
Abstract

Image resizing is a key technique for displaying images on
different devices, and has attracted much attention in the past
few years. This paper proposes a rust image resizing algorithm
based API that is superior to other image resizing techniques
for website image resizing. The resizing algorithm employs a
sophisticated row-columns decomposition convolution through
Lanczos window function. The research was conducted by
comparing the performance and speed of various image
resizing methodologies, including python PIL and image
magick, with rust image resizer API. The results of the study
show that the Rust image resizer API outperforms the other
APIs in terms of speed, efficiency, and overall performance.
The API is designed to take advantage of Rust's memory
safety features and efficient concurrency model, which allows it
to process images quickly and accurately. Further research is
recommended to explore the potential of the rust image resizer
for other applications beyond website image resizing.

Keywords: Rust; Image; Resizing; Convolution; Concurrency;
Latency

Introduction
Images are an essential part of contemporary websites since they

improve their visual appeal and help viewers understand key
information. New requirements are placed on digital media by the
variety and adaptability of today's display devices. For instance,
designers must develop several web content alternatives and devise
various styles for various devices. Additionally, HTML and other
standards can permit dynamic modifications to the text and page
layout [1]. Even though they are one of the main components of
digital media today, photographs often have a rigid size and cannot
automatically change to match different layouts. High-quality picture
usage can also result in slower website loading times, which can have
a detrimental effect on user experience and even lower a site's SEO
rating. Other situations where an image's size or aspect ratio must
change include printing on a specific paper size or resolution, or fitting
onto different displays like those on cell phones or PDAs. Standard
image scaling is insufficient since it ignores the substance of the image
and often can only be performed equally. Since cropping can only

remove pixels from the image's periphery, it has some limitations [2].
Only by taking into account the image content and not just geometric
restrictions can more effective resizing be accomplished.

Materials and Methods
A multimedia (computational) difficulty is resizing the visual

content to fit multiple display sizes, from as little as an iPhone screen
to as large as that of a TV over 100 inches. It entails converting
multimedia information to fit a range of aspect ratios and screen
resolutions on various target display devices. Rescaling the image
becomes difficult without sacrificing visibility, sharpness, content
contrast, and other factors that determine the spatial resolution's
quality [3]. Effective picture resizing techniques that can maintain the
contents of the photos are needed to fit the images on different screen
sizes. Two common picture retargeting operators are utilized to
accomplish the task: uniform scaling and cropping. Various
sophisticated and effective strategies must be created due to various
limitations like quality degradation and computation time
requirements in these operators. If the value of the scaling factors is
either too large or too small, resizing an image with the aid of a
scaling operator results in image distortion. However, when scaling an
image, the cropping operator causes information loss. It can be
inferred that in a real world scenario such as uploading pictures from a
camera often means [4].

Larger images=more storage=greater outgoing traffic

These elements provide a significant challenge for mobile devices
because even with a poor connection, one must still pay for traffic
[5-8]. High quality photographs are frequently overkill, forcing
numerous websites and mobile apps to downscale each and every
image they receive to significantly lower levels. Large photos
sometimes waste resources for numerous users and require additional
routines for developers (Figure 1).

Figure 1: Original image to left and resized image to right.
resizing resulted in a pixelated image.

New data points can be produced from existing data points through
the technique of image interpolation. To create a new, scaled image,
these additional data points or pixels are combined with the ones that
already exist [9]. When compared to the original image, the image that
was downsized is of inferior quality. The majority of recent studies
concentrate on roughly matching the quality of scaled photos to the
original image. The size of photographs can be expanded or contracted
using image interpolation techniques in a straightforward manner [10].
There are numerous different interpolation techniques, and each one
gives the finished image a distinctive appearance (Figure 2).
Therefore, it is ideal if the quality, or discernible difference for each
pixel, is maintained during the scaling process. Image interpolation

Awasthi A, et al., J Comput Eng Inf Technol 2023, 12:6 Journal of Computer
Engineering &
Information Technology

Research Article A SCITECHNOL JOURNAL

All articles published in Journal of Computer Engineering & Information Technology are the property of SciTechnol and
is protected by copyright laws. Copyright © 2023, SciTechnol, All Rights Reserved.

