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Abstract

Objectives: The histological composition of thrombi is a 
critical factor in the management of patients with acute stroke 
as it influences pharmacological and interventional treatment 
strategies. Mechanical characteristics of the occluding thrombi 
primarily depend on the proportion between fibrin and Red 
Blood Cells (RBC). Spectral CT imaging with dual-energy 
technology enables tissue differentiation depending on the keV 
specific absorption. We sought to evaluate the feasibility and the 
potential accuracy of spectral CT in the imaging of thrombus 
composition in an in-vitro Model using blood samples with 
defined fibrin/RBC-ratios.

Methods: Five types of defined ovine blood thrombi with a 
gradually increasing amount of RBC (0%-100%) were scanned 
with spectral CT imaging using keV-values between 40 and 
140 keV. Subsequently, the specific absorption curve was 
established for each thrombus and statistically correlated using 
a Kolmogorov-Smirnov test. 

Results: The absorption curves showed a statistically significant 
difference for thrombi with moderate to high levels of RBC 
(30%-100% RBC fraction, p-value<0.05) with differentiability 
at keV-levels above 80 keV. Thrombi with an RBC content of 
more than 40% could be differentiated best.

Conclusion: Spectral CT-imaging can differentiate thrombi 

Introduction 
The acute embolic occlusion of a vessel supplying the brain is 

the leading cause of a stroke in the vast majority of cases [1]. The 
thrombotic material can embolize into the vessels, e.g., in atrial 
fibrillation with thrombus formation in the left atrium. More rarely, 
coagulation within the vessel occurs in the context of atherosclerotic 
plaques [2].

While in cellular coagulation, erythrocytes bound primarily to 
the thrombus, causing a high RBC-density of the so-called “red” 
thrombus, thrombi formed from plasmatic coagulation by activated 
fibrin cross-linking does not show an increased RBC-density. These 
fibrin-rich thrombi have much higher mechanical stability than RBC-
rich thrombi [3]. 

Differentiation into fibrin or RBC-rich thrombi is usually 
performed by histopathological methods [4]. An imaging-supported 
histological differentiation of thrombi in the hyperacute management 
of stroke patients prior to thrombectomy has not been possible so far 
[5]. 

The development of dual-energy technology enables tissue 
differentiation depending on the keV specific absorption. Technically, 
the manufacturers have relied on different mechanisms to achieve 
this:
• A dual-source supported technology with two tubes and a 

potential 3-material resolution. 
• A dual-layer detector set-up, and 
• A KV-switch between 70 keV and 120 keV during the scan. 

The latter results in a spectrum of different keV strengths that 
allow a 2-material resolution [6].

In vitro thrombus differentiation using spectral CT technology has 
been shown as a proof of concept for Siemens dual-source and Philips 
dual-layer technology [7], but not for GE`s KV-switch technology. 

Experiments using a dual-layer CT for thrombus imaging showed 
a specific absorption that depends on the fibrin content of the thrombi. 
In addition, fibrin seems to have a higher contrast agent affinity 
compared to RBC [8]. However, an in-vitro-recording of the entire 
absorption spectrum of defined thrombi with the correlation of the 
determined curves based on the RBC content has not yet been carried 
out. The objective of this study was to prove if (1) discrimination of 
defined fibrin and erythrocyte-rich thrombi using a spectral CT with 
KV-switch technology is feasible, and (2) to determine the potential 
accuracy of the method.

with a defined proportion of RBC and fibrin. Discrimination of 
the histological composition is best achieved in thrombi with 
an RBC-content of more than 40% and at high keV-levels with 
a threshold above 80keV. The available data allow for potential 
further development of this CT-technique in future thrombus.

