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Abstract
Objectives: Accurate identification of these insects is critical to 
avoiding mistakes in the recognition of vector and non-vector 
species, so the invariant phenotypic patterns displayed by the 
females of L. longipalpis require the implementation of molecular 
methods of identification. Our goal was to examine genetic variation 
in the females of L. longipalpis using the SNPs reported in the 
males of this vector species. 

Methods: We trapped sand flies near houses and domestic animal 
shelters at two localities in the state of Ceará, Brazil, using two 
to five CDC miniature light traps. Genomic DNA was separately 
extracted from each female using 100 µl of Chelex resin, and a 
525 bp fragment of the period gene was used to assess genetic 
polymorphism in the two geographically isolated populations. 

Results: The results indicate the presence of three fixed 
polymorphisms (T124C, C171T, and C424T) within this gene. 
Genetic structure analysis indicated that the studied L. longipalpis 
populations can be divided into two main subgroups (1S-like and 
2S-like), with the ad hoc quantity supporting the number K = 2. 

Conclusion: Collectively, our results suggest a direct relationship 
between the number of spots found in the males’ tergites and the 
genetic variation observed in the L. longipalpis females in the state 
of Ceará. The SNPs observed in the period gene will be useful for 
future studies of molecular eco-epidemiology in areas where these 
species occur in sympatry.
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Introduction
The phlebotomine sand fly Lutzomyia longipalpis sensu lato is the 

principal vector of visceral leishmaniasis (VL) in the New World [1]. 
L. longipalpis males have either one pair of pale spots on the fourth 

tergite (the 1S morphotype) or two pairs on the third and fourth 
tergites (the 2S morphotype). The second pair on the third tergite may 
be smaller than the pair on the fourth and this is sometimes designated 
as an intermediate form [2]. There are reports of intermediate forms of 
L. longipalpis in some localities, especially around the northeast coast, 
indicating intraspecific polymorphism [2]. Several studies have shown 
that spot morphology cannot be used as a species-specific character 
[2,3]. Although these patterns of pale spots are not species-specific, 
they may be useful in identifying sympatric species in localities where 
intermediates are very rare, as occurs in Sobral [4], Jaiba, and Estrela 
de Alagoas [5]. The polymorphisms in the longer fragment of the 
period gene strongly suggest that this might also be the case in Bodocó 
and Caririaçu [6].

Molecular (microsatellite markers and speciation genes) and 
behavioral (sexual pheromones and courtship/mating sounds) 
analyses have also demonstrated the existence of differences between 
the 1S and 2S morphotypes and have provided further evidence of 
a L. longipalpis species complex [7]. Unlike the males, however, the 
females are morphologically undistinguishable: they do not present 
abdominal pale spots (either 1S or 2S), and this causes difficulties in 
studies of courtship and mating behaviors.

In Brazil, Ceará state has the third-highest number of VL cases, 
about 12.2% of the total reported in the country. Over the past 10 years, 
4351 autochthonous cases were recorded in Ceará, and 578 of these 
cases (~13.3%) occurred in the municipality of Sobral [8]. In Sobral, 
two sympatric populations of L. longipalpis have exhibited differences 
in their copulatory courtship sounds (P3 and B), sex pheromones 
(9-methylgermacrene-B and cembrene), and ethological characters, 
as well as in their genetic variability as detected by molecular markers 
[6,7,9].

Multilocus analyses have also been performed on the L. longipalpis 
complex [10]. Among the studied loci, period (per) is widely known to 
be involved in the control of Drosophila circadian rhythms in eclosion 
and locomotor activity [11,12]. Also, period controls a feature of the 
“love song” that Drosophila males produce during courtship [13]. In 
sand flies, per has been utilized in population genetic studies to identify 
possible members of the L. longipalpis complex in Brazil [4,6,10].

