

# Vegetos- An International Journal of Plant Research

# **Research Article**

## A SCITECHNOL JOURNAL

# Impact of Different Pruning Severity and Nutrient Management on Growth and Yield of Lemon cv. Assam Lemon (*Citrus limon* Burm.)

Ghosh A1\*, Dey K1, Bhowmick N1, Medda PS2 and Ghosh SK1

#### Abstract

Like many other citrus species, the lemon (Citrus limon Burm.) presents a number of diverse forms slightly varying from each other. Pruning is one of the important approaches for the canopy management of citrus. The result of pruning on growth parameters have been reported by various workers. It is also a highly nutrient responsive perennial fruit crop and requires adequate nutrition for proper growth and yield of the plants. A field experiment was laid out in two factorial Randomized Block Design with four levels of pruning, seven levels of nutrient, consisting .recommended dose of fertilizers (RDF) and different combinations of organic manure (Vermicompost), inorganic fertilizer, bio-fertilizer (Azotobacter), mycorrhiza (VAM) and their interaction during 2013 to 2015. The investigation revealed that all the vegetative parameters viz. trunk girth (32.74cm, 33.26cm and 33.13cm) and its percentage increase (1.25%, 2.88% and 4.56%), canopy volume (85.22 m<sup>3</sup>, 100.03 m<sup>3</sup> and 125.84 m<sup>3</sup>) and its percentage increase (31.66%, 56.21% and 114.24%), number of laterals per primary shoot (9.53, 11.87 and 10.80) and its percentage increase (31.65%, 63.64% and 98.25%) and leaf chlorophyll content (1.45%, 1.94% and 2.56%) and its percentage increase (48.61%, 98.41% and 172.80%) was recorded best in highest level of pruning with 75% RDF + Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza at 6th, 12th and 18th month after pruning. Among the three season of cropping Ambebahar recorded the best result in respect to yield (total number of fruits/plant) followed by Mrig and Hasthbahar.

#### Keywords

Assam lemon; Growth and yield; Nutrient management; Pruning

## Introduction

Citrus (*Citrussp.*), often regarded as 'queen of fruits' [1], are well known as one of the world's major fruit crops that are produced in many countries with tropical and sub-tropical climate. It belongs to the family Rutaceae which consisting of 140 genera and 1300 species. It accounts for 3.7% (255.2 Thousand ha) of total area under fruit and 3.1% (2523.5 Thousand MT) of total fruit production with a productivity of 9.9 MT/ha. In West Bengal, the major lemon belts

\*Corresponding author: Ghosh A, Department of Fruits and Orchard management, Mohanpur, Nadia-741252, West Bengal, India Tel: 8967228963; E-mail: ghoshranasonai@gmail.com

Received: February 22, 2016 Accepted: April 13, 2016 Published: April 20, 2016



are Cooch Behar, Jalpaiguri, North and South 24 parganas and West and East Midnapur [2]. The most distinctive characteristics of the lemon fruit are oval to elliptical in shape with highly fragrant rind and have high acidity levels. Assam Lemon is one of the important dwarf cultivars of lemon, suitable for high density planting, extensively grown in the north-eastern parts of India [3]. In northern parts of West Bengal, it is early bearing with three fruiting season, *viz*. April-May, August-September and November-December. The earlier vegetative flushes of the previous season growth generally are more productive [4]. So pruning is very much essential to manipulate various aspects of vegetative and fruiting. Impact of Pruning and Nutrient Management on Growth and Yield of Lemon

The cultural practice of pruning of stems increases vegetative and floral responses. By modifying the architecture of the aerial parts, shoot pruning profoundly affects tree growth and photosynthesis. Accelerated growth of shoots is generally observed after pruning and, depending on growth conditions, equilibrium between shoots and roots can be reached [5]. As lemon plants bears three times in an year, proper manuring and fertilization has to be resorted for obtaining highest yields and quality production which depends upon healthy and sturdy tree growth [6]. Furthermore, beside application of soul chemical fertilizers in traditional way, combine application of organic, inorganic and bio-fertilizers need to resort for avoiding the deleterious effect of chemical fertilizers and as well as improves physical properties of soil by increasing nutrient and water holding capacity, total pore space, aggregate stability, erosion resistance and temperature insulation. However, a little information is available about the response of lemon against pruning and nutrient management for this area. Keeping in view the present investigation was conducted to study the impact of pruning intensity and nutrient management in growth and yield of lemon cv. Assam lemon.

## **Materials and Methods**

#### **Experimental Site**

The present investigation was carried out during 2013 and 2015 on 7 years old lemon cv. Assam lemon plants planted at  $3m \times 3m$  spacing at Instructional farm of Uttar BangaKrishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, which was situated at  $26^{0}19'86"$  N latitude and  $89^{0}23'53"$  E longitude with an altitude of 43 meters above mean sea level.

### Treatments and design

There were 4 levels of pruning, namely P<sub>0</sub>- No pruning (Control), P<sub>1</sub>- 25 cm pruning from the terminal portion of the shoot, P<sub>2</sub>- 50 cm pruning from the terminal portion of the shoot, P<sub>3</sub>- 75 cm pruning from the terminal portion of the shoot and 7 treatments of nutrient management *viz*. N<sub>1</sub>- 100% Recommended Dose of Fertilizer (N@210g/ plant-P@140g/plant-K@210g/plant), N<sub>2</sub>- Vermicompost (20 kg/ plant) + Azotobacter (18 g/plant) + Vesicular Arbuscular Mycorrhiza (150 g/plant), N<sub>3</sub>- Vermicompost, N<sub>4</sub>- 75% RDF + Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza, N<sub>5</sub>- 75% RDF + Vermicompost, N<sub>6</sub>- 50% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza and N<sub>7</sub>- 50% RDF + Vermicompost were applied alone and in combination with different levels of the pruning. The experiment was laid out in two factorial asymmetrical

All articles published in Vegetos: International Journal of Plant Research are the property of SciTechnol, and is protected by copyright laws. Copyright © 2016, SciTechnol, All Rights Reserved.

# randomized block design (RBD) and 28 treatment combination (4 levels of pruning and 7 levels of nutrient) with 3 replications and 6 plants were kept in each treatment. All levels of pruning were done on 21<sup>st</sup> November, 2013, after harvesting of Mrigbahar. Nitrogenous fertilizer was applied in two split doses. Firstly, half dose of nitrogen and full dose of phosphorus, potassium and vermicompost were applied in February, 2014 and rest half of nitrogen was applied in April, 2014. Azotobacter and Vesicular Arbuscular Mycorrhiza were applied in December, 2013, after harvesting of Mrigbahar.

#### **Observation recorded**

All the vegetative parameters were recorded at initial stage and after that at 6 month interval after pruning. Height of the plant (m) was measured with the help of measuring tape and stick from the ground to top of the plant. Spread of the plant (m) was recorded at maximum width of the crown with the help of a measuring tape in both North-South and East-West direction at right angles. Plant girth (cm) was measured with the help of measuring tape at the maximum diameter of the trunk above the ground level. Canopy volume (m<sup>3</sup>) of a plant was measured by using height and spread of this particular plant. The formula is: canopy volume =  $4/3 \pi a^2 b$ , where  $a = \frac{1}{2}$  of plant height and b = average of east - west and north - south spread [7]. Percentage increase in canopy volume was measured by: [(Final volume - Initial volume) / Initial volume] × 100. For number of laterals five primary branches were randomly tagged in each of six selected plants and newly formed laterals arisen from those selected primary branch were counted. Percentage increase in number of laterals per primary shoot was measured by: [(Final number of laterals - Initial number of laterals) / Initial number of laterals] × 100. Total Leaf chlorophyll (mg total chlorophyll/g tissue) was extracted by homogenizing of 1 g fresh leaves in 10 ml of 80% acetone. After filtering, extract fill up to 10 ml in volume, the chlorophyll content was determined via an UV-Vis spectrophotometer (Perkins Elmar) from the acetone extract at 645 nm and 663 nm, as described by Witham et al. [8]. Total chlorophyll content as mg in 1 gram of plant tissue was calculated as: mg total chlorophyll/g tissue =  $[20.2 (D_{645}) + 8.02 (D_{663})]$ . (V/1000 weight), where D = Absorbance values. Percentage increase in leaf chlorophyll content was measured by: [(Final leaf chlorophyll content - Initial leaf chlorophyll content) / Initial leaf chlorophyll content] × 100. The number of fruits harvested under each treatment was recorded from six randomly selected trees and the average number of fruits harvested from six trees was calculated for each treatment likewise.