Keywords: Thrombus histology/composition; Thrombus imaging; 
spectral CT; Dual-energy CT; Ischemic stroke; Clot imaging.
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Materials and Methods
Study design

In vivo, the histology of thrombi is heterogeneous and may vary 
in size and morphology. Therefore, the study was planned under 
in-vitro conditions using artificially produced (=defined) thrombi. 
Imaging was performed with spectral CT with KV-switch technology 
(CT Revolution, GE Healthcare). The exact amount of fibrin and 
RBC in each thrombus was known and the histological composition 
was used as a gold standard for the correlation with the measured 
absorption spectrum. 

Thrombus material
The thrombi were provided by Neuravi Ltd. (Galway, Ireland) 

with a predetermined ratio of fibrin and RBC. Ovine blood was 
selected because it has been shown to be best suited for coagulation 
system studies and is physiologically similar to human coagulation 
[9]. Seven samples were used for each type of thrombus using a 
special procedure to extract thrombus material from ovine venous 
blood. Thrombotic coagulation factors were combined with blood 
components to obtain thrombi with defined fibrin and erythrocyte 
[10]. 

Five different thrombus types with increasing RBC percentage 
were used for this study (Figure 1):

• <5% RBC (2,5% + 2,5); Fibrin <95% (minimal)

• 10%-40% RBC (25% + 15); Fibrin 60%-90% (low)

• 30%-60% RBC (45% + 15); Fibrin 40%-70% (moderate)

• 60%-85% RBC (72,5% + 12,5); Fibrin 15%-40% (high)

• 90%-100% RBC (95% + 5); Fibrin 0%-10% (maximal) 

Figure 1: From left to right: All five different types of thrombus 
with increasing RBC concentration. Native CT scan (1st row), 
Thrombus in original size (2nd row), 20x magnification (3rd row), 
200x magnification (4th row). 

The average length of the thrombi was 5 cm; the diameter was 
between 4 mm and 6 mm. After fabrication and delivery, the thrombi 
were stored at 5°C, and all scanning procedures were performed 
within 2 days. The entire period between production and scans was 
5 days.

CT scan and image analysis
Thrombi were first transferred in Iso-osmolar sodium chloride 

solution. Labeled 5ml syringes were used for transport, intermediate 
storage, and as scanning medium. Each of the seven samples was 
scanned three times, a total of 21 scans per thrombus type. The scans 
were performed on a high-resolution Spectral CT (CT Revolution, 
GE Healthcare Waukesha, WI, USA). The scans were conducted with 
the following parameters: 275 mAs, 140 kVp, 40-140 keV, 0.675 mm 
slice thickness, 2,5mm increment, pitch 0.516, 0.8s rotation time, 
iterative reconstruction algorithm). 

The scans were uploaded into the AW-server software. A GSI 
(Gemstone spectral imaging) tool was used for spectral image 
evaluation. For this purpose, a defined ROI circle was placed centrally 
in the thrombus (Figure 2). To be able to make a comparable statement 
about the spectral bandwidth between the thrombi, the average size of 
the ROI was 8 mm2 and at least 7 mm2. The Hounsfield Units (HU) 
were measured using a curve in steps of 5 keV in a range of 40 to 
140 keV. All thrombi were histologically processed following CT 
imaging.

Figure 2: ROI positioning in the thrombus.

Statistical analysis
For each type of thrombus, the mean HU-value, as well as the 

standard deviation, was calculated based on the twenty-one scans. 
The average absorption for each keV-level between 40 and 140 keV 
(5 keV steps) was statistically recorded and presented as a curve. 
Since the function of the curves was known, they could be pairwise 
compared by using the Kolmogorov-Smirnov Two-Sample Test. 
The Kolmogorov-Smirnov quantifies the distance or (dissimilarity 
between a) The empirical distribution function of a sample and the 
cumulative distribution function of a reference distribution, or b) 
Between the empirical distribution functions of two samples. In this 
study, the latter approach was applied.

The null hypothesis is (H0): The samples are drawn from the same 
distribution; the distribution considered under the null hypothesis is 
a continuous distribution but is otherwise unrestricted. The data were 
evaluated by a statistician (A.M.) using the statistics software R. A 
p-value below 0.05 was considered statistically significant.