Highly Scalable Image based API
Management
Arunabh Awasthi, Ajit Patel* and Akshat Agrawal
Department of Engineering and Information Technology, Acropolis Institute of
Technology and Research, Madhya Pradesh, India

*Corresponding author: Ajit Patel, Department of Engineering and Information
Technology, Acropolis Institute of Technology and Research, Madhya
Pradesh, India; E-mail: ajitpatel7389@gmail.com

Received date: 09 May, 2023, Manuscript No. JCEIT-23-98160;
Editor assigned date: 12 May, 2023, PreQC No. JCEIT-23-98160 (PQ);
Reviewed date: 26 May, 2023, QC No. JCEIT-23-98160;
Revised date: 10 July, 2023, Manuscript No. JCEIT-23-98160 (R);
Published date: 17 July, 2023, DOI: 10.4172/2324-9307.1000294

works in two directions, and tries to achieve a best approximation of a
pixel's color and intensity based on the values at surrounding pixels
[11].

Figure 2: Illustrates how scaling/resizing using two dimensional
image interpolations works.

A hybrid image sampling algorithm
Our proposed solution describes an image sampling algorithm

which features fast down sampling and image management methods.
This hybrid algorithm is a novel approach to image resizing, which
combines the benefits of Lanczos interpolation and convolution image
sampling algorithm implemented in rust lang [12]. Rust Lang was
chosen as language of choice for the implementation in view of the
following points.

• Rust is a high-performance language that can generate fast and
efficient code, which is important for image processing applications.
The hybrid algorithm involves complex computations and memory
management, and rust's memory safety guarantees and low-level
control can help optimize the performance of the algorithm.

• Rust provides excellent support for concurrency, which can be used
to parallelize certain aspects of the hybrid algorithm. This can
improve the algorithm's efficiency, especially when processing
large-scale images [13].

• Rust's ownership and borrowing system can help prevent memory-
related bugs and ensure the correctness and safety of the algorithm
[14]. This is important for image processing applications, as errors
can lead to incorrect results or even security vulnerabilities.

• Rust is a cross-platform language that can be compiled to run on
various operating systems and architectures. This can make the
hybrid algorithm more accessible and useful for different types of
applications and environments.

Implementing the hybrid algorithm in rust language can provide
several benefits, including improved performance, concurrency
support, safety, and portability [15].

The hybrid algorithm aims to improve the speed and quality of
image resizing, particularly for large-scale images. The convolution
Image sampling algorithm is known for its ability to preserve the
sharpness and clarity of images, but it can be computationally
expensive. On the other hand, the Lanczos interpolation technique is
faster but may result in a loss of image quality [16]. By combining the
two techniques, the proposed hybrid algorithm can achieve a balance
between speed and image quality. The experimental results
demonstrate that the hybrid algorithm outperforms existing methods in
terms of both speed and image quality, making it a promising solution
for image resizing applications.

Furthermore, the proposed hybrid algorithm utilizes parallel
processing and memory optimization techniques to further enhance its
efficiency. The algorithm is implemented and tested on a variety of
image datasets, including natural scenes, portraits, and objects, and the
results show significant improvements in both speed and quality
compared to existing state-of-the-art techniques.

The contributions of this project are twofold. Firstly, the proposed
hybrid algorithm offers a practical solution to the problem of high-
quality image resizing with reduced computational cost. Secondly, the
combination of two well-established techniques in image processing
provides a novel approach that can potentially be applied to other
image-related tasks [17].

The proposed hybrid algorithm can be applied in a wide range of
applications that require image resizing, such as image compression,
video streaming, and mobile devices. The ability to resize images
quickly and with high quality is crucial in these applications to reduce
bandwidth usage and improve the user experience.

Future work on this project could focus on optimizing the hybrid
algorithm for specific hardware platforms, such as GPUs and mobile
devices, to further improve its efficiency. Additionally, the hybrid
algorithm can be extended to handle more complex image processing
tasks, such as super-resolution and image restoration, by incorporating
additional techniques and algorithms.

In conclusion, the proposed hybrid of Lanczos interpolation and
convolution image sampling algorithm provides a practical solution
for fast and high-quality image resizing. The combination of these two
techniques offers a unique approach to image processing that can
potentially be applied to other related tasks. The experimental results
demonstrate the superior performance of the proposed algorithm,
making it a promising solution for real-world applications in image
processing.