#### **Statistical Analysis**

Analysis of variance (one way classified data) for each parameter was performed using ProcGlm of Statistical Analysis System (SAS) software (version 9.3). Mean separation for different treatment under different parameter were performed using Least Significant Different (LSD) test ( $P \le 0.05$ ). Normality of residuals under the assuming of ANOVA was tested using Kolmogrov-Smirnov, Shapiro-Wilk, Cramer-Von Mises and Anderson Darling procedure using Proc-Univariate procedure of SAS (version 9.3). Data transformation was done followed by the method of Gomez and Gomez [9].

#### **Results and Discussion**

#### Plant height (m)

The data pertaining to plant height has been presented in Table 1. Observation revealed that the plant height was increased in all the treatments up to the end of experiment. Significant variation with respect to plant height was observed among several pruning

#### doi:http://dx.doi.org/10.4172/2229-4473.1000106

treatments except in percent increase at 12th month after pruning, where plant height is statistically at par under all pruning level. Maximum plant height (3.56 m, 3.78 m and 4.29 m) and its percentage increase (6.18%, 12.82% and 28.08%) was recorded in highest level of pruning  $P_{2}$  (75 cm pruning from the terminal portion of the shoot) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning followed by medium level P<sub>2</sub> (50 cm pruning from the terminal portion of the shoot) of pruning (3.52 m, 3.74 m and 4.24 m; 5.76%, 12.18% and 27.61%) after 6th, 12th and 18th months after pruning. The lowest plant height and its percentage increase was observed in (P<sub>o</sub>) unpruned plants (3.42 m, 3.61 m and 3.91 m; 4.36%, 10.64% and 20.22%) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning. The effect of different nutrient treatments was significant in plant height except it's percent increase at 6th, 12th and 18th month after pruning, where the data's were statistically at par. It cleared that treatments have no effect on percentage increase in height. The highest plant height (3.58 m, 3.65 m and 4.06 m) and its percentage increase (6.18%, 12.82% and 28.08%) was recorded in  $N_4$  (75% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza) at  $6^{th}$ ,  $12^{th}$  and  $18^{th}$  month after pruning followed by N<sub>6</sub> (50% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza) (3.44 m, 3.65 m and 4.04 m; 4.55%, 11.05% and 22.93%). Lowest plant height (3.27 m, 3.45 m and 3.76 m) and its percentage increase (3.36%, 8.94% and 18.57%) was observed in  $N_3$  (Vermicompost) at 6<sup>th</sup>, 12<sup>th</sup> and 18th month after pruning. These results are in line with that of Nath and Baruah [10] who reported that highest level of pruning gave the best result as it caused better movement of air and light in to the inner part and thereby resulted in greater photosynthesis. This increased photosynthesis activity of the plants leads to higher accumulation of the photosynthates, which were utilized by developing shoots, leading to increase in plant height.

#### Trunk girth (cm)

Observation revealed that the trunk girth was significantly increased in all the treatments up to the end of experiment (Table 2). However, the data's were statistically at par under P<sub>1</sub> and P<sub>2</sub> level at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning. Maximum trunk girth (31.06 cm, 31.43 cm and 31.60 cm) and its percentage increase (0.94%, 2.18% and 3.92%) was recorded in highest level of pruning  $\rm P_{_3}(75~cm$ pruning from the terminal portion of the shoot) at 6th, 12th and 18th month after pruning followed by medium level P<sub>2</sub> (50 cm pruning from the terminal portion of the shoot) of pruning (28.71 cm, 29.01 cm and 29.24 cm; 0.70%, 1.73% and 2.92%). The lowest trunk girth and its percentage increase was observed in (P<sub>0</sub>) unpruned plants (25.48 cm, 25.67 cm and 27.09 m; 0.58%, 1.34% and 2.45%) after 6th, 12<sup>th</sup> and 18<sup>th</sup> months after pruning. Several nutrient treatments have significant effect on percentage increase of trunk girth at 12th and 18th months after pruning. The highest trunk girth (27.10 cm, 27.34 cm and 27.67 cm) and its percentage increase (0.63%, 1.51% and 2.51%) was recorded in N<sub>4</sub> (75% RDF + Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning followed by N<sub>6</sub> (50% RDF + Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza) (26.90 cm, 27.12 cm and 27.50 cm; 0.62%, 1.44% and 2.49%). Lowest trunk girth (24.47 cm, 24.65 cm and 25.05 m) and its percentage increase (0.56%, 1.31% and 2.12%) was observed in N<sub>2</sub> (Vermicompost) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning. Combination of organic, bio-fertilizer with highest amount of inorganic fertilizers gave the best result as biofertilizer increased the availability of nutrients by increasing the absorption and mobilization of nutrients which was supplied by organic and inorganic fertilizers resulted better food reserve and enhanced trunk girth [11,12].

#### doi:http://dx.doi.org/10.4172/2229-4473.1000106

|                | Initial    | 6 months after pruning |                           | 12 months after pruning |                           | 18 months after pruning |                           |
|----------------|------------|------------------------|---------------------------|-------------------------|---------------------------|-------------------------|---------------------------|
| Treatments     | Height (m) | Height (m)             | Increase in height<br>(%) | Height (m)              | Increase in height<br>(%) | Height (m)              | Increase in height<br>(%) |
| P <sub>0</sub> | 3.28c      | 3.42c                  | 4.36(2.09)c               | 3.61c                   | 10.64(3.26)a              | 3.91d                   | 20.22(4.50)c              |
| P <sub>1</sub> | 3.29bc     | 3.46bc                 | 5.06(2.25)bc              | 3.66b                   | 11.37(3.37)a              | 4.08c                   | 24.12(4.91)b              |
| P <sub>2</sub> | 3.33ab     | 3.52ab                 | 5.76(2.40)ab              | 3.73b                   | 12.18(3.49)a              | 4.24b                   | 27.61(5.25)a              |
| P <sub>3</sub> | 3.35a      | 3.56a                  | 6.182.49)a                | 3.78a                   | 12.82(3.58)a              | 4.29a                   | 28.085.30)a               |
| SEm (±)        | 0.02       | 0.03                   | 0.08                      | 0.03                    | 0.10                      | 0.02                    | 0.07                      |
| LSD(P ≤ 0.05)  | 0.06       | 0.09                   | 0.23                      | 0.07                    | NS                        | 0.06                    | 0.20                      |
| N <sub>1</sub> | 3.28a      | 3.42ab                 | 4.36(2.09)a               | 3.61ab                  | 10.64(3.26)a              | 3.91bcd                 | 20.22(4.50)a              |
| N <sub>2</sub> | 3.21a      | 3.51ab                 | 3.43(1.85)a               | 3.50b                   | 9.03(3.00)a               | 3.81cd                  | 18.76(4.33)a              |
| N <sub>3</sub> | 3.17a      | 3.27b                  | 3.36(1.83)a               | 3.45b                   | 8.94(2.99)a               | 3.76d                   | 18.57(4.31)a              |
| N <sub>4</sub> | 3.29a      | 3.58a                  | 4.76(2.18)a               | 3.65a                   | 11.18(3.34)a              | 4.06a                   | 23.52(4.85)a              |
| N <sub>5</sub> | 3.29a      | 3.43ab                 | 4.49(2.12)a               | 3.65ab                  | 10.993.32)a               | 4.04ab                  | 22.92(4.79)a              |
| N <sub>6</sub> | 3.29a      | 3.44a                  | 4.55(2.13)a               | 3.65ab                  | 11.05(3.32)a              | 4.04ab                  | 22.93(4.79)a              |
| N <sub>7</sub> | 3.29a      | 3.43ab                 | 4.42(2.10)a               | 3.65ab                  | 10.98(3.31)a              | 4.03abc                 | 22.54(4.75)a              |
| SEm (±)        | 0.03       | 0.04                   | 0.11                      | 0.03                    | 0.13                      | 0.03                    | 0.10                      |
| LSD(P ≤ 0.05)  | NS         | 0.12                   | NS                        | 0.05                    | NS                        | 0.08                    | NS                        |

 Table 1: Effect of pruning and nutrient management on plant height of lemon cv. Assam lemon.