Studies aiming to evaluate the genetic structure of the females 
of L. longipalpis populations have not been performed before, due to 
the females’ monomorphic character. Using analysis of microsatellite 
loci and pheromone types, however, identification of the females is 
now possible, and so the different population genetics of the females 
and males in this complex can now be studied [14]. In contrast to 
the females, several taxonomic, evolutionary, and behavioral studies 
have been performed using L. longipalpis males [4,15-18]. Accurate 
identification of these insects is critical to avoiding mistakes in the 
recognition of vector and non-vector species [19], so the invariant 
phenotypic patterns displayed by the females of L. longipalpis require 
the implementation of molecular methods of identification. Our goal 
was to examine genetic variation in the females of L. longipalpis using 
the SNPs reported in the males of this vector species [6].
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Materials and Methods
Field collection and identification of phlebotomine sandflies

Sand fly trapping was carried out in Sobral (03°41′15″S; 
40°21′5″W) and Caririaçu (07°02′31″S; 39°17′02″W) in the State of 
Ceará, Brazil. Both localities have a climate characterized as BSw′h′ 
according to the Köppen classification [20], with temperatures ranging 
from 23 °C to 36 °C and low annual rainfall (936 mm to 1100 mm). 
Both localities also are considered part of the Caatinga biome, with 
vegetation composed mainly of ligneous and herbaceous species with 
a high degree of xerophily.

Sand flies were trapped in the vicinity of houses and domestic 
animal shelters using two to five CDC miniature light traps positioned 
approximately 0.6 m from the ground. Collections were made from 
April 2013 to September 2014. Sand flies were identified according to 
Young and Duncan [21], and L. longipalpis females were separated for 
analysis. For the capture of the flies, consent from household owners 
was obtained before setting traps in and around their homes, and also 
near the shelters of domestic animals.

DNA extraction, PCR, and sequencing

Genomic DNA was separately extracted from each female using 
100 µl of Chelex resin (Bio-Rad, Hercules, CA, USA) based on the 
protocol described by Costa Junior [6]. For each DNA sample, a 525 
bp segment of the period gene [22] was amplified by PCR using a 
Master Mix Kit (Promega, Fitchburg, WI, USA). The amplicons were 
purified using the Genomic DNA Purification Wizard Kit (Promega, 
Fitchburg). Bi-directional sequencing reactions were performed on 
each purified PCR product using the BigDye terminator (Applied 
Biosystems, Foster City, CA, USA) and analyzed using an ABI3130 
Sequence Analyzer (Applied Biosystems, Foster City). Each sample 
was sequenced in duplicate and the sequencing results evaluated 
with the Pregap4 program [23] based on the values of Phred 40 [24]. 
Heterozygous individuals were not observed. Consensus sequences 
were obtained using the Gap4 program [23] and deposited in GenBank 
under accession numbers KP144145 to KP144180.

Phylogenetic analysis 

Of the 53 sequences of L. longipalpis females obtained for the 
period gene, 23 were from Sobral and 30 from Caririaçu. Sequence 
alignment was performed using the Muscle program present in 
MEGA v. 5.1 [25].

To generate a minimum evolution tree using MEGA v. 5.1 and 
to assess the consistency of the branches, the bootstrap test [26] with 
1000 pseudo-replications was used. The sequences corresponding to 
the period gene in 1S and 2S male L. longipalpis from both localities 
(KF479047-KF479051, KF479106-KF479109, KF479075-KF479079, 
and KF479141-KF479145) were used as external groups. 

The conserved and variables sites (parsimony-informative and 
singletons) were also verified using MEGA v. 5.1. For optimal viewing 
of polymorphisms, the parsimony-informative sites were exported 
into sequence logos using Weblogo v. 3.2 [27]. For the identification 
of SNPs, comparative analyses were done using the period sequences 
of L. longipalpis males with the 1S and 2S phenotypes, as described by 
Costa Junior [6].

Population structure

The genetic structuring of the L. longipalpis populations was 
verified using Structure v. 2.3 [28] with a model-based approach. 

Markov Chain Monte Carlo (MCMC) simulations were performed 
with 100,000 interactions of the burn-in period and followed by 
1,000,000 steps. For each value of K (1 to 10), 10 interactions were 
performed to estimate the K values, and the most likely population 
(or cluster) number was determined by ΔK analysis, as described by 
Evanno [29].

