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Abstract
Fusions based on geostatistical methods are used in this article to 
improve the accuracy of the altimetry attribute of Digital Elevation 
Models (DEMs). Ordinary kriging, kriging with external drift, 
regression kriging and cokriging procedures, are applied to assess 
uncertainty representations from which it is possible to get altimetry 
predictions and other information. The fusion data modeling is 
performed from existing DEMs, mainly available for free in the 
internet, and additional high accurate set of 3D sample points. 
Although the freeware DEMs are dense and generally have good 
spatial distributions, the accuracy of their altimetry information 
might not be suitable for many applications. A way of mitigating 
this problem is to combine, in the data modeling processes, the 
available DEM data along with additional information coming from 
various other sources and having better quality. Usually, high 
accurate altimetry data are collected in field works, with higher cost, 
at specific point locations inside the spatial region of interest.  In 
short, this work aims to integrate, through geostatistical methods, 
spatial elevation information of different sources, data structures 
and elevation accuracies to obtain better accurate DEMs. The 
methodology addressed in this research was applied to a case 
study in a Brazilian Southeast geographical region. Quantitative 
and qualitative validations were performed using an independent 
high accurate data set and comparisons based on DEM differences 
and drainage network automatic extraction. For the considered 
study area, the kriging with external drift and the regression kriging 
have led to similar quantitative and qualitative improvements, better 
than the co-kriging approach.
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Introduction
Digital Elevation Models (DEMs) are applied in a large number of 

geographic environmental applications, such as, agriculture, geology, 
cartography, hydrology, rural and urban planning, among others 
[1]. DEMs are digital topographic information usually represented 
as spatial rectangular grids that are very suitable to be used in 
Geographical Information Systems (GISs) applications. Many derived 

products can be attained directly from DEMs as, for example, slope 
and aspect maps, drainage networks, contour lines, and profile and 
volume calculations [2]. Also, spatial modeling, developed in GIS 
environments, frequently uses DEMs, or their derived products, as 
input information. Nowadays it is possible to obtain DEM information 
for free, in the internet with no financial costs, of almost every region of 
the earth surface. Although these DEMs are dense and generally have 
good spatial distributions, the accuracy of their vertical information, 
the altimetry, might not be suitable for many applications. A way of 
mitigating this problem is to combine the available DEM data along 
with other information, coming from more reliable sources and having 
better quality, in the data modeling processes. Elevation information 
of the earth surface can be also obtained as a set of spatial locations, 3D 
points, sampled in a geographical region of interest. These samples can 
be collected with very high vertical accuracy using Global Positioning 
System (GPS) equipment, for example.  

Geostatistical tools have been extensively used to analyze and to 
model environmental attributes represented as a set of sample points of 
geophysical and geochemical indices, concentrations of soil elements, 
elevations, temperatures, etc. [3-5]. Some geostatistical procedures 
allow performing conflations by combining different sources of 
environmental attributes [6-13]. Geostatistical procedures known as 
kriging and simulation can be used to integrate existing DEMs with 
sample points of altimetry of the same geographical region. In short, 
this integration aims to obtain a more accurate derived DEM than the 
original one.  

In this context, the objective of this article is to explore and 
analyze geostatistical methods to perform fusions of existent DEMs 
with sample set of elevation points to obtain more accurate results 
on modeling the altimetry information. It is considered that the 
points of the sample set, here referred as hard or primary data, have 
higher vertical accuracy than the original DEM, here called soft or 
secondary data. The geostatistical procedures, Ordinary Kriging 
(OK), Kriging with External Drift (KED), Regression Kriging (RK) 
and CoKriging (CoK), are considered to perform the fusions. A case 
study is presented with data from a Brazilian Southeast geographical 
region to illustrate the application of the proposed methodology. For 
the fusions on the region of the case study it was used a Shuttle Radar 
Topography Mission (SRTM) DEM and a set of high accurate sample 
points. Quantitative validations are assessed with statistics and Root 
Mean Squared (RMS) metrics using an independent hard sample set. 
Also, qualitative analyzes are performed comparing DEMs differences 
and drainage maps automatically extracted from the elevation models.

Basic Concepts
Kriging

Kriging is a geostatistical technique used for estimations of spatial 
attributes (elevations, in this work) at locations not previously sampled 
from a set of sample points. The Kriging is known as a BLUE (Best 
Linear Unbiased Estimation) estimator. The kriging procedure allows 
to infer a mean value z*(u) of the attribute, at any spatial location u, 
from a number n(u) of neighbor samples z(uα), α=1, 2,..., n(u). The 
general formulation for the geostatistical kriging estimator is defined 
by Deutsch et al. [14], Isaaks et al. [3] as
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from the fitted regression, with the simple kriging of the residuals. 
Comparison of KED and RK geostatistical methods is addressed by 
Hengl et al. [15].