\*\*Means with the same letter are not significantly different.

 $P_0^-$  No pruning (Control),  $P_1^-$  25 cm pruning from the terminal portion of the shoot,  $P_2^-$  50 cm pruning from the terminal portion of the shoot,  $P_3^-$  75 cm pruning from the terminal portion of the shoot and 7 treatments of nutrient management viz.  $N_1^-$  100% Recommended Dose of Fertilizer (N@210g/plant-P@140g/plant-K@210g/plant),  $N_2^-$  Vermicompost (20 kg/plant) + Azotobacter (18 g/plant) + Vesicular Arbuscular Mycorrhiza (150 g/plant),  $N_3^-$  Vermicompost,  $N_4^-$  75% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza and  $N_7^-$  50% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza and  $N_7^-$  50% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza and  $N_7^-$  50% RDF+ Vermicompost

Table 2: Effect of pruning and nutrient management on trunk girth of lemon cv. Assam lemon.

|                | Initial          | 6 months after pruning |                       | 12 months after p | runing                   | 18 months after pruning |                       |
|----------------|------------------|------------------------|-----------------------|-------------------|--------------------------|-------------------------|-----------------------|
| Treatments     | Trunk girth (cm) | Trunk girth (cm)       | Increase in girth (%) | Trunk girth (cm)  | Increase in girth<br>(%) | Trunk girth (cm)        | Increase in girth (%) |
| P <sub>0</sub> | 25.33c           | 25.48c                 | 0.58(0.76)d           | 25.67c            | 1.34(1.16)c              | 27.09c                  | 2.45(1.57)d           |
| P <sub>1</sub> | 28.17b           | 28.35b                 | 0.64(0.80)c           | 28.61b            | 1.57(1.25)c              | 28.91b                  | 2.68(1.64)c           |
| P <sub>2</sub> | 28.51b           | 28.71b                 | 0.70b(0.84)           | 29.01b            | 1.73(1.32)b              | 29.24b                  | 2.92(1.71)b           |
| P <sub>3</sub> | 30.77a           | 31.06a                 | 0.94(0.97)a           | 31.43a            | 2.18(1.48)a              | 31.60a                  | 3.92(1.98)a           |
| SEm (±)        | 0.69             | 0.69                   | 0.02                  | 0.69              | 0.03                     | 0.69                    | 0.02                  |
| LSD(P ≤ 0.05)  | 1.96             | 1.95                   | 0.05                  | 1.96              | 0.09                     | 1.96                    | 0.07                  |
| N <sub>1</sub> | 25.33a           | 25.48a                 | 0.58(0.76)a           | 25.67a            | 1.34(1.16)ab             | 27.09a                  | 2.45(1.57)bcd         |
| N <sub>2</sub> | 24.70a           | 24.84a                 | 0.58(0.76)a           | 25.03a            | 1.33(1.15)ab             | 25.97a                  | 2.30(1.52)cd          |
| N <sub>3</sub> | 24.33a           | 24.47a                 | 0.560.75)a            | 24.65a            | 1.31(1.14)b              | 25.05a                  | 2.12(1.46)d           |
| N <sub>4</sub> | 26.93a           | 27.10a                 | 0.63(0.79)a           | 27.34a            | 1.51(1.23)a              | 27.67a                  | 2.51(1.58)a           |
| N <sub>5</sub> | 26.33a           | 26.49a                 | 0.61(0.78)a           | 26.70a            | 1.40(1.18)ab             | 27.19a                  | 2.46(1.57)ab          |
| N <sub>6</sub> | 26.73a           | 26.90a                 | 0.62(0.79)a           | 27.12a            | 1.44(1.20)ab             | 27.50a                  | 2.49(1.58)abc         |
| N <sub>7</sub> | 26.33a           | 26.49a                 | 0.60(0.77)a           | 26.69a            | 1.37(1.17)ab             | 27.14a                  | 2.46(1.57)abcd        |
| SEm (±)        | 0.91             | 0.91                   | 0.02                  | 0.91              | 0.04                     | 0.92                    | 0.03                  |
| LSD(P ≤ 0.05)  | NS               | NS                     | NS                    | NS                | 0.12                     | NS                      | 0.09                  |

\*\*Means with the same letter are not significantly different.P<sub>0</sub>- No pruning (Control), P<sub>1</sub>- 25 cm pruning from the terminal portion of the shoot, P<sub>2</sub>- 50 cm pruning from the terminal portion of the shoot and 7 treatments of nutrient management viz. N<sub>1</sub>- 100% Recommended Dose of Fertilizer (N@210g/plant-P@140g/plant-K@210g/plant), N<sub>2</sub>- Vermicompost (20kg/plant) + Azotobacter (18g/plant) + Vesicular Arbuscular Mycorrhiza (150g/plant), N<sub>3</sub>- Vermicompost, N<sub>4</sub>- 75% RDF + Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza, N<sub>5</sub>- 75% RDF + Vermicompost, N<sub>6</sub>- 50% RDF + Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza and N<sub>7</sub>- 50% RDF + Vermicompost

#### Plant spread (N-S)

The data on plant spread (N-S) presented in Table 3 indicated the significant variation under different pruning levels. However the datas were statistically at par under  $P_1$  and  $P_2$  level at initial, 6<sup>th</sup> month and 12<sup>th</sup> month, and under  $P_2$  and  $P_3$  level at 18<sup>th</sup> month after pruning Results indicated that the Plant spread (N-S) was increased in all the treatments up to the end of experiment. Maximum plant height (5.03 m, 5.29 m and 5.95 m) and its percentage increase (6.52%, 13.04% and 40.23%) was recorded in highest level of pruning  $P_3$  (75 cm pruning from the terminal portion of the shoot) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning followed by medium level P<sub>2</sub> (50 cm pruning from the terminal portion of the shoot) of pruning (4.74 m, 5.01 m and 5.72 m; 5.61%, 11.37% and 37.26%) after 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> months after pruning. The lowest plant spread (N-S) and its percentage increase was observed in (P<sub>0</sub>) unpruned plants (3.99 m, 4.17 m and 4.88 m; 4.85%, 10.03% and 28.07%) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning. Plant spread (N-S) were statistically at par at initial, 12<sup>th</sup> month (only percentage increase) and 18<sup>th</sup> month (only spread) after pruning. The highest plant spread (N-S) (5.02 m, 4.43 m and 5.10 m) and its percentage increase (4.98%, 10.09% and 28.33%)