Results
Figure 3 shows the results of spectral CT imaging of the different 

thrombi. All spectral HU curves showed an exponential drop with 
a steep slope between 40 keV and 75 keV. The curves flattened 
out at 80 keV, with higher RBC concentrations of >60%, assuming 
a more horizontal orientation earlier than for those with lower 
RBC content. With an increasing keV level, the measured density 
decreased along the curve. The difference (ΔHU) between the curves 
was highest at maximum keV-levels. At 140 keV, it was 8.7 HU for 
the absorption curves with high and maximum RBC concentrations 
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of thrombi with minimal (0%-5%) and little (10%-30%) RBC-
content. Comparable experiments on dual-source systems (Siemens) 
have demonstrated similar results for high keV [7]. However, the 
observation of the absorption curves and the analysis of the entire 
keV spectrum, as performed in this study, seem to facilitate the 
differentiation of the thrombi. 

Compared to conventional CT analysis, spectral CT imaging 
provides further information on the nature of the thrombus. The so-
called “Hyperdense Artery Sign” (HAS) in native CT imaging does not 
allow any conclusion upon the composition of the thrombus and can 
be misinterpreted by an increased hematocrit value or atherosclerotic 
plaques. A correlation between the etiology of the thrombus and 
the histological composition had not yet been determined [11-13]. 
Data from contrast-enhanced CT scans showed that especially fibrin 
containing thrombi have an increased contrast agent uptake [8]. 
However, these studies are less helpful in a real-life scenario, since 
the stroke-CT is initially performed without contrast. A repeated 
scan after CTA and CTP would mean an unnecessary loss of time in 
stroke management. Alternatively, MRI imaging may be possible, in 
which susceptibility-weighted sequences are also used for thrombus 
imaging. The blooming effect in correlation to the proportion of RBC 
serves as a marker for thrombus differentiation [5,14,15]. However, 
CT imaging has become the initial diagnosis of stroke, and in most 
centers, MRI plays only a minor role. 

A better understanding of the composition of a thrombus may 
be essential for the further development of stroke therapy. Both 
pharmacological and interventional treatment strategies might 
benefit from histological information about thrombus composition 
[16,17]. Early knowledge about thrombus properties influences the 
therapeutical decision on IV-lysis, anticoagulation, or antiplatelet 
treatment in acute stroke patients. Moreover, it might affect the choice 
of devices and periprocedural anticoagulation in patients that will 
undergo interventional stroke iso-osmolar [18,19].

Mechanical thrombectomy is the therapy of choice for stroke 
patients with vascular occlusions of the internal carotid artery 
and proximal intracranial vessel occlusions [20,21]. The number 
of thrombectomies has increased continuously in recent years 
[22]. Vessel elongation and atherosclerotic plaques make it more 
difficult for the interventionist to access the vessel occlusion. After 
the thrombus has passed with a micro catheter, a stent-retriever 
is released, and the thrombus is then removed with a retrieval 
maneuver under aspiration through the guiding catheter or a distal 
access catheter. Alternatively, isolated aspiration by hand or via the 
penumbra system is possible [23]. Statistically, a short intervention 
time with as few maneuvers as possible is decisive for an excellent 
clinical patient outcome [24], thus, the first-pass maneuver is the aim 
of the intervention. Neurointerventionalists know that the success 
of thrombectomy maneuvers depends not only on the size and the 
location of the thrombus but in no small part on its mechanical 
properties: “Red” thrombi with a high amount of RBC usually are 
easier to extract than organized fibrin-rich thrombi with little RBC 
content [25]. By knowing the nature of the thrombus, the best 
material or stent traction system for the individual patient could 
be selected in advance of the intervention to maximize the chances 
of rapid vessel reopening.

