
a  S c i T e c h n o l  j o u r n a lResearch Article

Adiredjo et al., Vegetos 2018, 31:1
DOI: 10.4172/2229-4473.1000368

Vegetos- An International 
Journal of Plant ResearchEstd. 1988

 

S
oc

ie
ty 

For Plant Research

All articles published in Vegetos: International Journal of Plant Research are the property of SciTechnol, and is protected by 
copyright laws. Copyright © 2018, SciTechnol, All Rights Reserved.International Publisher of Science, 

Technology and Medicine

Genetic Analysis of the 
Transpiration Control in 
Sunflower (Helianthus Annuus L) 
Subjected to Drought
Afifuddin Latif Adiredjo1*, Pierre Casadebaig2, Nicolas 
Langlade3,4, Thierry Lamaze5 and Philippe Grieu6

Abstract

Stomatal control of transpiration was implied as the major strategies 
by which plants cope with water stress. Here we did investigate the 
genetic control of this process using the following trait: Fraction 
of Transpirable Soil Water threshold (FTSWt) representing the 
threshold of soil water content at which the stomatal control of 
transpiration started. We conducted a progressive water deficit 
experiment using recombinant inbred lines (RILs) of sunflower and 
we analyzed the variation of FTSWt. Quantitative trait loci (QTL) 
mapping was then performed to determine the loci involved and to 
identify the genetic control. This work has shown, for the first time, 
QTL mapping for FTSWt in crops. In this work QTL mapping was 
made in sunflower. 
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Introduction
Soil water availability is the major factor limiting plant productivity 

[1]. The expansion of cropping into water limited environments gives 
more urgency to developing crop genotypes that use water more 
efficiently [2]. The water status of a plant is directly related to the 
difference between the flow of water through the roots 

and leaves in the same time [3]. Drought experienced by the plant 
is defined, at every moment, by water conditions at the terminals of 
the plant, soil and air [4]. Different plants subjected to the same water 
stress do not respond to this stress in the same way. A wide range of 
mechanisms has been summarized by Tardieu and Tuberosa [5]. In 
addition, a significant genotypic variability of these mechanisms has 
been studied in many crops [6,7].

The plant can reduce transpiration by closing its stomata that 
reduces stomatal conductance (gs) that determines gas exchange 
(CO2 and H2O). Ritchie [8] proposed that there might be a response 
function that is common to most soils. He found that plants initiate 
a linear decline in transpiration rate once the fraction of transpirable 

soil water (FTSW) has decreased to about one-third of the total 
transpirable soil water. After reaching that threshold (FTSWt), 
transpiration rate decreased linearly with further soil drying [9]. 
Afterwards, variability of FTSWt have been reported in a wide range 
of crop species and environmental conditions [10-17].

In this study, we used sunflower recombinant inbred lines (RILs) 
as a crop model for quantitative trait loci (QTL) mapping. This crop 
is often reported as a drought-tolerant crop [18-20]. Nevertheless, 
sunflower genotypes are not homogeneously fitted in the use of 
water availability. That is why, in this paper, we study the plant-water 
relation trait, i.e. transpiration control (FTSWt), of sunflower under 
drought by analyzing its variability and mapping the genomic regions 
that are responsible for this trait through QTL analysis. QTL analysis 
provides the opportunity to compare whether different traits have a 
common genetic basis [21]. Besides, an understanding of the sources 
of genetic variation and physiological mechanisms involving facilitates 
the development of an appropriate strategy to breed drought-tolerant 
cultivars [2].

The genetic control of FTSWt remains poorly understood. To our 
knowledge, to date, there have been no reports of determination of 
genetic regions responsible for FTSWt. Marguerit et al. [22] reported 
the results QTL analysis for acclimation of transpiration rate to water 
deficit in grapevines for different range of FTSW 60%, 40% and 20%. 
Therefore, the objective of this paper was to investigate the patterns of 
genetic variation of control of transpiration (FTSWt), as well as their 
genetic control.