#### doi:http://dx.doi.org/10.4172/2229-4473.1000106

|                | Initial             | 6 months after pruning |                                  | 12 mon              | ths after pruning                | 18 months after pruning |                                  |
|----------------|---------------------|------------------------|----------------------------------|---------------------|----------------------------------|-------------------------|----------------------------------|
| Treatments     | spread (E-W)<br>(m) | spread (E-W)<br>(m)    | Increase in spread (E-<br>W) (%) | spread (E-W)<br>(m) | Increase in spread (E-<br>W) (%) | spread (E-W)<br>(m)     | Increase in spread (E-<br>W) (%) |
| P <sub>0</sub> | 3.82c               | 4.29c                  | 12.33(3.51)c                     | 4.83c               | 26.53(30.98)c                    | 5.25c                   | 27.73(31.76)c                    |
| P <sub>1</sub> | 4.39b               | 4.99b                  | 13.83(3.72)b                     | 5.63b               | 28.28(32.14)b                    | 5.83b                   | 30.82(33.71)bc                   |
| P <sub>2</sub> | 4.49b               | 5.13b                  | 14.15(3.76)b                     | 5.81b               | 29.15(32.71)b                    | 5.99b                   | 33.90(35.61)ab                   |
| P <sub>3</sub> | 4.94a               | 5.68a                  | 14.96(3.87)a                     | 6.48a               | 31.20(33.96)a                    | 6.31a                   | 37.66(37.88)a                    |
| SEm (±)        | 0.11                | 0.13                   | 0.03                             | 0.15                | 0.32                             | 0.09                    | 1.34                             |
| LSD(P ≤ 0.05)  | 0.31                | 0.38                   | 0.08                             | 0.41                | 0.90                             | 0.25                    | 3.80                             |
| N <sub>1</sub> | 3.82ab              | 4.29ab                 | 12.33(3.51)ab                    | 4.83ab              | 26.53(30.98)a                    | 5.25abc                 | 27.73(31.76)a                    |
| N <sub>2</sub> | 3.81ab              | 4.28ab                 | 12.27(3.50)ab                    | 4.81ab              | 26.27(30.85)a                    | 5.19bc                  | 26.66(31.11)a                    |
| N <sub>3</sub> | 3.80b               | 4.28b                  | 11.86(3.44)b                     | 4.80b               | 26.23(30.79)a                    | 5.12c                   | 26.32(30.85)a                    |
| N <sub>4</sub> | 4.10a               | 4.65a                  | 13.40(3.66)a                     | 5.19a               | 27.67(31.76)a                    | 5.60a                   | 30.04(33.21)a                    |
| N <sub>5</sub> | 3.93ab              | 4.45ab                 | 12.69(3.56)ab                    | 4.71ab              | 27.38(31.56)a                    | 5.35ab                  | 28.77(32.46)a                    |
| N <sub>6</sub> | 3.99ab              | 4.52ab                 | 13.30(3.65)ab                    | 5.09ab              | 27.55(31.69)a                    | 5.81abc                 | 29.28(32.77)a                    |
| N <sub>7</sub> | 3.92ab              | 4.40ab                 | 12.35(3.51)ab                    | 4.89ab              | 26.77(31.18)a                    | 5.31abc                 | 27.80(31.82)a                    |
| SEm (±)        | 0.14                | 0.18                   | 0.04                             | 0.19                | 0.42                             | 0.12                    | 1.77                             |
| LSD(P≤0.05)    | 0.41                | 0.50                   | 0.10                             | 0.54                | NS                               | 0.33                    | NS                               |

Table 3: Effect of pruning and nutrient management on plant spread (E-W) of lemon cv. Assam Lemon.

\*\*Means with the same letter are not significantly different.

 $P_0$ - No pruning (Control),  $P_1$ - 25 cm pruning from the terminal portion of the shoot,  $P_2$ - 50 cm pruning from the terminal portion of the shoot,  $P_3$ - 75 cm pruning from the terminal portion of the shoot and 7 treatments of nutrient management viz.  $N_1$ - 100% Recommended Dose of Fertilizer (N@210g/plant-P@140g/plant-K@210g/plant),  $N_2$ - Vermicompost (20kg/plant) + Azotobacter (18g/plant) + Vesicular Arbuscular Mycorrhiza (150g/plant),  $N_3$ - Vermicompost,  $N_4$ - 75% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza,  $N_5$ - 75% RDF+ Vermicompost,  $N_6$ - 50% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza and  $N_7$ - 50% RDF+ Vermicompost

was recorded in N<sub>4</sub> (75% RDF + Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning followed by N<sub>6</sub> (50% RDF+ Vermicompost + Impact of Pruning and Nutrient Management on Growth and Yield of Lemon: Azotobacter + Vesicular Arbuscular Mycorrhiza) (4.14 m, 4.34 m and 5.09 m; 4.93%, 10.05% and 28.27%). Lowest plant spread (N-S) (3.49 m, 3.72 m and 4.48 m) and its percentage increase (3.09%, 9.66% and 28.03%) was observed in N<sub>3</sub> (Vermicompost) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning. Combination of organic, bio-fertilizer with highest amount of inorganic fertilizers gave the best result as biofertilizer increased the availability of nutrients by increasing the absorption and mobilization of nutrients which was supplied by organic and inorganic fertilizers resulted better food reserve which enhanced plant spread [11,12].

#### Plant spread (E-W)

Experiment results revealed that the plant spread (E-W) was increased significantly in all the treatments up to the end of experiment (Table 4). Results showed that data's were statistically at par under P, and P, level at initial, 6th month and 12th month except under P, and P<sub>1</sub> at 18<sup>th</sup> month after pruning (only percentage increase). Maximum plant spread (E-W) (5.68m, 6.48m and 6.31 m) and its percentage increase (14.96%, 31.20% and 37.66%) was recorded in highest level of pruning  $P_{2}$  (75 cm pruning from the terminal portion of the shoot) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning followed by medium level P<sub>2</sub> (50 cm pruning from the terminal portion of the shoot) of pruning (5.13 m, 5.81 m and 5.99 m; 14.15%, 29.15% and 33.90%). The lowest plant spread (E-W) and its percentage increase was observed in (P<sub>o</sub>) unpruned plants (4.29 m, 4.83 cm and 5.25 m; 12.33%, 26.53% and 27.73%) after 6th, 12th and 18th months after pruning. Different nutrient treatments had significant effect on plant spread (E-W) except in percentage increase at 12th and 18th month after pruning. The highest plant spread (E-W) (4.65m, 5.19m and 5.60m) and its percentage increase (13.40%, 27.67% and 30.04%) was recorded in N<sub>4</sub> (75% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning followed by N<sub>6</sub> (50% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza) (4.52 m, 5.09 m and 5.81 m; 13.30%, 27.55% and 29.28%). Lowest plant spread (E-W) (4.28 m, 4.80 m and 5.12 m) and its percentage increase (11.86%, 26.23% and 26.32%) was observed in N<sub>3</sub> (Vermicompost) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning. Observation revealed that all the data's were statistically at par under different treatment combination. These results are in agreement with the findings recorded by Nath and Baruah [10], Boughalleb et al. [11], Kundu et al. [12] and Lal and Dayal [13].

#### Canopy volume (m<sup>3</sup>)

The data pertaining to canopy volume has been presented in Table 5, were significantly different under different pruning level. However the datas of percentage increase in canopy volume were statistically at par at 6th and 12th month after pruning under Po and P<sub>1</sub>. Observation revealed that the plant height was increased in all the treatments up to the end of experiment. Maximum canopy volume (70.94 m<sup>3</sup>, 82.54 m<sup>3</sup> and 112.13 m<sup>3</sup>) and its percentage increase (25.43%, 47.52% and 102.29%) was recorded in highest level of pruning  $P_{a}$  (75 cm pruning from the terminal portion of the shoot) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning followed by medium level P<sub>2</sub> (50 cm pruning from the terminal portion of the shoot) of pruning (63.97 m<sup>3</sup>, 75.98 m<sup>3</sup> and 104.10 m<sup>3</sup>; 22.76%, 46.45% and 99.90%) after 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> months after pruning. The lowest canopy volume and its percentage increase was observed in (P<sub>a</sub>) unpruned plants (51.50 m<sup>3</sup>, 60.49 m<sup>3</sup> and 77.15 m<sup>3</sup>; 18.31%, 40.90% and 89.86%) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning. Observation showed that nutrient treatments were resulted in significant variation in the datas except percentage increase at 12th month after pruning. The highest canopy volume (64.77 m<sup>3</sup>, 65.91 m<sup>3</sup> and 87.93 m<sup>3</sup>) and its percentage

