 Where 𝜎 stands for a window width.

Sigmoidkernel: 𝐾(𝑥𝑖,𝑥𝑗)=𝑡𝑎𝑛ℎ(𝑘(𝑥𝑖𝑥𝑗)+𝜑).Where k and 𝜑 are 
some kernel parameters.

So, the SVM uses a chosen kernel equation to test if a patients X-ray 
scan is positive for pneumonia or not. This leads to the four possible 
outcomes of a classification or prediction algorithm: True Positive 
(TP), False Positive (FP),Truenegative(TN) and Falsenegative(FN). 
This form what is called a Confusion Matrix, C

TP is a correctly predicted positive class; FP is a false positive 
prediction where a subject in negative class is predicted as being in a 
positive class. FN is the opposite of FP, where a subject in a positive class is 
predicted as being in the negative class, while TN is when a negative class is 
predicted as negative class. With the confusion matrix, other performance 
parameters for a machine learning algorithm, such as accuracy, specificity, 
recall (sensitivity) and precision can be defined. The equations that follow 
define the performance parameters used in this study.

Accuracy is a measure of the ratio of all correct predictions, 
whether positive or negative, to the entire test set. It is not a good 
parameter if the number of subjects in each class is not the same.

			               (8)

In this study, accuracy is the ratio of the sum of patients correctly 
diagnosed (predicted) as normal and those correctly diagnosed as 
having pneumonia to the number of patients that arrived for diagnosis 
(subjects used for test set). We have limited our study to equal training 
and test sets to avoid the complexity and bias introduced by unequal 
datasets.

               
       (3a) ROI (Left) of Chest X-ray (Right) for auto-                  (3b) Determination of ROI and RONI 

   Pneumonia diagnosis. 

Figure 3: The rectangular three-quarter portion of each half of the X-ray scan is automatically extracted as ROI.
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Specificity is the True Negative Rate (TNR) as it is the ratio of the 
number of correct negative predictions divided by the total number 
of the negative class (N).

       			              (9)

This is the ratio of of the number of people correctly predicted 
as normal to the total number of normal people. It monitors the 
supposed assurance that patients are not predicted as having a disease 
that they do not have.

Recall or Sensitivity or True Positive Rate (TPR) is the ratio of 
correct positive predictions to the total number of the positive class 
(P).

				                (10)

This is the ratio of the number of patients correctly predicted as 
having pneumonia to the total number of people who really have 
pneumonia.

Precision or Positive Prediction Value (PPV) is the ratio of correct 
positive predictions to the total positive predictions. 

				               (11)

In our experiment, this is the ratio of the number of patients 
who have pneumonia to the number of those predicted as having 
pneumonia. Case Study: The Pneumonia Data set.

Pneumonia diagnosis using a Chest X-ray scan and an SVM 
trained model is used in this research. We also used a recently 
developed Spread Spectrum watermarked algorithm for adding 
watermark to the X-ray images.

Description of data set

Chest Xray: The Pneumonia Chest X-ray data set for the Kaggle 
Competition was used. It is made of various (large) sized X-ray 
images of patients that are either normal or have been diagnosed 
with Pneumonia disease. The same data set was used in [26] for deep 
learning image classification of bacterial and viral pneumonia. Some 
images are so large that they produced ROI of size 1285x1241. We 
utilised equal number of positive (Pneumonia) and negative (normal 
patient) classes, each with 1200 images and then 202 images for the 
test set. That is 101 images for each class.

Steganographic or Watermarking algorithm

Once a disease prediction is to be made via a machine learning 
model, and there is the likelihood of watermarking either the images 
used for training the model or the images that will be classified in the 
future. Our framework serves as a black-box evaluation mechanism 
to ascertain the potency of the algorithm for future predictions. 
The specific steganographic or watermarking algorithm applied to 
the image is immaterial to this framework. However, as a means of 

evaluating a recently developed algorithm, the Constant Correlation 
Compression Code Scheme (𝐶4𝑆) Steganographic algorithm in [27] 
was used as a case study in this research. A summary of the 𝐶4𝑆 
insertion strategy is shown in Figure 4.