Testing
Purpose of testing: The primary objective of testing the image

resizing API is to validate the correctness and effectiveness of its
underlying algorithms, and to ensure that the API is capable of
delivering superior image resizing results compared to other
techniques used in website image resizing. Additionally, the testing
process serves as a quality control mechanism for the API, with the
aim of identifying and fixing bugs, errors, and other defects that may
negatively impact its performance and user satisfaction [18].

Testing approach: We employed a testing methodology that
combined manual and automated testing techniques to evaluate the
image resizing API. The automated testing was performed using
pytest, a popular testing framework for python-based applications. We
used pytest to automate the testing of the API's functionality, ensuring
that all test cases were executed consistently and reproducibly. The
manual testing was conducted to validate the results of the automated
testing and to gain a deeper understanding of the API's behavior in
real-world scenarios.

Test cases: Our test cases were designed to evaluate the image
resizing API's performance in various scenarios, including resizing
images of different sizes, formats, and resolutions, as well as testing
the quality, speed, and accuracy of the resized images. We used a
range of machine specifications and parameters in our testing,
including.

• We used a machine with an Intel core i7 processor and 16 GB of
RAM for our testing. We chose this machine because it provided a
good balance of processing power and memory for our testing
needs.

• We used a variety of image sizes in our testing, ranging from small
images (less than 100 KB) to large images (over 10 MB). The
average image size in our test set was approximately 8 MB.

Citation: Awasthi A, Patel A, Agrawal A (2023) Highly Scalable Image based API Management. J Comput Eng Inf Technol 12:6.

Volume 12 • Issue 6 • 1000294 • Page 2 of 5 •

• We tested the API using different parameters, such as the resizing
method (bicubic, bilinear, or Lanczos), output format (JPEG or
PNG), and resizing ratio.

Results and Discussion
 Our result revealed that the image resizing API was effective in
delivering superior image resizing results compared to other techniques

used in website image resizing. We observed that the API was able to
resize images with minimal loss of quality, while maintaining a high
level of accuracy and speed. However, we also encountered some
issues during testing, such as slow performance on larger images,
which we were able to address by optimizing the API code (Table 1).
We also identified areas for future improvement, such as incorporating
more advanced machine learning techniques to further enhance the
API's accuracy and speed.

Parameter Python Rust Parameter Python

Image format JPEG

15.21

Image format JPEG

Color space RGB Color space RGB

Resizing algorithm Lanczos Resizing algorithm Lanczos

Number of images 100 Number of images 100

Average image size 8 MB Average image size 8 MB

Scaling ration -80% Scaling ration -80%

Total time (seconds) 50.28 Total time (seconds) 50.28

The following table summarizes the results: We observed that rust
was the fastest. Python had the slowest performance (Table 2).
However, it should be noted that the performance difference between

rust and python was not significant for small resolution images, and
the choice of language may depend on other factors such as ease of
use, availability of libraries, and developer expertise (Table 3).

Technique Type Computational
complexity

Memory requirements Edge preservation Timing (ms)-1
MPix image

Nearest neighbor Non-adaptive Low Low Poor 0.08

Bilinear Non-adaptive Low Low Moderate 0.24

Bicubic Non-adaptive Moderate Moderate Good 0.48

Lanczos Non-adaptive High High Very good 0.9

Spline Adaptive High High Good 1.4

Mitchell-netravali Adaptive High High Good 1.7

Catmull-rom Adaptive High High Good 1.7

Hermite Adaptive High High Good 2.3

Radial basis function Adaptive High High Excellent 5.6

Kriging Adaptive High High Excellent 12.4

Table 2: Comparison interpolation techniques, their type, and additional parameters.

Language Bilinear Bicubic Lanczos Spline

Rust 3.5 ms 5.8 ms 38.4 ms 19.5 ms

Python 6.1 ms 9.8 ms 69.2 ms 29.6 ms

JavaScript 14.2 ms 20.7 ms 157.1 ms 70.9 ms

C++ 3.0 ms 6.2 ms 30.7 ms 17.8 ms

Citation: Awasthi A, Patel A, Agrawal A (2023) Highly Scalable Image based API Management. J Comput Eng Inf Technol 12:6.

Volume 12 • Issue 6 • 1000294 • Page 3 of 5 •

Table 1: Shows performance difference between rust and python.

Table 3: Resizing a 4K image (3840 × 2160) using different interpolation techniques in rust and python.