#### doi:http://dx.doi.org/10.4172/2229-4473.1000106

|                | Plant spread (N-S) direction |                           |                                       |                           |                                          |                           |                                       |  |
|----------------|------------------------------|---------------------------|---------------------------------------|---------------------------|------------------------------------------|---------------------------|---------------------------------------|--|
|                | Initial                      | 6 months                  | after pruning                         | 12 month                  | is after pruning                         | 18 months after pruning   |                                       |  |
| Treatments     | plant spread<br>(N-S) (m)    | plant spread<br>(N-S) (m) | Increase in plant<br>spread (N-S) (%) | plant spread<br>(N-S) (m) | Increase in plant<br>spread (N-S)<br>(%) | plant spread<br>(N-S) (m) | Increase in plant spread<br>(N-S) (%) |  |
| Po             | 3.79c                        | 3.99c                     | 4.85(2.20)c                           | 4.17c                     | 10.03(3.17)b                             | 4.88c                     | 28.07(32.01)d                         |  |
| P <sub>1</sub> | 4.23b                        | 4.44b                     | 5.13(2.26)bc                          | 4.66b                     | 10.16(3.19)b                             | 5.40b                     | 29.59(32.96)c                         |  |
| P <sub>2</sub> | 4.50ab                       | 4.74ab                    | 5.61(2.37)b                           | 5.01b                     | 11.37(3.37)b                             | 5.72a                     | 37.26(37.64)b                         |  |
| P <sub>3</sub> | 4.71a                        | 5.03a                     | 6.52(2.55)a                           | 5.29a                     | 13.04(3.61)a                             | 5.95a                     | 40.23(39.35)a                         |  |
| SEm (±)        | 0.13                         | 0.12                      | 0.06                                  | 0.14                      | 0.09                                     | 0.10                      | 0.42                                  |  |
| LSD(P ≤ 0.05)  | 0.35                         | 0.34                      | 0.18                                  | 0.38                      | 0.27                                     | 0.29                      | 1.20                                  |  |
| N <sub>1</sub> | 3.79a                        | 3.99abc                   | 4.85(2.20)ab                          | 4.17ab                    | 10.03(3.17)a                             | 4.88a                     | 28.07(32.01)ab                        |  |
| N <sub>2</sub> | 3.79a                        | 3.98bc                    | 4.79(2.19)ab                          | 4.17ab                    | 10.05(3.17)a                             | 5.12a                     | 28.03(31.95)b                         |  |
| N <sub>3</sub> | 3.39a                        | 3.49c                     | 3.09(1.76)b                           | 3.72b                     | 9.66(3.11)a                              | 4.48a                     | 28.03(31.95)b                         |  |
| N <sub>4</sub> | 4.03a                        | 5.02a                     | 4.98(2.23)a                           | 4.43a                     | 10.09(3.18)a                             | 5.10a                     | 28.33(32.14)a                         |  |
| N <sub>5</sub> | 3.83a                        | 4.01abc                   | 4.87(2.21)ab                          | 4.21ab                    | 10.05(3.17)a                             | 4.94a                     | 28.15(32.08)ab                        |  |
| N <sub>6</sub> | 3.95a                        | 4.14abc                   | 4.93(2.22)ab                          | 4.34ab                    | 10.05(3.17)a                             | 5.09a                     | 28.27(32.14)a                         |  |
| N <sub>7</sub> | 3.81a                        | 4.33abc                   | 4.85(2.20)ab                          | 4.20ab                    | 10.03(3.17)a                             | 4.89a                     | 28.10(32.01)ab                        |  |
| SEm (±)        | 0.17                         | 0.16                      | 0.08                                  | 0.18                      | 0.12                                     | 0.14                      | 0.56                                  |  |
| LSD(P ≤ 0.05)  | NS                           | 0.45                      | 0.24                                  | 0.51                      | NS                                       | NS                        | 1.58                                  |  |

Table 4: Effect of pruning and nutrient management on plant spread (N-S) of lemon cv. Assam Lemon.

\*\*Means with the same letter are not significantly different.

 $P_0^-$  No pruning (Control),  $P_1^-$  25 cm pruning from the terminal portion of the shoot,  $P_2^-$  50 cm pruning from the terminal portion of the shoot,  $P_3^-$  75 cm pruning from the terminal portion of the shoot and 7 treatments of nutrient management viz.  $N_1^-$  100% Recommended Dose of Fertilizer (N@210g/plant-P@140g/plant-K@210g/plant),  $N_2^-$  Vermicompost (20kg/plant) + Azotobacter (18g/plant) + Vesicular Arbuscular Mycorrhiza (150g/plant),  $N_3^-$  Vermicompost,  $N_4^-$  75% RDF+ Vermicompost,  $N_6^-$  50% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza and  $N_7^-$  50% RDF+ Vermicompost

increase (42.16%, 44.98% and 93.06%) was recorded in N<sub>4</sub> (75% RDF + Vermicompost + Azotobacter + Vesicular ArbuscularMycorrhiza) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning followed by N<sub>6</sub> (50% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza) (53.62 m<sup>3</sup>, 65.18 m<sup>3</sup> and 85.71 m<sup>3</sup>; 19.26%, 44.90% and 92.73%). However, canopy volume (43.48 m<sup>3</sup>, 52.67 m<sup>3</sup> and 67.60 m<sup>3</sup>) and its Impact of Pruning and Nutrient Management on Growth and Yield of Lemon

percentage increase were minimum (15.16%, 39.25% and 78.68%) in N<sub>3</sub> (Vermicompost) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning. These results are in line with that of Nath and Baruah [11] who reported that highest level of pruning gave the best result as it caused better movement of air and light in to the inner part and thereby resulted in greater photosynthesis. This increased photosynthesis activity of the plants leads to higher accumulation of the photosynthetic, which were utilized by developing shoots, leading to increase in plant vigour.

#### Number of laterals per primary shoot

Observations revealed that the number of laterals per primary shoot was significantly increased in all the treatments up to the end of experiment (Table 6). Maximum number of laterals per primary shoot (7.70, 9.33 and 10.17) and its percentage increase (25.43%, 54.54% and 80.13%) was recorded in highest level of pruning  $P_3$  (75 cm pruning from the terminal portion of the shoot) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning followed by medium level  $P_2$  (50 cm pruning from the terminal portion of pruning (6.71, 8.09 and 9.60; 20.85%, 44.26% and 74.97%). The lowest number of laterals per primary shoot and its percentage increase was observed in ( $P_0$ ) unpruned plants (4.50, 6.13 and 7.83; 16.56%, 35.03% and 65.17%) after 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> months after pruning. The significantly highest

number of laterals per primary shoot (5.96, 6.78 and 8.50) and its percentage increase (18.27%, 38.25% and 71.12%) was recorded in N. (75% RDF + Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning followed by N<sub>e</sub> (50% RDF + Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza) (5.86, 6.99 and 8.47; 17.29%, 38.06% and 70.84%). Lowest number of laterals per primary shoot (5.03, 5.37 and 7.40) and its percentage increase (14.78%, 30.49% and 52.45%) was observed in N<sub>2</sub> (Vermicompost) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning. These results are in agreement with Nath and Baruah [10] and Guimond et al. [14] who reported that higher level of pruning increases number of laterals in lemon and bing cherry which might be due to simply removal of hormonal influence (and resource sink) of the apical meristem plays a large role in shifting basal meristem determination to ward new shoots and floral initiation. Similar results also found by Kovaleski et al. [15] in highbush blue berry varieties cv. 'Emerald' and 'Iewel'.