𝐶4𝑆 is an additive spread spectrum watermarking technique 
that can be easily used for either  fragile, semi-fragile, or robust 
watermarking by adjusting the parameters 𝜌 and 𝜖 (epsilon). The 
parameter, 𝜌 is a real-valuednumberagreedbetweenthesenderandthe
receiver.Itisembedded in such a way that the correlation value at the 
receiver between an image sub-block, 𝑋𝑖 and a secret-key-generated 
sequence, W equals ±𝜌 ±𝜖. Hence, 𝜖 is a control parameter for 
determining the level of fragility (or robustness) of the water marking 
algorithm. In general, 𝜖<𝑝.𝜖 is a tolerance parameter. G is a gap 
required between insertion zones to detect tampering.

Experimental set up

This section is set up for SVM model building and evaluation. 
All models and analyses are based on the existing 40dB benchmark 
[28] for image distortion. Initially, the number of bits per sample 
(capacity) increased from 𝑐𝑟= 1,2,3,...until visible degradation is 
noticed, or computed PSNR between original and watermarked image 
becomes 40dB the average among all the samples in each data set 
class. Then, the embedding strength, 𝛼 and base correlation values,𝜌, 
was controlled and capacity observed. The dynamic embedding 
strength 𝛼 is the major parameter that determines both accuracy and 
distortion.

The specific SVM used in this experiment is the fitcsvm 
provided in MATLAB2017b. It is a fast algorithm for training low to 
medium-dimensional data sets for binary classification. The default 
hyper-parameters were used. Hence, not tuning was performed. A 
supervised learning method is used. The extracted feature vectors are 
stored in a variable X, while the corresponding labels are stored in a 
variable, y. The training starts with a call to:

SVM Model = fitcsvm (X,y)	  		             (12)

where SVM  Model is the trained model with a feature vector, 
X. This process is repeated using various payloads and embedding 
strength, 𝛼.To test the trained model, the same type of feature or 
biomarker used for training is extracted from the test set and used 
in this form.

[score, label]=predict (CVSVM Model , X Test)	           (13)

Results
SVM models were trained using a clean original image (Cr=0), 

the watermarked image at one bit per sample (Cr=1),and then 
watermarked image at two bits per sample(Cr=2).The performance 
results for the X-ray data set  are presented in Table 1.The models 
where Cr=0 is the base line  model because no watermark was added 

Figure 4: 𝐶4𝑆 Insertion Strategy: Pre defined correlation channels within the image represents groups of bits. Each channel is separated by a channel gap, G. 
The width of each channel is 2𝜖.
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to the images before the extraction of the features or biomarkers used 
to train this model.

The performance of the models as a function of the payload is 
presented next. The embedding strength was not controlled in any 
way in these experiments. These are shown in Figures 5 and 6. Figure 
5 shows that Contrast and Homogeneity are good classification 
features for pneumonia, but they are not stable to watermarking. 
There were significant changes due to the high rate of distortion. This 
calls for adequate control of both watermarking.

Figure 6 shows that energy and entropy features are least affected 
by watermarking. Entropy is not affected at all. The value of accuracy, 
recall, specificity and precision remained the same for all payloads. 
There was a slight change in these parameters in terms of energy. 
These are the robust features.

The negative result of Figure 5 called for further controlled 
experiments. In response to this, the independent variable was 

changed to maximum embedding strength (to control distortion) and 
not the payload. This produced more models. The results for models 
based on the Contrast feature are shown in Table 2.

In order to visualise the effects on accuracy, recall, specificity and 
precision, Figures 7 and 8 are presented. These figures simultaneously 
present results about Contrast, Homogeneity, Energy and Entropy 
features for the purpose of comparison.

Figure 7a shows a decline in accuracy for Contrast and 
Homogeneity, an increase in accuracy for Energy, and constant 
accuracy for Entropy. For Homogeneity, the accuracy at a maximum 
𝛼 of 0.5 is the same as the accuracy of the baseline model. This result 
shows that some biomarkers are more stable to image changes than 
others.