Although the composition of ovine blood largely corresponds to 
that of human blood, a transmission of the spectral absorption curves 
in in-vivo experiments still needs to be verified [9]. In addition, the 
composition of thrombi is not uniform in reality. Layers with 
fibrin and RBC can form, as well as serpentine or mixed forms 
[4] (Figure 4). 

(60%-85%) pairwise analysis of the individual HU-values (Table 
1). The curves with minimal and low RBC-content were similar and 
showed no statistical significance. Pairwise analysis of the individual 
HU-values. The curves with minimal and low RBC-content were 
similar and showed no statistical significance. The curves from 
thrombi with moderate, high and maximum RBC-content showed 
good discrimination with a p-level<0.05 for all curves in total. For 
thrombi with an RBC content of 60% and above, statistical testing 
resulted in highest significance levels (p<0.001), thus indicating that 
an acceptable accuracy for the histological discrimination might be 
achieved for thrombi with an RBC content of more than 40% and at 
keV-levels above 80keV.

Figure 3: Fixed clots at 20x magnification (1st row) and 200x 
magnification (2nd row) after hematoxylin and eosin stain. Note: Left 
30% RBC; Centre 50% RBC; Right 70% RBC

Thrombus D∧+
 p-values and frequency 

distribution 
Significance 
level

X1: 0%-5% RBC 
vs. X2:10%-40% 
RBC

0,243 p (min): 0,18009 (10,5%)
p (max): 0,30408 (89,5%)

Not 
significant

X2: 10%-40% 
RBC vs. X3: 30%-
60% RBC

0,395 p (min): 0,02113 (30%)
p (max): 0,04747 (70%) P*(<0,05)

X3: 30%-60% 
RBC vs. X4: 60%-
85% RBC

0,706 p (min): 0,00002 (81,9%)
p (max): 0,00009 (18,1%) p***(<0,001)

X4: 60%-85% 
RBC vs. X5: 90%-
100% RBC

0,465
p (min): 0,00315 (30%)
p (int): 0,00855 (33,3%)
p (max): 0,02113 (44,8%)

P**(<0,01)

Note: D^+ and the percentage of rejected null hypothesis, H0, i. e. *p-value is less than 0.05. **p-value is the level of statistical 
significance

Table 1: The results of the comparisons have been summarized as the 
mean distance or dissimilarity.

Discussion
The KV-switch technology can determine the absorption at each 

KeV value, whereby significant absorption curves are generated for 
different types of thrombus. Retrospectively, the RBC percentage can 
be deduced. Our data prove that differentiation of the RBC fraction is 
possible using spectral curve analysis. Thrombi with an RBC-content 
of more than 40% could be differentiated best when using high 
keV-levels above 80. A limitation exists only in the differentiation 
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Figure 4: Spectral absorption curves and the standard deviation for 
each keV value of all thrombi with increasing RBC content (0%-
100%). Note: (  ) 0%-5% RBC; (  ) 10%-40% RBC; (  ) 
30%-60% RBC; (  ) 60%-85% RBC; (  ) 90%-100% RBC

An isolated measurement in a defined area is therefore complicated, 
and errors in determining the ROI or identifying the thrombus carry the 
risk of misinterpretation. In small vessels (M2, M3) where the area is 
sometimes only a few square millimeters, a measurement with a ROI 
and subsequent generation and interpretation of a spectral absorption 
curve is challenging. A low RBC concentration between 0% and 40% 
cannot be reliably differentiated, although further studies with lower 
concentration differences and larger sample size could possibly show 
better results. Predicting the mechanical properties mixed thrombi-
whose composition consists of approximately equal amounts of fibrin 
and RBC-will not be easy despite the specific absorption curve. 

Conclusion 
Our data prove that a histological differentiation of defined 

thrombi is feasible using spectral CT with the KV-switch technique. 
The accuracy of discrimination was best in thrombi with an RBC 
content of more than 40% and when using high keV-levels above 
80. The results allow for potential further development of the CT-
technique for future studies, in which stroke treatment might take into 
account the histological nature of the thrombus.
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