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Abstract
Nano-porous ceramics have potential applications as diverse as 
biomedical implants, catalysis, and armors. This work shows that in-
situ Nano-porous Polymer Derived Ceramics (PDC) can be produced 
in Metal Matrix Composites (MMCs) using solid state Friction Stir 
Processing (FSP). Direct insertion of cross-linked polymer into the 
metal by FSP in solid state is a significant step toward inserting 
different chemistry of polymer precursors to generate a variety 
of in-situ porous structures in Polymer Derived (PD)-MMC. The 
PDC route is an efficient and cost effective way to produce SiCN-
based PD-MMC and tailored pore architecture suitable for high 
temperature applications. Microstructural observations indicate a 
uniform distribution of ~100 nm size pores in the ceramic phase 
after pyrolysis.
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Introduction
Polymer Derived Ceramics (PDCs) represent a unique class of 

high-temperature stable materials synthesized directly by the thermal 
decomposition of polymers. PD silicon carbonitride (Si-C-N) 
ceramics are candidate materials for high temperature structural 
and functional applications in the form of fibers [1], protective 
coatings [2], fiber and particulate-reinforced composites [3]. In air, 
they are stable up to 1500oC. The synthesis of the materials involves 
cross-linking and/or pyrolysis of suitable organo-silicon precursor 
polymers in inert atmosphere, leading to ceramics with high purity, 
controlled structure and chemical composition [4]. Fabrication of the 
non-oxide Polymer Derived Porous Ceramics (PDPC) via the method 
of PDC is a novel technique. Furthermore, PDPC can be synthesized 
at a temperature as low as 1000oC free of any additives, and cost-
efficient manners which cannot be performed by the powder-route 
technique. Porous ceramics possess number of favorable properties 
which combine the merits of ceramics and porous materials such as 
light weight, low density, low thermal conductivity, low dielectric 

constant, thermal stability, high specific strength, high specific surface 
area, high porosity, high permeability, high wear resistance, and high 
resistance to chemical attack [5]. 

FSP has successfully evolved as an alternative technique for 
fabricating MMCs [6]. FSP depends on the standards of Friction Stir 
Welding (FSW) [7]. In FSW, a rotating tool with a pin and a shoulder 
are inserted into the material to be joined and traversed along the line 
of the joint. The friction between the tool and the work piece resulting 
in localized heating that softens and plasticizes the material. In the 
FSP of MMCs, the material undergoes intense plastic deformation 
resulting in the mixing of ceramic particles and the metal. FSP also 
results in significant grain refinement [8] and has also been used to 
homogenize the microstructure of Nano composites [9]. 

Our previous published work reported the fabrication of in-
situ Nano PD-MMC by Friction Stir Processing (FSP) [10]. In this 
paper, a unique method of producing in-situ Nano porous PDC in 
solid state using FSP has been introduced. We report the evolution 
of in-situ Nano pores/cracks in PDC particles when SiCN cross-
linked polymer was reinforced in copper metal matrix during multi-
pass FSP. This method differs from the conventional methods used 
for producing porous ceramics and nobody has reported as per the 
author’s knowledge. The pores developed in PDC particles have been 
micro structurally characterized in detail to understand the pore 
distribution and its morphology.

Experimental Procedure
A commercially available product, KDT Ceraset Polysilazane 

20 (VL20) owned by Kion Corporation was used as the polymeric 
precursor for preparation of SiCN ceramics. The VL20 is a versatile 
liquid thermosetting resin. This polymer contains repeated units 
of silicon and nitrogen atoms which are bonded in an alternating 
sequence. The matrix material selected in the present study is pure 
copper (99.9%). SiCN cross linked polymer powder, having angular 
shaped particles with an average size of 10μm is used as reinforcement 
[10]. The powder is a cross-linked polymer having a density of ~1.0 
gcm−3. Grooves (3 mm x 4 mm) were cut and holes (ϕ=3 mm) were 
drilled into a 6 mm thick copper plate and were filled with the above 
mentioned polymer powder. Four passes of FSP were carried out on 
a five-axis friction stir welding machine (BiSS - ITW, Bangalore) on 
the groove at a tool rotation speed of 1500 rpm and traverse speed of 
25 mm/min. A frustum shaped threaded Densimet tool with shoulder 
diameter, pin diameter and pin length of 25 mm, 6 mm and 5 mm, 
respectively was used. A tool tilt angle of 3o was used. The processed 
plate was then pyrolysed at 800 °C in muffle furnace for 30 min to 
convert polymer into ceramic [10].