The result of Figure 7b for the recall is an interesting one. Recall 
can be interpreted as the accuracy of the positive class. For Contrast, 
Homogeneity and Energy, recall increases as maxi- mum embedding 

Cr Accuracy (%) Specificity (%) Recall (%) Precision (%)
0 86.14 82.18 90.1 89.25
1 80.2 87.13 73.27 76.52
2 55.45 96.04 14.85 53.01

Table 1: SVM performance with contrast a straining feature at various embedding capacity, 𝑟 is the number of bits embedded in a sample by the 𝐶4𝑆 method.

          
                          (5a)  Contrast                                                            (5b)   Homogeneity 

Figure 5: Effects of Steganography on Contrast and Homogeneity Models. 𝐶𝑟= 0 indicates that no watermark was added to the image while 𝐶𝑟= 1 and 𝐶𝑟= 
2 means that 1 and 2 bits, respectively, of watermark has been added in each 8x8 block subject to some distortion rates.

(6a)  Energy (6b) Entropy

Figure 6: Effects of watermarking on Energy and Entropy Models. Entropy is generally not affected as there is no significant change in the distribution of pixel 
elements in the watermarked version.
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𝛼 Accuracy (%) Recall (%) Specificity (%) Precision (%)
0 86.14 82.18 90.1 89.25
0.5 84.65 82.18 87.13 86.46
0.6 83.17 83.17 83.17 83.17
0.7 82.18 85.15 79.21 80.37
0.8 81.19 86.14 76.24 78.38
0.9 81.68 89.13 76.24 78.57
2.5 73.27 92.08 54.46 66.91
4.5 55.45 96.04 14.85 53.01

Table 2: SVM performance with contrast as training feature at various watermark  embedding strengths, 𝛼.

    (7a)  Accuracy                                                     (7b)  Recall 

Figure 7: Effect of Steganographic embedding strength, 𝛼 on the Accuracy and Recall for Pneumonia disease classification.

 
(8a)  Specificity                                                            (8b) Precision  

Figure 8: Effects of watermarking on Specificity and Precision.

strength increases. This means that more accurate predictions of 
people having pneumonia are being made.

Specificity is the accuracy of the negative class. Figure 8a indicates 
that as the embedding strength increases, the specificity decreases. 
This means that the false alarm (Type I error) rate also increases. 
The implication is that normal patients could be referred for further 
investigations. However, for homogeneity, this does not occur until 
𝛼= 0.6; for energy, it is until 𝛼= 0.9; while for Entropy, it never 
occurred for the range of 𝛼used in the experiment. The Contrast had 
the most rapid negative response.

Precision had a similar trend with specificity. This is shown by 
8b.If more type I error occurs, then the precision of a prediction 
would decrease. This does not stop recall from increasing though if 

some more accurate positive predictions are also being made. Because 
current machine learning methods use other forms of image pre-
processing before feature extraction, a future study will investigate 
how the pre-processing and data argumentation compares with 
mere watermarking and whether they can override both the positive 
(in terms of energy) and negative (in terms of Contrast) effects on 
classification accuracy, recall (sensitivity), specificity  and precision 
[29-30].

Discussion and Comparison
Concerning the research questions posed in the introduction, and 

based on the results above, it can be inferred that different biomarkers 
are affected differently by data hiding security techniques. With low 
embedding strength and smaller payload, the effect is generally low. 
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However, adaptive embedding algorithms affect different parts of the 
image differently, creating variation in Contrast and homogeneity. 
This change tends to move the value of these features from one class to 
another. Hence, some of the predicted values using the watermarked 
models gradually misclassify the test data as the embedding strength 
and payload increases to change the Contrast and homogeneity of the 
train data.

On the other hand, it should be noted that some biomarkers 
or features are more resistant to watermarking than others, such as 
entropy and energy. Entropy is related to the information content of 
an image (or any data). The non-variation in the model trained with 
entropy feature shows that the 𝐶4𝑆algorithm used as the case study 
in this research does not change the content of an image even for 
reasonably large embedding strength (𝛼= 4).