Cokriging

The geostatistical cokriging procedure allows to incorporate 
a secondary variable Y, besides the primary Z one, into the kriging 
estimator process. The ordinary cokriging (CoK) estimator at spatial 
location u for two random variables, Z and Y with values known at 
locations uα1 and uα2 respectvely, is written as Goovaerts et al. [4].
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The cokriging is a more complex geostatistical technique since 
requires the computing and modelling of three semi-variograms 
related to the Z and Y random variables, two directs and one cross 
semi-variogram. The KED and RK approaches, above presented, are 
alternative techniques that overcome the CoK complexity by requiring 
the evaluation of only the primary semi-variogram. 

Drainage extraction from DEMs

Drainage network is an important computational product to 
simulate water behavior in hydrographic basins. It basically depends 
on the drainage extraction method used, on the quality of the altimetry 
data and on the resolution of this data, which must be adequate to 
the work scale. There are many methods to obtain automatically the 
drainage network from a DEM data. For example, in the TerraHidro 
application by Rosim et al. [16] the drainage network system extraction 
is automatically performed by the following steps using an altimetry 
regular grid [17]: (1) local flow extraction determining the direction 
of greatest slope relative to its 8 grid neighbors; (2) calculation of area 
contribution creates a new grid where each grid cell contains the value 
of its area multiplied by the number of cells through which the water 
passes until it reaches this cell; (3) drainage network determination 
which defines a particular drainage by providing a threshold value 
relative to the contributing area, creating a new grid (all cells in the 
contribution area grid, with values equal to or greater than the given 
threshold, will be flagged as drainage cells in the drainage grid); (4) 
drainage network vectorization, if necessary.

Validations of DEMs and their Products
Quantitative validations

The quantitative validations of the grids are performed using an 
independent validation sample set with vertical high accuracy. The 
validation sample values zv are compared, at same spatial position 
uα with the grid values zg and statistics, as the mean error em and the 
standard deviation error estd  are evaluated for the n samples as: 
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where, e(uα)= zg (uα)- zv (uα)is the local error at the sampled spatial 
location,
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where µ(u) is the mean, or the expected value, of the attribute in the 
spatial location u and µ(uα) is the mean value at each sampled location 
uα. The kriging weights λα(u) are constrained to sum to 1 and are 
assessed considering the correlation structure defined by a modeled 
semivariogram gotten from the total set of n sample points considered. 
Empirical, or experimental, semivariograms, γ*(h), can be estimated, 
directly from a set of sample points, according to:
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where z(ui) and z(uj) are attribute values observed at sampled spatial 
locations ui and uj separated by the distance h. N(h) is the number 
of samples found inside a circumference with radius distance 
approximately equal to h. Mathematical, or conceptual, semi-
variograms are then fitted for the empirical ones to be used in the 
evaluation of the kriging weights of Equation 1. Typically, spherical, 
exponential, gaussian and power mathematical models are considered 
in the fitting process. 

Kriging with external drift

The KED approach is a kriging considering a trend model. The 
trend is obtained from a secondary variable related to the primary 
one. The trends are used as the mean values, in the Equation 1, and 
the residual covariance, rather than the covariance, of the primary 
variable must be used to solve this kriging approach. 

Deutsch et al. [14], point out two conditions that have to be met 
before applying the external drift algorithm: (1) The external variable 
must vary smoothly in space and (2) The external variable must to 
be known at all locations uα of the primary data and at all locations u 
to be estimated. The advantage in this case is that it is not necessary 
to know the cross covariance between the primary and secondary 
variables. In this work the input DEM is considered the external drift 
yelling elevation data at all locations of the condition (2) above. 

Regression kriging

The Regression Kriging (RK) interpolation is based on regression 
of the primary variable on spatially exhaustive secondary information. 
The predictions are made by modelling the relationship between 
the target (primary) and auxiliary (secondary) variables at sample 
locations and applying it to unvisited locations using the known value 
of the auxiliary variables at those locations [7]. The RK combines 
these two approaches: Regression of Ordinary or Generalized Least 
Squares (OLS or GLS) can be used to fit the explanatory variation 
and simple kriging, with expected value 0, is used to fit the residuals, 
i.e. unexplained variation [6]. The general formulation for the RK 
estimator is:   

Z*(u) = μ(u) + e*(u)
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where μ(u) is the fitted drift, e*(u) is the interpolated residual, *
kβ  are 

estimated drift model coefficients, λα are simple kriging weights and 
e(uα) is the residual at location uα

Equation 3 points out that the z* estimated value at any spatial 
location u is evaluated by summing the trend component, resulted 
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6. Assess the SRTM collocated elevation values related to the 
spatial position of the sample set of elevations. This was 
performed using bilinear interpolation over the SRTM grid 
cells.