#### Total leaf chlorophyll content (mg/g fresh weight)

Recorded observations on leaf chlorophyll content have been presented in Table 7. It was significantly increased in all the pruning treatments up to the end of experiment. Maximum leaf chlorophyll content (1.39 mg/g fresh weight, 1.85 mg/g fresh weight and 2.46 mg/g fresh weight) and its percentage increase (47.65%, 96.56% and 163.63%) were recorded in highest level of pruning  $P_3$  (75 cm pruning from the terminal portion of the shoot) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning followed by medium level  $P_2$  (50 cm pruning from the terminal portion of the shoot) of pruning (1.34 mg/g fresh weight, 1.78 mg/g fresh weight and 2.38 mg/g fresh weight; 46.82%, 95.14% and 161.90%). The lowest leaf chlorophyll content (1.21 mg/g fresh

#### doi:http://dx.doi.org/10.4172/2229-4473.1000106

|                | Canopy volume         |                                |                                  |                       |                                     |                         |                                  |  |
|----------------|-----------------------|--------------------------------|----------------------------------|-----------------------|-------------------------------------|-------------------------|----------------------------------|--|
|                | Initial               | Initial 6 months after pruning |                                  |                       | after pruning                       | 18 months after pruning |                                  |  |
| Treatments     | Canopy volume<br>(m³) | Canopy volume<br>(m³)          | Increase in canopy<br>volume (%) | Canopy<br>volume (m³) | Increase in<br>canopy volume<br>(%) | Canopy volume<br>(m³)   | Increase in canopy<br>volume (%) |  |
| P <sub>0</sub> | 43.44d                | 51.50d                         | 18.31(25.33)c                    | 60.49d                | 40.90c                              | 77.15d                  | 89.86(9.48)d                     |  |
| P <sub>1</sub> | 48.77c                | 58.89c                         | 20.82(27.13)bc                   | 70.55c                | 45.80bc                             | 93.83c                  | 94.74(9.73)c                     |  |
| P <sub>2</sub> | 52.05b                | 63.97b                         | 22.76(28.52)ab                   | 75.98b                | 46.45b                              | 104.10b                 | 99.90(9.99)b                     |  |
| P <sub>3</sub> | 56.59a                | 70.94a                         | 25.43(30.26)a                    | 82.54a                | 47.52a                              | 112.13a                 | 102.29(10.11)a                   |  |
| SEm (±)        | 0.98                  | 1.40                           | 0.67                             | 1.47                  | 1.20                                | 1.80                    | 0.07                             |  |
| LSD(P ≤ 0.05)  | 2.79                  | 3.98                           | 1.89                             | 4.17                  | 3.40                                | 5.09                    | 0.20                             |  |
| N <sub>1</sub> | 43.44abc              | 51.50cd                        | 18.31(25.33)c                    | 60.49bc               | 40.90a                              | 77.15bcd                | 89.86(9.48)abc                   |  |
| N <sub>2</sub> | 40.96bc               | 53.33cd                        | 30.21(33.34)bc                   | 57.25bc               | 40.12a                              | 72.99cd                 | 79.13(8.90)bc                    |  |
| N <sub>3</sub> | 37.83c                | 43.48d                         | 15.16(22.95)ab                   | 52.67c                | 39.25a                              | 67.60d                  | 78.68(8.87)c                     |  |
| N <sub>4</sub> | 45.96a                | 64.77a                         | 42.16(40.51)a                    | 65.91a                | 44.98a                              | 87.93a                  | 93.06(9.65)a                     |  |
| N <sub>5</sub> | 43.89ab               | 52.40bc                        | 19.44(26.13)bc                   | 64.43ab               | 43.87a                              | 84.82abc                | 92.53(9.62)ab                    |  |
| N <sub>6</sub> | 44.94ab               | 53.62ab                        | 19.26(26.06)ab                   | 65.18ab               | 44.90a                              | 85.71ab                 | 92.73(9.63)a                     |  |
| N <sub>7</sub> | 43.80abc              | 53.91bcd                       | 23.32(28.86)c                    | 62.84bc               | 43.72a                              | 82.75abc                | 90.94(9.54)abc                   |  |
| SEm (±)        | 1.30                  | 1.86                           | 0.88                             | 1.94                  | 1.59                                | 2.38                    | 0.09                             |  |
| LSD(P ≤ 0.05)  | 3.69                  | 5.26                           | 2.50                             | 5.51                  | NS                                  | 6.73                    | 0.27                             |  |

Table 5: Effect of pruning and nutrient management on canopy volume of lemon cv. Assam Lemon.

\*\*Means with the same letter are not significantly different.  $P_0$ - No pruning (Control),  $P_1$ - 25 cm pruning from the terminal portion of the shoot,  $P_2$ - 50 cm pruning from the terminal portion of the shoot and 7 treatments of nutrient management viz.  $N_1$ - 100% Recommended Dose of Fertilizer (N@210g/plant-P@140g/plant-K@210g/plant),  $N_2$ - Vermicompost (20kg/plant) + Azotobacter (18g/plant) + Vesicular Arbuscular Mycorrhiza (150g/plant),  $N_3$ - Vermicompost,  $N_4$ - 75% RDF+ Vermicompost,  $N_6$ - 50% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza,  $N_5$ - 75% RDF+ Vermicompost,  $N_6$ - 50% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza and  $N_7$ - 50% RDF+ Vermicompost

 Table 6: Effect of pruning and nutrient management on number of laterals/ primary shoot of lemon cv. Assam Lemon.

|                | Initial                                 | Initial 6 months after pruning          |                                                         |                                            | after pruning                                                 | 18 months after pruning                 |                                                        |
|----------------|-----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|
| Treatments     | Number of<br>laterals/<br>primary shoot | Number of<br>laterals/<br>primary shoot | Increase in number of<br>laterals/<br>primary shoot (%) | Number of<br>laterals/<br>primary<br>shoot | Increase in<br>Number of<br>laterals/<br>primary shoot<br>(%) | Number of<br>laterals/<br>primary shoot | Increase in Number of<br>laterals/primary shoot<br>(%) |
| P <sub>0</sub> | 4.67c                                   | 4.50c                                   | 16.56(4.07)d                                            | 6.13c                                      | 35.03d                                                        | 7.83d                                   | 65.17(53.85)c                                          |
| P <sub>1</sub> | 5.27bc                                  | 6.25b                                   | 18.90(4.35)c                                            | 7.34b                                      | 39.46c                                                        | 8.83c                                   | 72.33(58.24)b                                          |
| P <sub>2</sub> | 5.53b                                   | 6.71b                                   | 20.85(4.57)b                                            | 8.09b                                      | 44.26b                                                        | 9.60b                                   | 74.97(60)b                                             |
| P <sub>3</sub> | 6.13a                                   | 7.70a                                   | 25.43(5.04)a                                            | 9.33a                                      | 54.54a                                                        | 10.17a                                  | 80.13(63.51)a                                          |
| SEm (±)        | 0.25                                    | 0.28                                    | 0.46                                                    | 0.37                                       | 0.41                                                          | 0.19                                    | 1.04                                                   |
| LSD(P ≤ 0.05)  | 0.71                                    | 0.78                                    | 1.30                                                    | 0.93                                       | 1.17                                                          | 0.53                                    | 2.94                                                   |
| N <sub>1</sub> | 4.67a                                   | 4.50ab                                  | 16.56(4.07)ab                                           | 6.13ab                                     | 35.03cd                                                       | 7.83ab                                  | 65.17(53.85)cd                                         |
| N <sub>2</sub> | 4.53a                                   | 5.21ab                                  | 14.80(3.85)b                                            | 5.97ab                                     | 31.43de                                                       | 7.57ab                                  | 62.01(51.94)cd                                         |
| N <sub>3</sub> | 4.40a                                   | 5.03b                                   | 14.78(3.84)b                                            | 5.37b                                      | 30.49e                                                        | 7.40b                                   | 52.45(46.43)d                                          |
| N <sub>4</sub> | 5.13a                                   | 5.96a                                   | 18.27(4.27)a                                            | 6.78a                                      | 38.25a                                                        | 8.50a                                   | 71.12(57.48)a                                          |
| N <sub>5</sub> | 4.73a                                   | 5.51ab                                  | 16.92(4.11)ab                                           | 6.42ab                                     | 36.59bc                                                       | 8.37ab                                  | 69.66(56.60)bc                                         |
| N <sub>6</sub> | 5.00a                                   | 5.86ab                                  | 17.29(4.16)a                                            | 6.99ab                                     | 38.06ab                                                       | 8.47ab                                  | 70.84(57.29)ab                                         |
| N <sub>7</sub> | 4.73a                                   | 5.53ab                                  | 16.64(4.08)ab                                           | 6.41ab                                     | 35.50c                                                        | 8.33ab                                  | 68.02(55.55)bc                                         |
| SEm (±)        | 0.33                                    | 0.37                                    | 0.61                                                    | 0.43                                       | 0.55                                                          | 0.25                                    | 1.37                                                   |
| LSD(P ≤ 0.05)  | NS                                      | 1.04                                    | 1.72                                                    | 1.23                                       | 1.55                                                          | 0.71                                    | 3.89                                                   |

\*\*Means with the same letter are not significantly different.

