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Abstract
In this paper we derive the Green’s function of the wave equation 
for a fractured dissipative HTI medium. Inside the fractures there is 
a viscous fluid which adds to the attenuation of the wave. Previous 
works have been done for the elastic medium where the stiffness 
tensor have all real components. In this scenario the host rock and 
the fluid inside the fractures both have viscoelastic properties. Thus, 
complex terms in the stiffness tensor has been introduced to account 
for this viscoelasticity. Finally, we arrive to a Green Christoffel type 
of equation with additional complex terms due to the introduction of 
viscoelasticity. We then perform a Fourier Transform to solve for the 
Green’s function and finally an Inverse Fourier Transform to obtain 
the Green’s function in (x,t) space. This Green’s function can be 
used to determine how a wave passing through a viscoelastic layer 
(e.g. hydrocarbon layer) is changed after passing through it. Thus, 
in turn it can be used to detect hydrocarbon layers. 
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derived the Green’s function for the anisotropic viscoelastic media. 
General stiffness tensor for the orthorhombic and TI medium is used 
with no involvement of specific medium related stiffness tensor that 
properly reflect the characteristics of a viscoelastic rock.

Previous work by Vshivtsev et al., 1993 [3] have derived the 
Green’s function of the wave equation for an Elastic and Anisotropic 
media. Here in this paper we have followed almost the same process 
except now viscoelasticity in the host rocks as well as in the fractures 
has been introduced. Thus, the Stiffness Tensor now has complex 
terms Chichinina et al., 2006 [4]. The derivation is done step by step 
in the following sections as simply is possible (Figure 1).

Theory: (The formulation of the problem)

We know the normal Hooke’s law for the Elastic case as: 

ij ijkl klCσ ε=                    (1)

Where σ is the stress, Cijkl the Stiffness tensor which is a 4th rank 
tensor and ε is the strain. Now if we have viscosity in our system we 
have an added term in the Hooke’s law equation.
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           (2)

Here ηijkl is the 4th rank Viscosity tensor and ‘t’ is time. 

From continuum mechanics we have the wave equation as follows:
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Here ‘ρ’ is the density of the medium and ‘u’ is the displacement of 
a particle of the medium through which the wave passes.

Let us now we differentiate w.r.t. xj
2 2

ij ijkl ijklk kl kl
ijkl kl ijkl

j j l j l j j
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x x x x x x t t x
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ε η
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= + + +
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Cijkl and  ηijkl does not change with xj , thus the derivative w.r.t. xj  
gives 0.

Strain can be written in the form of derivative of displacement as 
follows:

Introduction
Green’s function is used in mathematics to solve inhomogeneous 

boundary value problems. In the context of this paper, to get an idea 
about its physical interpretation, we can define Green’s function as the 
response of the medium on the force action. To elucidate this further 
let’s take the example of a drum and a stick. When the stick strikes 
the drum, it vibrates and produces sound. Now, if the same drum is 
struck by a different object such as a hammer it vibrates differently, 
producing a different sound. This is where the Green’s function 
comes into picture. If we can construct a function that contains all the 
properties of the system (in this case the drum) such that irrespective 
of the object that strikes the system (drum), we can determine the 
response of the system. We only need to know the force exerted by 
the object (stick or hammer) on the system. Thus, one property of the 
Green’s function we can observe from here is that it is independent of 
the force on the system.

In Bretin and Wahab, 2011 [1] and Vavrycuk, 2007 [2] they have 

Figure 1: The Problem.
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Substituting  in  and  we get the Modified Wave Equation
2 2 3
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i k kl
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∂ ∂ ∂ ∂ ∂∂
               (6)

Let’s consider a Plane Wave passing through the medium:
( )i iik n x Vt

iu Ae −=            (7)

Substituting the Plane Wave equation in  we get,

( )2 0ik ik ik ki D V uω ρ δΓ − − =            (8)

This is the Modified Green Christoffel Equation

Where, V is the Phase Velocity and thus V
k
ω

= kV ω⇒ = , 

And i k ikU U δ=  (Internal Tensor Product). And ik ijkl j lC n nΓ =  , 
ik ijkl j lD n nη= .

Solving for Green’s function:2
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Now Converting to Fourier Space:
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Substituting  in  we get:
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Let: ( )ik ik iki DωΓ − = Π  and ρV2= γ

Thus, we get:

( ) 1
km G ( , ) .ik Iω γ −Π −= k                (12)
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Let the Roots or Eigen values of .ik IγΠ −  be γ1, γ2 & γ3

And Phase Velocity Corresponding to the Eigenvalue γa is: a
aV γ

ρ
=

In terms of the Eigenvalues/Roots the Determinant can be also 
written as:

1 2 3( ) ( )( )( )γ γ γ γ γ γ γ∆ = − − −    (15)

Thus,
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Where ( )ikA a=  is the matrix of the cofactors of the expanded 
Matrix .