Further interpretation of this behaviour is found in a recent report 
by Edwards in a recent Communications of the ACM. SVMs and deep 
neural networks (DNN) have two features that they can recognise: 
robust and non-robust. Frequently, the non-robust features are 
subtle, but representatives and serve good features to predict a class. 
However, they are easy to subvert as little pixel changes tend to shift 
them to another class. On the other hand, robust features continue 
to deliver correct results even when the pixels are changed by small 
amounts.

Interpreting why Recall improved as the embedding strength 
increases prompted for more observations. We noticed that the 
negative class and the positive class responded differently to 
watermarking. In general, the decision boundary shifted to favors 
correct classification of positive class (higher recall). Correspondingly, 
the reduction in accuracy came from the misclassification of the 
negative class (lower specificity). However, as noted by Kermany 
in  false-negative (Type II error) result is far more serious in disease 
classification. Hence, an increase in recall reduces type II error and 
ensures that the maximum number of people having pneumonia is 
correctly referred for further investigations.

From the above, Steganographic methods affect biomarkers based 
on the type of image feature modified by the embedding process. 
Secondly, for the most affected biomarkers, there is a decrease in type 
II error. This, however, increases false alarm (Type I error). Whereas 
all errors are important to be removed from a medical system, over 
watermarking implies that some normal patients are likely to be 
referred for second-level examination when they are not supposed 
to. This was considered better than the opposite, where a sick 
person is declared normal. At an embedding strength of more than 
2.5, the accuracy of the watermarked model would reduce beyond 
70% benchmark and could be considered adversarial. Therefore, 
it is important to establish the parameter boundaries for any new 
steganographic or watermarking system for which the algorithm 
becomes adversarial regarding the biomarkers of interest. This is 
generally not an issue for human-based diagnosis as the human eye is 
robust to the subtle changes in the non-robust features.

Our focus is to create empirical data in the troubled waters of 
medical image ROI. This concern is justified by the fact that image 
comparisons that occur in teleradiology in terms of the type of 
machine used or parameter settings before image capturing is 
also related to ROI. Also, it is a well-known fact that apart from 
watermarking, medical images undergo other pre-processing and 
post-processing operation that does not affect only the RONI neither 
are they reversible. This has given few researchers the courage to 

evaluate the effect of such modification on a diagnosis. Following 
this method, similar experiments can be carried out for any medical 
image, biomarker, and corresponding steganographic algorithm.

The advantages and superiority of our method lie in the following:

We can incorporate the opinions of more experts and historical 
patient scans in one study. Only three experts were involved, whereas, 
in about five experts were involved. A recent study managed to get 
seven expert evaluations. These are opposed to the hundreds of 
experts and exactly 2602 patients whose data were used in this study.

Testing several specific criteria as mentioned by Ludewig will be 
very tedious for human experts. With our method, automated models 
could be used to extract the specific features that could be used to 
test each criterion. Both the individual and combined effect could be 
evaluated repeatedly.

For remote, developing rural areas where experts are not 
accessible, our method becomes an efficient way to transfer and 
utilize the knowledge of experts in image evaluation. Existing models 
can always be retrained as more expert information becomes available 
without requiring the presence of the experts.

Conclusion
In this work, we have introduced the Machine-learning evaluation 

methods for automated applications that will be used in environments 
where medical experts are not readily available. As the dataset used 
has already incorporated the subjective knowledge of experts, the 
initial human input has been taken care of as currently being used 
in medical evaluation methods. Different diseases have different 
medical image biomarkers that could be objectively measured. In 
this paper, the chosen biomarkers were limited to well-known image 
biomarkers that apply to a wide range of diseases. Because medical 
image watermarking is deemed domain-specific due to human 
health’s critical nature, we chose five textural image biomarkers to 
evaluate the effect of our watermarking algorithm. It is evident in 
terms of these biomarkers that there is a modification effect caused 
by the watermarking algorithm. However, the effect is very low on 
certain image biomarkers such as energy and entropy. Some effects 
are positive as they increase the accuracy of predicting the positive 
class. For the negative effect, further improvement is required in this 
respect and only watermarking at very low embedding capacity, and 
the payload is recommended. As a last resort, reversible or RONI-
only watermarking is applicable for such biomarkers.
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