7. Apply the KED, RK and CoK procedures using the SRTM and 
the sample set of elevations generating the fused DEMs

8. Use an independent sample set of elevation points for making 
quantitative validations and analyses of the SRTM and the 
fused maps using statistics and RMS metrics.

9. Generate and analyse maps of differences between the fused 
DEMs and the SRTM 

10. Extract drainage networks from the SRTM, KED, RK and CoK 
grids

11. Perform comparative analyses of the drainage networks with 
actual drainage features extracted from a high resolution 
remote sensing image of the studied region

Case Study
As a case study, the above methodology was applied to a geographic 

region located in a Brazilian Southeast geographical region, known 
as Jacarei, state of Sao Paulo. The studied region has the following 
geographical bounding box: w 46o 4’ 4.98’’ to w 46o 0’ 2.82’’ and s 23o 16’ 
2.91’’ to s 23o 12’ 47.23’’. Figure 1 shows the geographical location of the 
region considered in this case study.

Figure 2 shows the spatial distribution of the input data: the SRTM 
and the set of sample points of the region of interest. The samples are 
the hard or primary variable while the SRTM is the soft or secondary 
one. It was used 406 sample points, blue marks in the Figure 2, for 
interpolation and 40 sample points, red marks in Figure 2, for 
validation purposes.

The set of sample points have approximately 0.1 m of height 
accuracy while the SRTM RMS height accuracy is about 5.5 m, value 

The Pearson correlation ρ is also considered:
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In addition, the RMS error eRMS value is calculated for the 
validation sample:
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Qualitative validations

The qualitative validations can be accomplished making 
comparisons among DEM derived products, as contour lines or 
drainage networks, with the actual shapes. Generally, the derived 
products are overlaid on the actual shapes, using different colours 
for example, and visual analyses are performed for the comparisons.  
Also, visual and global statistical comparisons can be also performed 
on maps resulting from the difference between the fused DEMs and 
the input DEM used as reference.

Methodology
The methodology of this work has the following steps:

1. Create a database for a geographic region of interest in a GIS 
with basic information: a SRTM data and a set of sample 
points of high accurate elevations.

2. Perform spatial data exploratory analysis of the basic 
information. 

3. Extract the trends of the basic information creating residual 
stationary information.

4. Assess the spatial variation of the residuals through direct and 
cross semi-variograms, empirical and conceptual.

5. Apply the Ordinary Kriging procedure in the sample set of 
elevations using its conceptual semi-variogram.

Figure 1: Geographical location of the study area.
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procedure applied the 406 sample points, considered as primary 
variable, and the SRTM, as secondary variable. Table 2 reports some 
statistical values of the DEMs presented in Figures 4 and 5. 

A visual analyze of the maps of Figures 4 and 5 shows that the 
integration of the SRTM with the hard sample set allows to obtain a 
more detailed map than the one that was predicted only with the set of 
406 sample points. Moreover, although the visual comparison of the 
SRTM, KED, RK and CoK maps leads to consider them very similar, 
or even equals, the statistical values reported in Table 2 show that they 
have similar statistical values but they are different.

Quantitative and qualitative validations

Tables 3 and 4 report some quantitative metrics, statistics and 
RMS values, related to the accuracy of the resulting predicted 
maps validated by the set of 40 independent sample points. Table 3 
reports percentage of the Standard Deviation (Std Dev) and RMS 

assessed from the validation sample set. The SRTM elevations vary 
between 560.0 m and 794.9 m, with mean value equal to 682.9 and 
standard deviation equal to 43.3 m.  The set of 406 elevation samples 
vary between 557.0 m and 779.7.9 m, with mean equal to 609.9 and 
standard deviation equal to 39.3 m.

It was used the SPRING GIS (Camara et al. [18], Camargo et al. 
[19]), the GsLib (Deutsch et al. [14]), the statistical R language (R 
Core Team [20]) and the TerraHidro (Rosim et al. [16]) software’s to 
develop the proposed methodology for this case study.

Results and Analysis
Estimation results

Direct and Cross semi-variograms from the residuals of the 
SRTM and from the set of 406 sample points are depicted in Figure 3. 