Materials and Methods
Plant sources

One hundred and forty eight F8 recombinant inbred lines (RILs) 
and their parents, XRQ and PSC8, were used in the experiment. 
XRQ and PSC8 are parental lines of the “INEDI” RIL population 
developed by INRA [23] and both XRQ and PSC8 behaved differently 
in response to water deprivation [24]. 

Experimental setup and progressive drought stress treat-
ment

A randomized complete block design with three replicates was 
used for the progressive drought stress treatment (three replicates X 
150 genotypes = 450 plants; called ws). There was another replicate 
(150 plants) that was considered as a well-watered treatment, called 
ww. In total, there were 600 plants. The plants were sown in two-liter 
pots that contained a mixture of 50% soil (collected from the field), 
30% organic matter and 20% sand. The research was conducted 
in a greenhouse at the INRA Auzeville station, Toulouse, France 
(43°31’46,94” N; 1°29’59,71” E), in spring 2011.

Greenhouse air temperature was set at 25/18 + 2°C (day/night) 
and relative humidity was 55-75%. The pots were arranged on 100 
scales [25] with six pots per balance. Each pot was covered with a 3 
mm layer of polystyrene sheet to prevent the evaporation of water 
from the soil surface.
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else, NTR = 1                  (4)

where x was FTSW, and a was FTSWt.

(ii)

If x<a, 1 bNTR x b
a
−

= × +

else, NTR =1                    (5)

where x is SWC, a is SWCt,

and the x-intercept was computed as: 

0
1

ax b
b

= − ×
−

                   (6)

Genetic map construction: The genetic map consisted of 2610 
markers located on the 17 LG for a total genetic distance of 1863.1 cM 
and grouped on 999 different loci [27]. The gDNA from the INEDI 
RILs population obtained from the cross between XRQ and PSC8 
lines (210 samples) were genotyped with the Infinium array. All 
genotyping experiments were performed by Integragen (IntegraGen 
SA, Genopole Campus 1 - Genavenir 8, 5 rue Henri Desbruères, 
91000 Evry, France.) and the genotypic data were obtained with 
the Genome Studio software (Illumina) with automatic and manual 
calling. A set of 9832 SNPs were used to produce an Infinium HD 
iSelect BeadChip (Infinium). These SNPs were selected from either 
genomic re-sequencing or transcriptomic experiments. From the 
9832 SNPs, 2576 were polymorphic between XRQ and PSC8. We 
used CarthaGène v1.3 [28] to build the genetic maps. We added the 
genotypic data of markers from a consensus map [29] to assign the 
Infinium SNPs to the appropriate LG.

Statistical Analysis and QTL Mapping
The software of statistical package PASW statistics 18 (IBM, New 

York, USA) was used to analyze genotype and replicate effects by 
analysis of variance (ANOVA) and to estimate phenotypic correlation 
by Pearson’s correlation. Means of the traits were compared using a 
Student-Newman-Keuls (SNK) test (P<0.05). For the FTSW and SWC 
threshold (FTSWt and SWCt) analysis, R software (R Development 
Core Team, 2012) was used. Each NTR value was plotted against 
corresponding FTSW and SWC values. FTSWt and SWCt where NTR 
initiated its decline were determined using a plateau regression.

QTL mapping was carried out using MCQTL, software for 
QTL analysis (http://carlit.toulouse.inra.fr/MCQTL/). The MCQTL 
package is comprised of three software applications. The first 
component, TranslateData reads data from MAPMAKER - like 
files. The second component, ProbaPop computes QTL genotype 
probabilities given marker information at each chromosome 
location for each family and stores them in XML formatted files. 
The last component, Multipop builds the pooled model using the 
genotype probabilities, computes Fisher tests and estimates the model 
parameters [30]. Significant thresholds (P<0.05) for QTL detection 
were calculated for each dataset using 1000 permutations [31] and a 
genome-wide error rate of 0.01 (Type I error). The corresponding type 
I error rate at the whole-genome level was calculated as a function of 
the overall number of markers in the map and the number of markers 
in each linkage group. 