Our project aimed to create a new image resizing algorithm that
combines the best aspects of both adaptive and non-adaptive methods,
resulting in a hybrid algorithm that is superior to all other existing
methods. We implemented this hybrid algorithm using the rust
programming language, which provided us with both speed and
memory safety benefits (Supplementary file).

Our results showed that our hybrid algorithm outperforms all other
existing algorithms in terms of both speed and visual quality. By
utilizing rust's efficient memory management and low-level control
over system resources, we were able to optimize the resizing process
for maximum performance. Our algorithm was able to resize images
faster and more efficiently than other popular resizing techniques,
while still maintaining a high level of visual quality (Figure 3).

Figure 3: Resampling time curve of random sized images.

We also found that rust was a powerful and versatile programming
language for implementing high-performance image resizing
algorithms. In our tests, Rust was comparable in speed to the popular
C programming language, while also providing the benefits of
guaranteed memory safety. This made rust an ideal choice for
implementing a high-performance and robust image resizing system,
which resulted in lower overall server load and higher uptime of the
API (Figure 4).

Overall, our project successfully created a new hybrid algorithm
that is better than all other existing resizing methods. Our results
showed that our algorithm provides a faster, more efficient and more
visually pleasing solution for website image resizing, particularly for
images with complex textures or fine details. Additionally, rust proved
to be a powerful and versatile programming language for
implementing high-performance image resizing algorithms, which
made our solution even more effective. We believe that our algorithm
has the potential to revolutionize the field of image resizing and
improve the overall user experience of websites and digital
applications.

Conclusion
We proposed hybrid approach of Lanczos interpolation and

convolution image sampling algorithm offers a compelling solution
for the problem of fast and high-quality image resizing. The Lanczos
interpolation method is known for its ability to preserve image details,
while the convolution image sampling algorithm is efficient in
reducing the computational complexity of image resizing. The
combination of these two techniques results in a method that can
quickly resize images without sacrificing quality.

Our experimental results demonstrate that the proposed hybrid
algorithm outperforms traditional resizing methods in terms of both
speed and visual quality. Specifically, it achieves a faster processing
time with less distortion and fewer artifacts in the resized images. This
is due to the ability of the Lanczos interpolation method to preserve
edge sharpness and the efficiency of the convolution image sampling
algorithm in reducing aliasing effects.

The hybrid approach presented in this project can be useful in
various applications such as image processing, computer vision, and
multimedia. The method's speed and quality make it particularly
suitable for real-time applications that require fast image resizing
without compromising visual quality.

Future research in this area could explore the use of the proposed
hybrid approach for other image processing tasks, such as image
super-resolution and denoising. Additionally, investigations into
further optimizing the computational complexity of the hybrid
algorithm for specific hardware architectures could enhance its
performance in real-time applications. Overall, this project presents a
valuable contribution to the field of image processing, demonstrating
the potential of hybrid techniques to improve traditional methods.

References
1. Wang YS, Tai CL, Sorkine O, Lee TY (2008) Optimized scale-

and-stretch for image resizing. In ACM SIGGRAPH Asia 2008
papers 1-8.

2. Ross DA, Lim J, Lin R-S, Yang M-H (2007) Incremental
learning for robust visual tracking. Int J Compu Vis 77:125-141.

3. Martucci SA (1995)"Image resizing in the discrete cosine
transform domain." Proceedings., International Conference on
Image Processing, Washington, DC, USA, , 244-247.

4. Lin X, Ma Y, Ma L, Zhang R (2014) A survey for image
resizing. J Zhejiang Univ Sci 15:697-716.

Citation: Awasthi A, Patel A, Agrawal A (2023) Highly Scalable Image based API Management. J Comput Eng Inf Technol 12:6.

Volume 12 • Issue 6 • 1000294 • Page 4 of 5 •

 Figure 4: Shows browser resampler curve and rust lanczos and
convolution resample curve.

https://dl.acm.org/doi/10.1145/1457515.1409071
https://dl.acm.org/doi/10.1145/1457515.1409071
https://yonsei.elsevierpure.com/en/publications/incremental-learning-for-robust-visual-tracking
https://yonsei.elsevierpure.com/en/publications/incremental-learning-for-robust-visual-tracking

5. Zhang G, Cheng M-M, Hu S-M, Martin RR (2009) A Shape-
Preserving Approach To Image Resizing. Comput Graph Forum
28:1897-1906.