The SRTM semi-variogram was obtained using its grid values 
based on the collocated 406 hard samples and by means of bilinear 
interpolation. Based in the graphics of Figure 3, Table 1 reports the 
parameters of the conceptual semi-variograms used in this work. 
In that table, Hard and Soft are the direct semi-variograms of the 
primary and secondary variables while Hard x Soft is their crossed 
semi-variogram. The semi-variogram structures show that the hard 
data has more variability, greater sill and range values, while soft 
data presents is more homogeneous. The determinants of the nugget 
coefficients and the exponential structure factors, sill and range, were 
checked for lead to a positive definite covariance model [14]. 

Figure 4 illustrates estimated maps resulting from (a) OK applied 
only to the set of 406 sample points, and from (b) KED applied to the 
set of 406 sample points along with the SRTM data as the external 
drift. Figure 5 shows estimated maps from (a) RK applied to the set 
of 406 sample points along with the SRTM data and from (b) CoK 

Figure 2: Input data: (a) SRTM and (b) set of sample points of the study geographical region.

Figure 3: Direct and Cross semi-variograms of the (a) set of 406 sample points, (b) SRTM and (c) set of 406 sample points plus SRTM.

Semi-variogram Model Nugget (m) Sill (m) Range (m)
Hard Exponential 1 462 776
Soft Exponential 1 389 948
Hard x Soft Exponential 0 406 862

Table 1: Parameter of the conceptual semi-variograms of Figure 3.

Min (m) Max (m) Mean Median Std. Dev.

SRTM 560.05 794.92 622.87 614.46 43.30
OK 557.48 778.25 617.54 607.93 37.24
KED 552.81 786.11 621.28 611.98 44.38
RK 555.04 800.05 621.52 612.80 44.62
CoK 555.11 800.96 623.90 615.69 44.11

Table 2: Statistics of the DEMs considered in the methodology of this work.
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improvements relative to their correspondent SRTM values, 5.24 m 
and 5.49 m, while in the Table 4 the improvements are relative to their 
correspondent OK values, 8.48 m and 8.40 m. 

In a qualitative visual analyzes it is very difficult to perceive 
differences comparing the DEM of the Figure 2 and the fused DEMs of 
Figures 4 and 5. Even the Pearson correlation, reported in Table 3, are 
greater than 99 percent, which explains why they show resemblance 
one to another. However, the quantitative validation results presented 
in Tables 3 and 4 show an improvement in the precision of the fused 
DEMs since their Std Devs are lower than the SRTM one. Nevertheless, 
the CoK DEM has a mean value much greater than zero, showing a 

Figure 4: Estimated maps using (a) Ordinary Kriging applied to the set of 406 sample points and (b) Kriging with External Drift applied to the SRTM 
and the set 406 sample points of the study region.

Figure 5: Estimated maps using (a) Regression Kriging and (b) Cokriging maps applied to the SRTM and the set 406 sample points of the study region.

Estimator Mean
(m)

Std. Dev.
(m)

Correlation RMS
(m)

StdDev
Improv. (%)

RMS
Improv. (%)

SRTM 1.84 5.24 9.90*10-1 5.49 0 0
KED 0.78 3.77 9.95*10-1 3.80 28.05 30.78
RK 0.82 3.82 9.94*10-1 3.85 27.10 29.87
CoK 2.88 4.75 9.91*10-1 5.50 9.35 -0.18

Table 3: Validation results with Std Dev and RMS improvements (Improv.) relative to the correspondent SRTM values.

Estimator Mean
(m)

Std. Dev.
(m)

Correlation RMS
(m)

Std Dev
Improv. (%)

RMS
Improv. (%)

OK 0.68 8.48 9.72*10-1 8.40 0 0
SRTM 1.84 5.24 9.90*10-1 5.49 38.21 34.64
KED 0.78 3.77 9.95*10-1 3.80 55.54 54.76
RK 0.82 3.82 9.94*10-1 3.85 54.95 54.17
CoK 2.88 4.75 9.91*10-1 5.50 43.99 34.52

Table 4: Validation results with Std Dev and RMS improvements (Improv.) relative to the correspondent Ordinary Kriging values.

biased outcome of the method, which leads to a higher RMS value. 

From these Tables 3 and 4 it can also be observed significant 
percentages of improvements in Std Dev and RMS accuracies for 
the KED and RK estimators. Therefore, the reported quantitative 
validations demonstrate that, in this experiment, the KED and the RK 
have similar results and they perform better than the CoK considering 
the percentage of Std Dev and RMS accuracy improvements. 

