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Abstract
This study estimates the influence of long cyclical climate patterns of 
pull and push climate elements (rainfall, temperature, wind) on cyclical 
fluctuations in tourism demand from the United States, the Netherlands 
and Venezuela on a small island state. Two important atmospheric 
variabilities, the El Niño Southern Oscillation (ENSO) and the North 
Atlantic Oscillation (NAO), were also included. Wavelet analysis was 
used because meteorological and economical time-series are typically 
noisy, complex and strongly non-stationary. Results show that both pull 
and push cyclical climate factors had an influence on tourism demand 
from the USA, the Netherlands and Venezuela. Furthermore, ENSO 
and NAO had also an influence on tourism demand from the USA 
and the Netherlands. The finding of a statistical relationship between 
atmospheric variabilities and tourism suggests that that they should be 
taken into account when developing tourism demand models, in order 
to create simpler econometric models. 

Keywords

Cyclic pattern; Tourism demand; Wavelet analysis; Aruba; El Niño; 
North Atlantic oscillation

*Corresponding author: Marck Oduber, International Centre for Integrated 
assessment& Sustainable development (ICIS) Maastricht University PO 
Box 616, 6200 MD Maastricht, The Netherlands a/o Director Meteorological 
Department Aruba Oranjestad, Aruba, E-mail: marck.oduber@meteo.aw

Received: July 14, 2016 Accepted: December 31, 2016 Published: January 
03, 2017

Introduction
The purpose of the study is to investigate how long cyclical patterns 

of climate influence tourism demand in small island destinations. 
Climate and weather play detrimental roles in the selection process of 
a tourist destination. Studying climate cycles relationship to tourism 
cycle may provide a better understanding in the complicated process 
of tourist visit fluctuations on a destination. Cycles are generally 
defined as systematic variations that have the property of repetition 
[1]. In this context, for example, a business cycle can be defined as 
a fluctuation of economic activity that shows non seasonal pattern. 
Some business cycles are Kitchin cycle, Juglar cycle, Kuznets cycle, 
and Kondratieff cycle [1]. Kitchen cycles are short period cycles of 3 to 
5 years, Juglar cycles are 7 to 11 years, Kuznets cycles are 15 to 25 years, 
whereas Kondratieff are the longer cycles of 45 to 60 years. Tourism 
demand cycles could, in an economical sense, be considered as results 
of variations of the overall economic activity. Therefore, according to 
Kožić [1], tourism demand cycles can be explained by influence of the 

overall economic activity. Studies done by Guizzardi & Mazzocchi [2], 
also hint that tourism cycles can be heavily influenced by the overall 
business cycle. Where Gouveia and Rodrigues [3] found the presence 
of a repetitive time lag among turning points of business and tourism 
demand growth cycles. Certain authors have also tried to relate money 
supply cycles in destination country with tourism demand cycles in 
arrival country [4]. These authors showed that money supply cycles 
can influence the cyclical movements of tourism demand and that the 
impacts are asymmetric depending on the time of development of the 
cycles [4]. 

Over the past century, tourism has become the world’s biggest 
business, exceeding defence, manufacturing, oil and agriculture 
industries [5,6]. Tourism is one of the fastest growing segments and 
this is a unique feature since World War II [7,8,9,10]. To stay up-
to-date to the rapidly growing tourism phenomenon, destinations 
must have proper projections of tourism demand for planning and 
managerial decisions. Therefore an adequate insight into the factors 
that influence tourism is needed. These factors should, also, include 
non-economic factors. Most studies on the determinants of tourism 
demand have been focused around economic aspects (e.g. income 
and price), while remaining mostly silent on the potential impact of 
climate on the selection of destinations [11]. Climate is defined as the 
total of all statistical weather information that aids to describe the 
variation of weather at a given place for a specified interval of time [12]. 
Climate can be seen as the average weather for a particular location 
that influences a wide array of environmental resources, which are 
critical attractions for tourism, for example, snow conditions, wildlife 
productivity and biodiversity, and water levels and their quality [13]. 
On the other hand, weather is the state of the atmosphere, mainly with 
respect to its effect upon life and human activities at a particular time, 
as defined by the various weather elements [12].