Genetic diversity

Intra-population genetic diversity was assessed in terms of 
haplotype and nucleotide diversity, K value (number of genetic 
groups), number of polymorphic sites, and number of transitions and 
transversions; diversity was measured using DnaSP v. 4.0 [30] and 
Arlequin v. 3.5 [31].

Genetic differentiation was assessed with the pairwise fixation 
index Fst using Arlequin v. 3.5 [31]. The average number of 
substitutions per site among populations (Dxy), the total number of 
substitutions per site among populations (Da), the number of shared 
polymorphisms among populations (Ss), and the number of fixed 
differences among populations (Sf) were calculated using DnaSP v. 
4.0 [30].

Results
Altogether, 53 L. longipalpis females were analyzed. The analyzed 

sequence region (525 bp) exhibited 63 (12%) polymorphic sites, 
including 39 (∼61.3%) parsimony-informative sites and 24 (∼38.7%) 
singletons. Among the polymorphic sites, 73% of the nucleotide 
substitutions were transitions and 27% were transversions (Table 1).

Three single nucleotide polymorphisms (SNPs) were identified 
within the 525 bp fragment of the period gene used in our analyses. 
Based on the SNPs, we found 22 1S-like specimens (12 FCAR and 
10 FSOB) and 31 2S-like specimens (18 FCAR and 13 FSOB). All 
SNPs can be used to separate the phenotypes (1S and 2S). The SNPs 
identified at nucleotide positions T124C and C171T, the first and 
second nucleotides in the 1S and 2S phenotypes, respectively, are 
located within exon 1 and are fixed in L. longipalpis females from both 
localities in Ceará (Figure 1). The SNP identified at position C424T 
(within exon 2) is fixed in the L. longipalpis females from Sobral and 
Caririaçu, just as it is in L. longipalpis males.

In the genetic structure analysis of L. longipalpis females, with 
each population assessed separately, two distinct genetic groups 
associated with abdominal spot patterns were observed, with each 
sequence possessing a probability (Q) greater than 80% of belonging 
to each genetic group (Figure 2). When sequences from both localities 
were combined, the genetic assignment test indicated the presence 
of two genetic groups associated with the 1S and 2S morphotypes, as 
suggested by the Δk peak that indicated the presence of two genetically 
distinct populations.

The minimum evolution analysis revealed two distinct and well-
supported clades with bootstrap values of 80%. This result indicates 
that the separation is associated with the abdominal spots (1S and 2S) 
of L. longipalpis males (Figures 3 and 4).

Similarly, when Fst was used to verify the genetic structuring at the 
two localities (Caririaçu and Sobral), the presence of two morphotypes 
related to 1S and 2S was again observed. The L. longipalpis female 
1S-like populations of Caririaçu and Sobral display low Fst values 
when compared to each other, forming a genetically similar group 
(Group 1S-like). A similar pattern was observed when comparing the 
2S-like populations amongst themselves. However, the Fst values were 
the highest when comparing the two different phenotypes, even from 



Citation: Haruna A, Daskum AM (2018) Malaria and Haematological Parameters of Pregnant Women Attending General Hospital Geidam, Yobe State, Nigeria. 
Vector Biol J 3:1.

• Page 3 of 5 •

doi: 10.4172/2473-4810.1000125

Volume 3 • Issue 1 • 1000125

Samples N Hd π NS H K TS\TV S Pi
Sobral 1S 10 1.0000 0.01636 27 10 8.55556 21\6 13 15
Sobral 2S 13 1.0000 0.01206 20 13 6.30769 16\5 7 14
Caririaçu 1S 12 1.0000 0.01721 28 12 9.0000 19\11 12 17
Caririaçu 2S 18 1.0000 0.01395 34 17 7.29412 26\11 19 16
1S-like full* 22 1.0000 0.01692 37 22 8.84848 28\11 15 23
2S-like full* 31 0.99785 0.01317 38 30 6.88602 29\12 20 19
Total 53 0.99927 0.02091 63 52 10.93759 46\17 24 39
N, sample size ; Hd, haplotypic diversity.
π, nucleotide diversity ; NS, number of polymorphic sites.
h, haplotype ; K, average number of nucleotide difference ; TS\TV, number of transitions\number of transversions.
S, singletons ; Pi, parsimony-informative sites
*All females 1S-like and 2S-like.