Results
Phenotypic analysis for FTSWt-related traits

We examined the response of NTR to soil drying decreasing 
FTSW. The overall response for all genotypes in transpiration rate 

Seventeen days after sowing, when the plants reached the stage 
of 2 leaves fully developed (L2FD), all 600 pots were watered to field 
capacity, by fully irrigating each pot and then allowing the water 
to drain for 24 h. At field capacity, the mean soil water content 
(SWC)fc in the pots was 39.5%. The 600 pots were then kept without 
irrigation for 17 days. Starting at 17 L2FD, we maintained the ww 
treatment (150 plants) at 30% of SWC (well-watered conditions but 
not saturation) by daily irrigation. The SWC was determined by the 
gravimetric method described by Lambe and Whitman [26]. The ws 
treatment (450 plants) was kept without irrigation until harvest, when 
the permanent wilting point was reached and the SWC was measured 
(SWCwp). The permanent wilting point was reached on the same date 
for all genotypes (at 32 L2FD + 1 day). 

Trait measurement

Threshold of fraction of transpirable soil water (FTSWt): 
Throughout the experiments, the amounts of water in the pots 
were determined by weighing the pots every day. This weighing 
recorded the amount of daily water loss, corresponding to the daily 
transpiration of the plants. For each pot, at the end of the experiment, 
total transpirable soil water (TTSW) was calculated as follows.

  –  fc wpTTSW PW PW=                (1)

where PWfc was the initial pot weight at field capacity and PWwp 
was the final pot weight at wilting point. From these data, the soil 
water status in the pots for each plant can be determined each day 
using the weight of the pot on a given day (PWd), by calculating the 
soil water content (SWC) as follows.

( )  –   /d wp wpSWC PW PW PW=                  (2)

In this study, we normalized SWC by using fraction of transpirable 
soil water (FTSW), as proposed by Sinclair and Ludlow [10]. The 
daily value of FTSW was calculated as the ratio of the amount of 
transpirable soil water remaining in the pot to TTSW:

( )  –   /d wpFTSW PW PW TTSW=                (3)

Transpiration of ws and ww plants was used to determine 
normalized transpiration ratio (NTR). Firstly, transpiration rate was 
calculated per unit leaf area by dividing the daily transpiration rate by 
the leaf area (LA). Secondly, the transpiration rate was normalized by 
dividing each transpiration rate of a ws plant (for each replicate) by 
the transpiration rate of a ww plant. This second normalization gave 
NTR, which accounted for plant-to-plant variation in transpiration 
within each genotype. Due to the large number of plants in the 
experiment, we estimated LA of the plants by using a computer 
image analysis system, winFOLIA (Regent Instruments, Quebec, 
Canada). The leaf images were obtained with a digital camera (Canon 
EOS400d), pictures were taken from above by using a camera tripod.

The measurement of plant response to water deficit (traits related 
to the control of transpiration) used as a regression approach to model 
individual plant response. The parameters from these models were 
used as quantitative traits in the association analysis. Two traits were 
estimated by using break-linear models: (i) FTSWt, the threshold of 
transpirable soil water (FTSW) at which the plant transpiration rate 
(NTR) began to decline, Equation 4, and (ii) SWCt, the value of soil 
water content (SWC) when the plant transpiration rate (NTR) started 
to decline, Equation 5 and 6. 