Since the beginning of reliable instrumental records it has been 
possible to make approximations of the degree to which various 
aspects of economic activity have been influenced by anomalous 
weather events [14]. Severe winters of 1947, 1963, and 1979 all 
have caused major economic disruptions across Europe [14]. Cyclic 
behaviour in climate such as El Niño’s of 1982/83 and 1997/98 had 
major global impacts. From droughts in Australia to many part of 
the sub-Saharan Africa, Brazil and Central America [14]. Except for 
economic impacts, climate can have an influence on tourism too. 
Climate can attract visitors who expect pleasant weather conditions at 
a destination [15,16]. While on the other hand climate can influence 
a traveler’s decision to leave or stay in his/her own country [17]. 
Henceforth, climate can act as both a pull and a push factor that 
influences the motivations of tourists to go on a holiday and how they 
choose their destination of preference [18,19]. These push and pull 
factors can, therefore induce oscillations in tourism demand.

Reduction in demand can induce conditions such as of 
overcapacity, non-utilization of infrastructure, decrease in the 
workforce, and absence of investments during low seasons can 
induce reduced profitability and productivity [20,21]. In contrast, 
peak seasons of tourism can be characterized by overuse of public 
utilities (e.g. water supply, waste management, and road use), causing 
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discontent for inhabitants and visitors alike, while the environment 
can suffer permanent damage because of tourism burdens [22]. 

Studies on climate and tourism such as Ridderstaatet al. [11,23] 
have focused on the seasonal patterns, intra-annual, inter-annual scales 
of climate and not cyclic patterns. Others have used climatological 
data in order to investigate general tourism activities for a region, but 
not long cyclic events and tourism itself [24]. A study done by Moreno 
et al. [25], has reviewed the relationship between weather conditions 
and beach recreation by studying tourists behavior. In their study 
they used daily weather condtions and webcam data to get an idea 
on the movement of tourist in a certain area. Here again the focus 
was on short-term climate patterns that influence the movement 
of tourist, not on cyclic events that have an influence on tourism 
demand. Furthermore Alvarez-Diaz et al. [26] indicate that in general 
little systematic research has been done on climate as a significant 
determinant of of tourism demand. Alvarez-Diaz et al. [26] indicate 
that only recently, a number of studies have analyzed the impact of 
climate and weather variables on tourism. Álvarez-Díaz, et al. [26], 
themselves have studied as a novum, the North Atlantic Oscillation 
(NAO) and variability on tourism arrivals from the United Kingdom 
and Germany to Spain.

To our knowlegde the study by To our knowlegde the study by 
Ridderstaat et al. [11], was the only one that has studied howseasonal 
push and pull climate patterns, can influence seasonalmovements of 
tourism demand on a small island. In view of the lack of studies which 
investigate how cyclical climate patterns influences cyclical patterns 
of tourism demand especially in small island destinations, there is 
a case for better understanding of the drivers of tourism demand in 
small island economies. Croes [27] shows that, many small islands 
use tourism development as a growth strategy for greater economic 
and development performance. The positive contribution from 
specializing in tourism has aided to more than balance the negative 
impact of being a small island economy, and tourism has been a 
significant contributor to lower output volatility in many countries 
[28]. 

This study investigates whether cyclic patterns of pull and push 
climate elements (including rainfall, wind, and temperature) affect 
the cyclical deviations of tourism demand for a small destination 
like Aruba. Individual case studies can contribute to scientific 
generalizations through the replication outcome, where the mode 
of generalization is analytical generalization [29]. The aim then is to 
develop and generalize theories, and not to enumerate frequencies 
(statistical generalizations). According to Eisenhardt and Graebner 
[30], building theory from case studies is a research strategy, which 
requires at least one case to create theoretical, constructs, propositions 
and/or midrange theory from case-based empirical evidence. 

The methodology involves a wavelet analysis of tourism demand 
and climate factors. Wavelet analysis comprises of transformations of 
a data series through a wavelet, and a localized wave [31]. The data 
is rearranged into frequency domain, where periodic behaviour is 
more easily seen [31]. Wavelet analysis is well suited for studies of 
multiscale, non-stationary processes that occur over finite spatial and 
temporal domains [32]. In the case of tourism demand and climate 
factors it can differentiate multi-annual patterns of variation from 
a seasonal component. Wavelet analysis is also coherence in which 
the frequency components of different time-series can be compared 
directly [31]. Therefore wavelet analysis gives two major benefits: first 
it allows separtion of influences by time-scale and secondly it gives a 

domain in which to measure nonstationary association [31]. 