 $P_0$ - No pruning (Control),  $P_1$ - 25 cm pruning from the terminal portion of the shoot,  $P_2$ - 50 cm pruning from the terminal portion of the shoot,  $P_3$ - 75 cm pruning from the terminal portion of the shoot and 7 treatments of nutrient management viz.  $N_1$ - 100% Recommended Dose of Fertilizer (N@210g/plant-P@140g/plant-K@210g/plant),  $N_2$ - Vermicompost (20kg/plant) + Azotobacter (18g/plant) + Vesicular Arbuscular Mycorrhiza (150g/plant),  $N_3$ - Vermicompost,  $N_4$ - 75% RDF + Vermicompost,  $N_6$ - 50% RDF + Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza and  $N_7$ - 50% RDF + Vermicompost

weight, 1.60 mg/g fresh weight and 2.29 mg/g fresh weight) and its percentage increase (43.66 %, 90.45 % and 156.61%) were observed in (P<sub>0</sub>) unpruned plants after 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> months after pruning. Observation revealed that different nutrient treatments have no effect on leaf chlorophyll content. The highest leaf chlorophyll content (1.29 mg/g fresh weight, 1.71 mg/g fresh weight and 2.33 mg/g fresh

weight) and its percentage increase (45.06 %, 92.58 % and 160.01%) was recorded in N<sub>4</sub> (75% RDF + Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning followed by N<sub>6</sub> (50% RDF+ Vermicompost + Azotobacter + Vesicular ArbuscularMycorrhiza) (1.28 mg/g fresh weight, 1.70 mg/g fresh weight and 2.33 mg/g fresh weight; 44.94%, 92.13% and

#### doi:http://dx.doi.org/10.4172/2229-4473.1000106

|                   | Initial         | 6 months after pruning |                                | 12 months after pruning |                                | 18 months after pruning |                                |
|-------------------|-----------------|------------------------|--------------------------------|-------------------------|--------------------------------|-------------------------|--------------------------------|
| Treatments        | Chlorophyll (%) | Chlorophyll (%)        | Increase in<br>Chlorophyll (%) | Chlorophyll (%)         | Increase in<br>Chlorophyll (%) | Chlorophyll (%)         | Increase in<br>Chlorophyll (%) |
| Po                | 0.89d           | 1.21c                  | 43.66b                         | 1.60c                   | 90.45(9.51)b                   | 2.29c                   | 156.61(12.51)b                 |
| P <sub>1</sub>    | 0.91c           | 1.31b                  | 46.24ab                        | 1.74bc                  | 93.74a(9.68)b                  | 2.36b                   | 160.92(12.69)ab                |
| P <sub>2</sub>    | 0.93b           | 1.34b                  | 46.82ab                        | 1.78b                   | 95.14(9.75)a                   | 2.38b                   | 161.90(12.72)ab                |
| P3                | 0.98a           | 1.39a                  | 47.65a                         | 1.85a                   | 96.56(9.83)a                   | 2.46a                   | 163.63(12.79)a                 |
| SEm (±)           | 0.01            | 0.02                   | 1.31                           | 0.03                    | 0.06                           | 0.22                    | 0.11                           |
| LSD(P ≤ 0.05)     | 0.02            | 0.04                   | 3.71                           | 0.08                    | 0.16                           | 0.06                    | 0.30                           |
| N <sub>1</sub>    | 0.89a           | 1.21a                  | 43.66a                         | 1.60a                   | 90.45(9.51)a                   | 2.29a                   | 156.61(12.51)a                 |
| N <sub>2</sub>    | 0.88abc         | 1.26a                  | 43.17a                         | 1.67a                   | 90.27(9.50)a                   | 2.29a                   | 153.60(12.39)a                 |
| N <sub>3</sub>    | 0.86bc          | 1.23a                  | 42.71a                         | 1.62a                   | 87.71(9.37)a                   | 2.27a                   | 152.59(12.35)a                 |
| N <sub>4</sub>    | 0.89a           | 1.29a                  | 45.06a                         | 1.71a                   | 92.58(9.62)a                   | 2.33a                   | 160.01(12.65)a                 |
| N <sub>5</sub>    | 0.89ab          | 1.28a                  | 44.49a                         | 1.70a                   | 91.79(9.58)a                   | 2.29a                   | 157.89(12.57)a                 |
| N <sub>6</sub>    | 0.89abc         | 1.28a                  | 44.94a                         | 1.70a                   | 92.13(9.60)a                   | 2.33a                   | 158.70(12.60)a                 |
| N <sub>7</sub>    | 0.84c           | 1.28a                  | 44.42a                         | 1.70a                   | 91.02(9.54)a                   | 2.29a                   | 157.16(12.54)a                 |
| SEm (±)           | 0.01            | 0.02                   | 1.73                           | 0.04                    | 0.07                           | 0.03                    | 0.14                           |
| $LSD(P \le 0.05)$ | 0.02            | NS                     | NS                             | NS                      | NS                             | NS                      | NS                             |

#### Table 7: Effect of pruning and nutrient management on leaf chlorophyll content of lemon cv. Assam Lemon

\*\*Means with the same letter are not significantly different.

 $P_0^-$  No pruning (Control),  $P_4^-$  25 cm pruning from the terminal portion of the shoot,  $P_2^-$  50 cm pruning from the terminal portion of the shoot,  $P_3^-$  75 cm pruning from the terminal portion of the shoot and 7 treatments of nutrient management viz.  $N_4^-$  100% Recommended Dose of Fertilizer (N@210g/plant-P@140g/plant-K@210g/plant),  $N_2^-$  Vermicompost (20kg/plant) + Azotobacter (18g/plant) + Vesicular Arbuscular Mycorrhiza (150g/plant),  $N_3^-$  Vermicompost,  $N_4^-$  75% RDF + Vermicompost,  $N_6^-$  50% RDF + Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza and  $N_7^-$  50% RDF + Vermicompost + Vermicompost

Table 8: Effect of pruning and nutrient management on yield (Total number of Harvested fruits) of lemon cv. Assam Lemon.

|                | Ambe bahar                       | Mrig bahar                       | Hasth bahar                         |
|----------------|----------------------------------|----------------------------------|-------------------------------------|
| Treatments     | Total number of Harvested fruits | Total number of Harvested fruits | Total number of Harvested<br>fruits |
| Po             | 103d                             | 46d                              | 12d                                 |
| P <sub>1</sub> | 219c                             | 129c                             | 39c                                 |
| P <sub>2</sub> | 146b                             | 88b                              | 27b                                 |
| P <sub>3</sub> | 107a                             | 59a                              | 16a                                 |
| SEm (±)        | 1.13                             | 0.93                             | 0.89                                |
| LSD(P ≤ 0.05)  | 3.20                             | 2.63                             | 2.52                                |
| N <sub>1</sub> | 103e                             | 46d                              | 12de                                |
| N <sub>2</sub> | 96f                              | 39e                              | 11ef                                |
| N <sub>3</sub> | 80g                              | 36e                              | 8f                                  |
| N <sub>4</sub> | 114a                             | 60a                              | 17a                                 |
| N <sub>5</sub> | 110c                             | 51c                              | 16bc                                |
| N <sub>6</sub> | 112b                             | 54b                              | 16ab                                |
| N <sub>7</sub> | 107d                             | 48d                              | 14cd                                |
| SEm (±)        | 1.49                             | 1.23                             | 1.17                                |
| LSD(P ≤ 0.05)  | 4.23                             | 3.48                             | 3.33                                |

\*\*Means with the same letter are not significantly different.