Table 1: Intra-population genetic diversity measures for each sample. 

Populations Fst Dxy Da Ss Sf
Sobral 1S Sobral 2S 0.41906 0.02446 0.01025 8 1
Caririaçu 1S Caririaçu 2S 0.48151 0.03004 0.01447 10 2
Sobral 1S Caririaçu 1S 0.01095 0.01697 0.00019 18 0
Sobral 1S Caririaçu 2S 0.40014 0.02526 0.01011 11 1
Sobral 2S Caririaçu 1S 0.50063 0.02931 0.01467 8 3
Sobral 2S Caririaçu 2S 0.00162 0.01302 0.00002 17 0
1S-like full* 2S-like full* 0.45395 0.02755 0.01251 14 1
Fst : pair-wise genetic differentiation.
Dxy : average number of nucleotide substitutions per site between populations.
Da : number of net nucleotide substitutions per site between populations.
Ss : number of shared polymorphisms between population pairs.
Sf :  number of fixed differences between population pairs.
*All females 1S-like and 2S-like.

Table 2: Genetic differentiation among L. longipalpis populations.

Figure 1: Map of Ceará showing the localities of Sobral and Caririaçu, where the females of Lutzomyia longipalpis were collected.

Figure 2: Schematic representation of polymorphisms in a 525 bp fragment of the period gene using Weblog. Shown are the sequences obtained from L. longipalpis 
females collected in Sobral and Caririaçu, Ceará, Brazil. Font size is indicative of the frequency of a nucleotide at any given site. Fixed (blue arrows).
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the same locality (Table 2). Identical values of Fst were observed when 
populations of L. longipalpis males from the municipalities of Sobral 
and Caririaçu were examined [6].

Discussion
Analysis of the parsimony-informative sites indicated the presence 

of two group of female Lutzomyia longipalpis (1S-like and 2S-like). 
In a previous study, L. longipalpis males have been assessed for gene 
polymorphisms in the period gene with the aim of distinguishing 
the 1S and 2S morphotypes based on four SNPs in the populations 
of Sobral and Caririaçu [6]. These results indicate that there may be 
prezygotic barriers between the members of the L. longipalpis species 
complex, as suggested by Maingon [14] using microsatellite data and 
sex pheromones.

The fixed polymorphisms (T124C, C171T, and C424T) observed 

in the period gene will be particularly useful for the differentiation of 
1S and 2S females in localities where they occur as sympatric species, 
just as they are in male L. longipalpis [6]. We also identified two sites 
with high frequencies that can be used in combination as markers for 
cryptic species occurring sympatrically in Sobral and Caririaçu. In 
male L. longipalpis, a fixed SNP causing a missense mutation in the 
amino acid sequence was previously identified in the gene paralytic, 
and it was able to separate the two main groups of L. longipalpis that 
produce different copulation songs [15,18]. The period gene is an 
effective tool to identify members of a species complex, as proved in 
Lutzomyia umbratilis [32].

The minimum evolution approach for L. longipalpis females 
collected in Caririaçu and Sobral indicated the presence of two 
genetically separated populations, and each collected sample belonged 
to either the 1S or the 2S morphotype. Our analyses also indicated 
that these two genetically distinct populations are correlated with 
abdominal spot patterns, as previously suggested for sympatric 
populations of L. longipalpis [6,10].

Conclusion
The SNPs observed in the period gene were useful to relate L. 

longipalpis females to the 1S and 2S phenotypes of the males, and they 
may be useful in the design of probes for future studies of molecular 
eco-epidemiology in areas where these species occur in sympatry.
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