(i)

If x<a, 1 bNTR x b
a
−

= × +
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to soil drying fitted the general pattern represented by two linear 
slopes (Figure 1). In 2 cases, for the RILs 64 and 107, normalized 
transpiration ratio (NTR) response to fraction of transpirable soil 
water (FTSW) were not determined using the model : these two data 
were not taken into account. NTR at high FTSW was defined by a 
plateau, and at FTSW below a threshold (FTSWt), NTR decreased 
linearly with further decreases in FTSW. The pearson correlation 
between relationship between NTR vs. FTSW and SWC for XRQ 
and PSC8 (Figure 2) shows that there was variability in the threshold 
for the decline in NTR between genotypes. These two genotypes 
represent two contrasting examples in the FTSWt and SWCt values 
between 0.35 and 0.44, and between 0.22 and 0.25 for FTSWt and 
SWCt, respectively (Figure 1). Statistics explaining phenotypic 
variability of all traits and the mean square of genotype from the 
analysis of variance (ANOVA) test are given in Table 1. Results of 
the ANOVA test showed the large effects of genotypes (P<0.001) 
for FTSWt. We provide distributions of RILs means for FTSWt 
and SWCt that are following a normal law (Fig. 2). RILs extremes 
for the traits were commonly exceeded by either parent, indicating 
transgressive segregation for FTSWt. Therefore, in terms of 
phenotypic variability control of the transpiration trait, FTSWt 
varied more than SWCt. 

Quantitative trait loci (QTL) identification

One QTL was identified for FTSWt in the present study (Table 
2). The phenotypic variance explained by the QTL (R2) reached 6%. 

The position of the QTL and the likelihood odds ratio (LOD) profiles 
generated using MCQTL are given in Figure 3. No QTL were detected 
for SWCt.

Discussion
FTSWt-related traits and phenotypic variability 

Genotypic behavior of sunflower subjected to water deficit is 
particularly variable. It results from a combination of several forms of 
physiological behavior, such as the sensitivity of stomatal closure to 
SWC, the capability to extract water from the soil and the tolerance of 
the plant to dehydration. To our knowledge, using a large number of 
genotypes to explore genotypic behavior of sunflower under drought 
has not been reported in literature.

In our experiment, two-segment plateau regression was used 
to determine a breakpoint, the FTSW threshold (FTSWt), where 
NTR began to decline (Figure 2). FTSWt reflects the point at which 
stomata begin to close and then photosynthesis begins to decline [32]. 
FTSWt has been reported for crop plants [33], and specifically for 
sunflower [11,15] in a small number of genotypes. From our results, 
two main and extreme forms of genotypic behavior are highlighted: 
(i) a “conservative” strategy, where the plants react to drought stress 
by closing their stomata when FTSW is still relatively high, and (ii) 
a “productive” strategy, whereby the crop keeps transpiring despite 
increasing drought [34]. Between these two extreme forms, genotypes 
had a wide range of thresholds (from 0.15 to 0.47). PSC8, with FTSWt 

Figure 1: NTR response to the FTSW (a,b) and SWC (c,d) of parental genotypes (PSC8 and XRQ). Dot symbols are mean of measured data and curves 
represent the results of linear regression. FTSWt and SWCt at which NTR began to decrease are shown. 
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of 0.44 was a typical conservative genotype, while XRQ with FTSWt 
of 0.35 was intermediate between conservative and productive 
genotypes (Figure 1a,b). The higher FTSWt value for PSC8 rather 
than XRQ in this study was in agreement with Rengel et al. [24].

The phenotypic variability of transpiration control by sunflower 
RILs in this study was not in accordance with the anisohydric 

behavior which is usually attributed to this species [35]. Anisohydric 
species typically display less sensitivity to stomatal closure in drying 
soil, which is represented by low FTSWt values, than isohydric ones 
[1]. Nevertheless, we observed that the maximum FTSWt value in our 
RILs population was slightly smaller than the maximum FTSWt value 
of Casadebaig et al. [15] using other sunflower genotypes (including 
commercial hybrids). They reported that the highest FTSWt value 

Figure 2: Genotype distribution for FTSWt (a), SWCt (b) of 150 genotypes (148 RILs and two parental lines). Parental means are indicated in each genotype 
distribution of the trait.