The Cofactors are:
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The components ika  are derived by a cyclic permutation of the 
indices 1 → 2 → 3 → 1. Now, we have to represent  in the form of a 
sum of simple fractions with denominator exponents ( ) p

aγ γ− . Here 
‘p’ must not exceed the multiplicity of the respective root aγ of.

Solving for the Green’s function in K-space:

Representing Equation  in the form of a sum of simple fractions. 
Here three cases may arise depending on the multiplicity of the roots.

Case I: 3 different roots
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Where, 1 2 1 2 2 3 2 3 3 1 3 1( ) ( ) ( )Q γ γ γ γ γ γ γ γ γ γ γ γ= − + − + −  

So, the Green’s Function for this Case is:
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Case II: 2 common roots

2
1 2 2

( )
( ) ( )

f a b cγ
γ γ γ γ γ γ γ

= + +
∆ − − −

              (21)

By method of partial fractions, we get:

( ) 1 1 1 2
2 2 2

1 2 1 21 2 1 2 2

( ) 1 ( ) 1 ( ) 1. 1
( ) ( ) ( )( ) ( ) ( )ik

A A AI γ γ γγ
γ γ γ γ γ γγ γ γ γ γ γ

−       
Π − = + − +            − − −− − −      

                (22)

Thus, the Greens function for this case is:
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This is the most common case, even the isotropic medium falls 
in this category.

Case III: 3 common roots

2 3
1 1 1

( )
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   (24)

By method of partial fractions, we get the Greens function:
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This is for theoretical interest only and has physical meaning only 
in locally small physical volumes.

Results
The fluid inside the fractured medium can be represented by a 4th 

rank Viscosity tensor which can be written as:
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(26)
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Where η1 and η2  is the Bulk and Shear viscosity respectively. 

The Stiffness Tensor C of the effective fractured HTI medium 
without attenuation [5]:
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Here ΔN and ΔT  is known as the normal and tangential weakness 
(0<ΔN <1, 0<ΔT <1) and both are dimensionless [6]. The constants λ 
and μ are the Lamé constants of the Host rock.

For the dissipative HTI media we use the Complex Stiffness 
Tensor C, obtained from the Real stiffness Tensor C  by substituting 
the real weaknesses ΔN  and ΔT  with complex weaknesses ΔN  and ΔT:

          (28)

Thus, we get the Complex Stiffness Tensor as:
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Substituting  and  in  and after solving we get the complex 
eigenvalues that corresponds to the velocities as:
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Thus, we have 2 roots common and 1 root different. This 
corresponds to the 2nd case and the Green’s function can be 
represented by .

Substituting the Eigenvalues  in  we get the Green’s function in 
Fourier Space as:
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Where:
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Now we apply the Inverse Fourier Transform to get the Green’s 

function in (x,t) space.

The Green’s function in (x,t) space

In the previous section we have obtained the Green’s function in 
the Fourier space. To obtain it in the (x,t) space, an Inverse Fourier 
transform have to be performed as follows:
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Each of the terms in the above matrix  have to be integrated 
separately and since there are only two unique terms, it saves us a 
lot of work as we only have to do two integrations.  Since there are 
complex variables involved, a contour integration needs to be done 
properly choosing the poles that are inside the contour. Once the 
poles that satisfy the required conditions are selected we find the 
residues around them using Cauchy’s Residue Theorem.

For both the unique terms while integrating over “ω” the contour 
is taken as in an anti-clockwise direction (Figure 2). Now the principle 
of causality (effects cannot precede the cause) is used to select the 
poles of interest. In the term e-iωt, (-iωt) always must be positive to 
maintain the anti-clockwise direction of the contour. Thus, for (t >0), 
ω must be less than 0 for (-iωt) >0. Similarly, for (t<0), ω must be 
greater than 0 for ((-iωt))>0. By the principle of causality, we reject 
the poles in the (t<0) region thus we calculate the residue for the poles 
only in the lower half where ω<0.  

Figure 2: The contour for the integration over ω.

Figure 3: The contour for the integration over k.
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Similarly, while integrating over “k” the contour is taken as in an 
anti-clockwise direction (Figure 3). As the integration limits are from 
0 to O the contour is taken only in the upper half and the poles in the 
lower half of the plane are ignored.

So finally after the integration of the two unique terms we obtain 
the greens’ function in (x,t) space as:
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Conclusion
So, the Green’s function is finally derived. This Green’s function 

can subsequently be used to interpret many wave scattering, 
reflection, refraction, and propagation effects where viscoelastic layers 
are present. Thus, subsequently it can be used for determination of 
hydrocarbon layers, as hydrocarbons have viscoelastic properties. 
Further works on this topic will follow.
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