 $P_0$ - No pruning (Control),  $P_1$ - 25 cm pruning from the terminal portion of the shoot,  $P_2$ - 50 cm pruning from the terminal portion of the shoot,  $P_3$ - 75 cm pruning from the terminal portion of the shoot and 7 treatments of nutrient management viz.  $N_1$ - 100% Recommended Dose of Fertilizer (N@210g/plant-P@140g/plant-K@210g/plant),  $N_2$ - Vermicompost (20kg/plant) + Azotobacter (18g/plant) + Vesicular Arbuscular Mycorrhiza (150g/plant),  $N_3$ - Vermicompost,  $N_4$ - 75% RDF + Vermicompost,  $N_6$ - 50% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza and  $N_7$ - 50% RDF + Vermicompost

158.70%). Lowest leaf chlorophyll content (1.23 mg/g fresh weight, 1.62 mg/g fresh weight and 2.27 mg/g fresh Impact of Pruning and Nutrient Management on Growth and Yield of Lemon

weight) and its percentage increase (42.71%, 87.71% and 152.59%) was observed in N<sub>3</sub> (Vermicompost) at 6<sup>th</sup>, 12<sup>th</sup> and 18<sup>th</sup> month after pruning. It might be due to the fact that Azotobacter stimulates nutrient uptake especially nitrogen which has role in the assimilation of numerous amino acids that are subsequently incorporated in proteins and nucleic acid, which provides framework for chloroplast, mitochondria and other structures in which the most

of the biochemical reactions occurs and resulted in to increase in chlorophyll content of leaves, photosynthetic efficiency, translocation of metabolites from the source to sink [16].

#### Total number of harvested fruits

Significant variation with respect of number of harvested fruits was observed in three seasons under different pruning and nutrient treatments. The data pertaining to total number of harvested fruits revealed that maximum number of harvested fruits was recorded (Table 8) in  $P_1$  (25 cm pruning from the terminal portion of the

shoot) at Ambe, Mrig and Hasthbahar (219, 129 and 39) followed by  $P_2$  (50 cm pruning from the terminal portion of the shoot) (146, 88 and 27) at Ambe, Mrig and Hasthbahar. However, the lowest number of harvested fruits was observed in (P<sub>a</sub>) unpruned plants (103, 46 and 12) at Ambe, Mrig and Hasthbahar respectively. The significantly highest number of harvested fruits was recorded (114, 60 and 17) in N<sub>4</sub> (75% RDF + Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza) at Ambe, Mrig and Hasthbahar followed by N<sub>6</sub> (50% RDF+ Vermicompost + Azotobacter + Vesicular Arbuscular Mycorrhiza) (112, 54 and 16). Lowest number of harvested fruits (80, 36 and 8) was observed in N<sub>3</sub> (Vermicompost) at Ambe, Mrig and Hasthbahar respectively. Increased number of harvested fruits might be due to NPK in association of biofertilizer, VAM and Vermicompost at desired amount, enhanced leaf chlorophyll content resulting in accumulation of more photosynthates, ultimately resulted in more number of fruits at harvest [11,12]. Singh et al. [17] also found the same results in papaya cv. Pusa Dwarf.

#### Conclusions

From the foregoing discussion, it can be concluded that efficient management of organic, inorganic and biofertilizers rather than sole organic or inorganic is essential to improve vigourand yield of lemon plants. Besides this, prunings have a significant effect in increasing the flower bearing shoots. Hence, light pruning (25 cm pruning from the terminal portion of the shoot) along with integrated use of fertilizers *viz.* 75% RDF + Vermicompost + Azotobacter + Vesicular ArbuscularMycorrhiza proved as best in terms of total fruits per plants in lemon cv. Assam lemon as compared to plants under control.

#### References

- Kadam AB, Singh DB, Kade RA (2010) Effect of plant growth regulators and potassium nitrate on growth of seedling of kagzi lime. The Asian J of Hort 5: 431-434.
- 2. Annonymous (2013) In: National Horticulture Board Data base. National Horticulture Board
- Singh I P, Singh S (2006) Citrus Monograph. I.C.A.R. Publication National Research Centre for Citrus, Nagpur, Maharashtra, India.
- Singh R, Saxena SK (2008) Fruits, National Book Trust, India, A-5 Green Park, New Delhi, India.
- Dhaliwal HS, Banke AK, Sharma LK, Bali SK (2014) Impact of pruning practices on shoot growth and bud production in kinnow (citrus reticulate blanco) plants. J of Exp Biol and Agric Sci 1: 507-512.
- Khehra S, Bal JS (2014) Influence of organic and inorganic nutrient sources on growth of lemon (citrus limon burm.) Cv. baramasi. J of Exp Biol and Agric Sci 2: 126-129.
- 7. Westwood MN, Raimer FC, Quakenbush (1983) Long term yield related to ultimate tree size of three pear varieties grown on rootstock of five pyrus spp. Proc American Soc Hort Sci 82: 103-108.
- 8. Witham FH, Blayles DF, Levlin RM (1971) Experiments in plant physiology. Van Nostrand Reinhold Company, New York, USA.
- Gomez KA, Gomez AA (1983) Problem data. Statistical procedures for agricultural research (2<sup>nd</sup> edtn), Wiley-Inter science Publication (John Wiley and Sons), New York, USA.
- Nath JC, Baruah K (1999) Regulation of flowering time, plant growth and yield in assam lemon (citrus limon) with the help of pruning and growth regulators. Indian J of Agric Sci 69: 292-294.
- Boughalleb F, Mahmoud M, Hajlaoui H (2011) Response of young citrus trees to npk fertilization under greenhouse and field conditions. Agric J 6: 66-73.
- Kundu S, Datta, P, Mishra J, Rashmi K, Ghosh B (2011) Influence of biofertilizer and inorganic fertilizer in pruned mango orchard cv. Amrapali. J of Crop and Weed 7: 100-103.

#### doi:http://dx.doi.org/10.4172/2229-4473.1000106

- Lal G, Dayal H (2014) Effect of integrated nutrient management on yield and quality of acid lime (Citrus aurentifoliaswingle). Afr J of Agric Sci 9: 2985-2991.
- Guimond CN, Lang GA, Andrews PK (1998) Timing and severity of summer pruning affects flower initiation and shoot regrowth in sweet cherry. Hort Sci 33: 647-649.
- Kovaleski AP, Williamson JG, Casamali B, Darnell RL (2015) Effects of timing and intensity of summer pruning on vegetative traits of two southern high bush blueberry cultivars. Hort Sci 50: 68–73.
- Yadav RK, Jain MC, Jhakar RP (2012) Effect of media on growth and development of acid lime (Citrus aurantifolia Swingle) seedling with or without azotobacter. Afr J of Agric Res 7: 6421-6426.
- Singh VK, Kumar V, Bahuguna A (2012) Impact of fertilizer on yield of papaya cv. Pusadwarf underIndo Gangetic condition. J of Crop and Weed 8: 74-76.

# Author Affiliation

#### Тор

<sup>1</sup>Department of Pomology and Post Harvest Technology, Uttar BangaKrishi Viswavidyalaya, West Bengal, India

<sup>2</sup>Department of Plantation Crops and Processing, Uttar BangaKrishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, India

# Submit your next manuscript and get advantages of SciTechnol submissions

- 50 Journals
- 21 Day rapid review process
- 1000 Editorial team
- 2 Million readers
- More than 50,000 facebook likes
- Publication immediately after acceptance
   Quality and quick editorial, review processing
- goainy and quick editorial, review processing

Submit your next manuscript at • www.scitechnol.com/submission