The samples were carefully polished using standard methods and 
ground with SiC abrasive papers through 3000 grit. Then the samples 
were polished with alumina slurry and finally with diamond paste 
using polishing machine. Ultrasonic cleaning was done for all samples 
to make the surface of the specimen free from dust/abrasive particles 
and preferably free of oxide layers. Samples were characterized using 
Scanning Electron Microscopy (SEM) (Sirion, Model VL 30FEG) with 
Energy Dispersive Spectroscopy (EDS) and Transmission Electron 
Microscopy (TEM, F-30).
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Results 
Figure 1a shows the SEM micrograph of four multi-pass FSP of 

SiCN polymer reinforced Cu matrix composite at lower voltage i.e. 
10 kV to avoid burning of polymer and Figure 1b shows the EDS 
elemental analysis of polymer reinforced composite. It has been 
observed that present elements are 27.26 wt% Cu, 32.48 wt% Si, 11.66 
wt% C and 28.6 wt% O (was expected) in composite sample; nitrogen 
could not be analyzed by this method [10]. In the present work, the 
polymer powder is mixed with copper by FSP. The polymer powder 
is malleable and disintegrates into submicron size particles during 
multi-pass FSP (Figure 1a). 

Figure 2a shows the SEM micrographs of FSP composite 
specimen with emphasis on PDC particle after pyrolysis at 800°C. It 
is observed that Nano-scale (~100 nm) pores are present in the PDC 
particles (Figure 2b) after pyrolysis due to the evolution of gases [10]. 
Micrographs were taken at higher magnification to confirm these 
pores for further investigation and it has been found that these were 
~100 nm size pores (Figure 2c inset - marked by an arrow).

Energy-Dispersive-Spectroscopy (EDS) spot analysis was carried 
out on the PDC particle after pyrolysis (Figure 2d). The particle 
content shows 37.53 wt% Si, 25.95 wt% C, 33.88 wt% O and 2.65 
wt% Cu. Nitrogen could not be analyzed by this method. Although 

Figure 1: (a) shows the presence of SiCN (O) polymer particle (P) in Cu matrix (M) before pyrolysis (b) its elemental analysis.

Figure 2: (a-b) shows the submicron pores in PDC particles marked after in-situ pyrolysis, (c) The nano-scale pores in PDC particles marked with arrows 
after pyrolysis (inset image) enlarge view and (d) its elemental analysis after pyrolysis.
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Figure 3: (a) Shows the submicron pores and cracks in PDC particles marked with arrows after pyrolysis (inset image) enlarged view, (b) Arrangement of 
the atomic planes of copper around a PDC particle (dark region) in PD-MMC by FSP (HR-TEM image).

Figure 4: Summarize of adopted method with characterization.

the oxygen content can rise up to more than 10% if the precursor is 
exposed to air for prolonged periods [11]. The present composition 
shows even larger concentration of oxygen relative to nitrogen, 
suggesting the pickup of oxygen during external pyrolysis. Apart 
from Nano pores, cracks were also seen in the PDC particles after 
pyrolysis as shown in Figure 3a. These cracks are introduced due to 
sudden escape of gases upon pyrolysis. 

Discussions
The evolution of volatiles (predominantly hydrogen and methane 

by breaking of C-H bonds) causes the formation of Nano pores in 
PDC particles. The polymer precursor inserts silicon, carbon and 
nitrogen (and, to some extent, oxygen) into the metal. Among these, 

only silicon is a potential solid-solution strengthener [11] which 
forms ceramic residue before and after pyrolysis (Figure 1b and 2d). 
The most telling results of producing Nano pores are shown in Figure 
2(a-c) where Nano pores are dispersed fully in PDC particles after 
pyrolysis. The pyrolysis of bulk FSP composite samples leads to high 
porous PDC material because of the formed volatile products. 

As these pores are formed in PDC particles during fabrication of 
PD-MMC by FSP where PDC particles need to be dispersed at Nano 
scale but not possible due to the presence of clustered porous PDC 
particles. Here, FSP plays a crucial role and these pores are helpful to 
disperse the PDC particles at Nano scale because these porous PDC 
particles will have less fracture toughness (easily fractured) [10] and 
brittleness due to the predominant ionic or covalent nature of the 
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chemical bonding in ceramic compounds. These porous particles are 
easily fractured during further FSP and dispersed in the matrix at 
Nano scale with no pores in PDC particles [10]. FTT pattern of HR-
TEM (Inset Image-Figure 3b) shows the polycrystalline ring pattern of 
Cu matrix and bright points of particles in the matrix. The calculated 
d-spacing of particle in the Cu matrix is 0.3nm which confirms the 
presence of PDC particle in the Cu matrix (d-spacing= 0.208 nm). 
Due to multi-pass FSP, open pores and voids are eliminated. This 
indicates that the proposed processing method can create tri-effects 
at one time i.e. forming in-situ Nano pores, avoiding significant 
agglomeration of the PDC particles and at the same time allows the 
uniform distribution of the ceramic particles in metal matrix. Figure 
4 summarizes the work for better understanding.

Conclusion
This work indicated that the in-situ Nano porous PDC can be 

produced in metal matrix using FSP process and can be utilized further 
for Nano dispersion of PDC particles in the matrix homogeneously. 
The simplicity of this concept to produce in-situ Nano porous ceramics 
promise the widespread materials and mechanical applications such 
as producing metallic foams and porous metallic structures since 
organic precursors for several oxide and non-oxide ceramics are 
readily available for varies range of temperatures.
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