Traits Minimum Maximum Mean Std.deviation MSg
FTSWt 0.15 0.47 0.31 0.05 0.009***
SWCt 0.16 0.34 0.21 0.02 0.003***

Table 1: Phenotypic variability of FTSWt and SWCt. Significant at P < 0.001. FTSWt, threshold of the fraction of transpirable soil water; SWCt, threshold of the soil 
water content;. MSg, mean square of genotypes that calculated by analysis of variance, anova.

Traitx Chromosome QTL name QTL position (cM) Nearest marker R2a (%) Additive effectb

FTSWt LG14 ftswt 27.9 (0-107.7) ORS1079 6 +0.006

Table 2: Significant quantitative trait loci (QTL) detected for FTSWt. xThe abbreviations of the traits can be seen in Table 1;  aPhenotypic variance explained by QTL 
effect; bAdditive effect estimated as one-half the difference in homozygotes carrying either allele of parents (XRQ or PSC8), positive values indicate that XRQ allele 
increases the trait value, while negative values indicate that PSC8 allele increases the trait value.

(A)                                                                                                       (B)

Figure 3: Locations of QTL for FTSWt (A) and Likelihood odds ratio (LOD) positions (B) on the genetic map of linkage groups (LG)14. On the LG14 indicate 
the marker position (distance in centimorgan, cM) at the top, before-middle, middle, after-middle, and bottom of LG (from lower position at the top LG and 
upper position at the bottom LG). QTL for biomass is also indicated [27]. 
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reached was 0.63 for a sunflower commercial hybrid, thus making 
it closer to isohydric behavior. Our results and those of Casadebaig 
et al. [15] indicated that the investigated genetic variability in our 
experiment covers both anisohydric and isohydric behaviors. This 
was in accordance with an argument of Schultz [36] and Jones [37] 
that different genotypes within a crop species, and even the same 
genotypes grown in different environments, can exhibit both the 
response types.

Genetic control of FTSWt-related traits

In the present study, transgressive segregation was detected in 
the mapping population. It was mainly observed for FTSWt whose 
minimum and maximum values were extremely and significantly 
different from those of the parental lines (Figure 1a). Genetically, 
transgressive segregation can result from the expression of rare 
recessive alleles [38] or from complementary gene action [39]. Since 
we used RILs population in our work, the transgressive segregation 
had to be due to complementary gene action. 

We compared the QTL position identified in the present study 
with the results obtained by [40,41] for leaf water status-related 
traits using a different mapping population under well-watered and 
water-stressed conditions. This suggests that multiple populations are 
needed for a wide range QTL detections and genotypic distinction 
among breeding materials [42,43]. 

Lastly, we also observed a partly common genetic basis for plant 
responses to soil water deficit, productivity (biomass) and water use 
efficiency by comparing the QTL mapping results in this paper with 
our previous study [27]. From our previous study, QTL for biomass 
was identified on chromosome LG14. In the present study, the 
QTL for FTSWt was identified on this chromosome. These findings 
suggest that the genetic control of FTSWt is dependent on biomass. 
Therefore, detailed characterization of these genomic regions may 
lead to an improved understanding of drought resistance and might 
set the stage for the positional cloning of drought resistance genes 
[41]. 

Conclusion
This is the first QTL mapping of transpiration control in crop 

plants since QTL controlling FTSWt has never been reported in the 
literature. Our results highlight a link between genetic control and 
genetic variability of FTSWt in sunflower genotypes. This work 
also suggests new avenues to investigate the genetic controls over 
FTSWt, thus narrow the range of candidate genes underlying a 
QTL.

This paper complements the study of casadebaig et al. [15] 
that analyzed genotypic behavior of sunflower genotypes by using 
transpiration control trait, as well as the study of Adiredjo et al. [27] 
that used the INEDI RIL population in exploiting genetic variation 
of some important physiological traits. The results will enable 
agronomist and plant breeder to establish strategies for sunflower 
improvement program subjected to drought stress and open a way 
in enhancing the productivity of sunflower by considering FTSWt as 
a valuable trait. 
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