Figure 6 presents maps of differences between the derived DEM 
and the SRTM DEMs (KED-SRTM, RK-SRTM and CoK-SRTM). 
The hard samples were overlaid on the maps to assist analysis. 
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Instead of global information, these maps allow to observe the spatial 
distribution of the differences. Blue regions mean negative differences 
where the SRTM elevation values are greater than the fused DEM. 
Green regions represent more similar values while the red ones show 
SRTM elevation values smaller than the derived DEM. 

From these figures one can perceive that the upper left corner 
presents concentration of greater differences, mainly in the map (a) 
of Figure 6. Greater blue regions also appear in this same map, which 
leads to the perception that the KED approach performs greater local 
modifications in the original SRTM. As it is expected, it can be noted 
that, in general, regions with no hard samples are pictured with green 
hues meaning that the SRTM was not modified in these areas.

Table 5 reports extreme values, minimum and maximum, and 
global statistics of the maps of Figure 6. Analyzes considering the 
results of Figure 6 and Table 5 show more heterogeneity, greater 
standard deviation and greater difference between maximum and 
minimum values, in KED-SRTM than in RK-SRTM which, in turn, 
are greater than in CoK-SRTM map. This means that the original 
SRTM was less modified by the CoK procedure. These results agree 
with the quantitative validation presented in the Table 1. Figure 6 

shows also that the greater positive differences are more concentrate 
in the upper left side of the study region. 

Figure 7 illustrates a reference drainage map, blue line that was 
manually digitalized from a high resolution remote sensing image of 
the considered region. It was used a Rapid Eye multispectral image 
(MMA [21]), taken on Nov/02/2013, having spatial resolution of 5 m 
and a colored composition associating the bands 5, 3 and 2 to the 
red, green and blue color levels. The study region is crossed by a main 
river, called Parateí, along with minor streams directly, or indirectly, 
connected with it. Because the connected streams are too small and 
hard to be identified in the image, in this work only the main river was 
considered as reference drainage information [22].

 Also, drainage maps were automatically extracted from the SRTM 
and the fused DEMs. Figure 8 depicts the drainage network, extracted 
from the (a) SRTM, (b) KED, (c) RK and (d) CoK DEM models and 
the hard sample points, green marks, overlaid on the Rapid Eye image. 

A general visual analyzes of the drainage lines of Figure 8, 
considering the Parateí river as the reference, show that the lines 
agree, or are very close, in most of the spatial locations. There are 
also some regions where they disagree, mainly where the land cover 

Figure 6: Maps of difference between the (a) KED, (b) RK and (c) CoK DEMs and the SRTM DEMs.

Figure 7: Rapid Eye Image of the study area highlighting the Parateí River.

Minimum
(m)

Maximum
(m)

Mean
(m)

Median
(m)

Std Dev
(m)

KED-SRTM -23.96 19.55 -1.59 -1.85 4.92
RK-SRTM -22.92 16.30 -1.35 -1.48 3.07
CoK-SRTM -22.52 17.02 1.03 1.04 1.86

Table 5: Extreme values and statistics of the differences presented in the maps of figure 5.
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is composed by dense and high vegetation, as for example, the black 
square regions in Figure 8. Also, the lack of hard samples did not allow 
capturing the drainage streams at these regions.

It can also be observed that in some areas, as for example inside 
the highlighted ellipse regions in Figure 8, because of the presence 
of hard samples, the extracted lines of the fused DEMs appear closer 
to the Parateí river. Although the CoK extracted lines do not change 
significantly inside these regions.

Conclusions
This work explored some geostatistical procedures that allow 

fusing elevation data obtained from different sources and having 
different representation and height accuracy. It was considered the 
KED, RK and CoK geostatistical methods to obtain, in a case study, 
elevation predictions by integrating SRTM data with a set of high 
accurate set of sample points. Quantitative validations were assessed 
by statistics and RMS metrics using an independent hard sample set 
of points. Also, qualitative analyzes were performed comparing DEMs 
differences and drainage maps extracted from the elevation models. 

The quantitative results of the validations showed improvements 
in the accuracy of the final fused DEM products for the study area. 
The KED and RK yielded similar quantitative results and better 
than the CoK procedure. Therefore, the experiment demonstrated 
that is possible to improve the accuracy of existing DEMs by the 
geostatistical tools considered in this work. Also, qualitative analyzes 
were performed showing that visually better derived products, as 
drainage maps for example, can be obtained from the fused DEMs.

In the future we intend to explore other geostatistical procedures 
that allow the combination of the two types of elevation data 
representations used in this work. Also, other derived products, as 
slope or convexity maps, for example, could be considered to evaluate 
the qualitative improvements of the fused DEMs.
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