6. HyunWook Park, YoungSeo Park, Seung-Kyun Oh (2003) L/M-
fold image resizing in block-dct domain using symmetric
convolution. IEEE Trans Image Process 12:1016-1034.

7. Huang H, Fu T, Rosin PL, Qi C (2009) Real-time content-aware
image resizing. Sci China Inf Sci 52:172-182.

8. Mukherjee J, Mitra SK (2002) Image resizing in the compressed
domain using subband DCT. IEEE Trans Circuits Syst Video
Technol 12:620-627.

9. Wang Y-S, Tai C-L, Sorkine O, Lee T-Y (2008) Optimized scale-
and-stretch for image resizing. ACM Trans Graph 27:1-8.

10. Dong W, Zhou N, Paul J-C, Zhang X (2009) Optimized image
resizing using seam carving and scaling. ACM Trans Graph
28:1-10.

11. Hua S, Chen G, Wei H, Jiang Q (2012) Similarity measure for
image resizing using SIFT feature. Eurasip J Image Video
Process 1-11.

12. Munoz A, Blu T, Unser M (2001) Least-squares image resizing
using finite differences. IEEE Trans Image Process
10:1365-1378.

13. Krahenbuhl P, Lang M, Hornung A, Gross M (2009) A system
for retargeting of streaming video. ACM Trans Graph 28:1-10.

14. Chulhee Lee, Eden M, Unser M (1998) High-quality image
resizing using oblique projection operators. IEEE Trans Image
Process 7:679-692.

15. Wang Q, Yuan Y (2014) High quality image resizing.
Neurocomputing 131:348-356.

16. Dong W, Zhou N, Paul J-C, Zhang X (2009) Optimized image
resizing using seam carving and scaling. ACM Trans Graph
28:1-10.

17. Dong W-M, Bao G-B, Zhang X-P, Paul J-C (2012) Fast multi-
operator image resizing and evaluation. J Comput Sci Technol
27:121-134.

18. Mukherjee J, Mitra SK (2005) Arbitrary resizing of images in
DCT space. IEE Pro-Vis, Img Sgl Prcsng 152:155.

Citation: Awasthi A, Patel A, Agrawal A (2023) Highly Scalable Image based API Management. J Comput Eng Inf Technol 12:6.

Volume 12 • Issue 6 • 1000294 (MRPFT) • Page 5 of 5 •

https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2009.01568.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2009.01568.x
https://ieeexplore.ieee.org/document/1221756
https://ieeexplore.ieee.org/document/1221756
https://ieeexplore.ieee.org/document/1221756
https://link.springer.com/article/10.1007/s11432-009-0041-9
https://link.springer.com/article/10.1007/s11432-009-0041-9
https://ieeexplore.ieee.org/document/1015674
https://ieeexplore.ieee.org/document/1015674
https://dl.acm.org/doi/10.1145/1457515.1409071
https://dl.acm.org/doi/10.1145/1457515.1409071
https://dl.acm.org/doi/10.1145/1618452.1618471
https://dl.acm.org/doi/10.1145/1618452.1618471
https://jivp-eurasipjournals.springeropen.com/articles/10.1186/1687-5281-2012-6
https://jivp-eurasipjournals.springeropen.com/articles/10.1186/1687-5281-2012-6
https://ieeexplore.ieee.org/document/941860
https://ieeexplore.ieee.org/document/941860
https://dl.acm.org/doi/10.1145/1661412.1618472
https://dl.acm.org/doi/10.1145/1661412.1618472
https://ieeexplore.ieee.org/document/668025
https://ieeexplore.ieee.org/document/668025
https://www.sciencedirect.com/science/article/abs/pii/S0925231213009545?via%3Dihub
https://dl.acm.org/doi/10.1145/1618452.1618471
https://dl.acm.org/doi/10.1145/1618452.1618471
https://link.springer.com/article/10.1007/s11390-012-1211-6
https://link.springer.com/article/10.1007/s11390-012-1211-6
https://digital-library.theiet.org/content/journals/10.1049/ip-vis_20040843
https://digital-library.theiet.org/content/journals/10.1049/ip-vis_20040843

	Contents
	Highly Scalable Image based API Management
	Abstract
	Introduction
	Materials and Methods
	Larger images=more storage=greater outgoing traffic
	A hybrid image sampling algorithm
	Testing

	Results and Discussion
	Conclusion
	References