The present study allows for some key contributions to the tourism 
literature. Firstly it adds to the further understanding of the specific 
role of patterns of cyclic climatic variables on the cyclic pattern of 
tourism demand. Secondly this investigation also simultaneously 
analyses the impact of both pull and push climate factors on cyclical 
tourism demand movements on a small island, which, as far as we can 
perceive, is not common when it comes to time-series based studies 
on this relationship. The rest of this paper is organized as follows. 
Section 2 discusses material and methods. In section 3, results and 
discussion are presented, whereas section 4 concludes and offers 
policy implications and lines for future research.

Materials and Methods
Case study Aruba

Aruba is a small island state positioned about 32 km from the 
Northern coast of Venezuela, and has only an area of about 180 km2. 
Aruba is considered as an autonomous country within the Kingdom 
of the Netherlands, which consists of The Netherlands, Aruba, 
Curacao and Sint Maarten. Aruba’s capital is Oranjestad and Aruba’s 
total population is around 110 thousand [33]. Aruba is popularly 
referenced also as part of the ABC islands, which consists of Aruba, 
Curacao and Bonaire. 

Unlike many other islands in the Caribbean, Aruba has a very dry 
and windy climate. Aruba’s climate is classified as a tropical steppe, 
semiarid hot climate with the wind coming for more than 95% of the 
time from the northeast and the southeast direction over Aruba, with 
an average speed of 7.3 m s-1 at 10-meter distance (1981-2010) [34]. 
On average Aruba’s temperature is 27.9º Celsius, but the temperature 
can fluctuate between 19.0º Celsius to 36.5º Celsius. The average 
rainfall for Aruba for the period 1981-2010 is 471.1 mm [34]. Even 
though Aruba has a dry and windy climate, the island still has still 
managed to become a popular tourist destination.

Aruba has a bit more than half a century of experience with the 
tourism industry. Its first 100-room, hotel was built in 1959 and 
modeled after similar ones in Florida and Puerto Rico [11]. Given the 
dominant role of the Lago Oil & Transport Company, Ltd, tourism 
played only a small part in the overall economic development of the 
island in the beginning. This situation changed in 1985, when the 
oil refinery closed its doors, and causing a considerable shock to the 
Aruban economy [35]. This precarious situation forced the Aruban 
government to search for new sources of economic activity. The most 
tangible way was to expand the tourism industry. The amount of hotel 
rooms more than tripled, from 1986 to 2011, where the majority of 
visitors came by airplane [11]. The United States tourist, accounted 
on average for roughly 63.5% of all stay-over visitors between 1981-
2011, this makes the United States the biggest market for Aruba. The 
Venezuelan market is the second largest for the island, accounting on 
average for about 13% of all stay-over visitors to the island [11].

Data collection

The basis for this study is the conceptual scheme depicted in 
Figure 1, where relationships will be investigated between, on one 
hand push climate patterns, on the other hand pull climate patterns, 
and tourism demand, in the middle. Matzarakis [36], shows that the 
most relevant meteorological parameters when it comes to tourism 
include air temperature, air humidity, wind speed, wind direction, 
cloud coverage, sunshine duration, or radiation fluxes, rain and 
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Figure 1: Conceptual framework of the relation between the cyclical patterns 
of (pull/push) climate data and tourism demand of Aruba’s tourism.

precipitation, snow coverage, and water temperature. For the purpose 
of this study, we use three weather fundamentals (rainfall, temperature, 
and wind speed) as pull factors (i.e. the weather conditions in arrival 
country that attract visitors), and three weather elements (rainfall, 
temperature, and wind speed) as push factors (i.e. weather conditions 
departure country that cause residents to travel to destinations like 
Aruba) (Figure 1). 

The raw variables used in this investigation are shown in Table 1. 
Climate data for Aruba are from the Meteorological Department 
of Aruba. The related data for the USA are from the North-Eastern 
part of that country, given that most US visitors to Aruba are from 
that region. The climate data for this country come from several 
sources, including the Global Precipitation Climatology Centre and 
the European Centre for Medium-Range Weather Forecasts. Climate 
data for the Netherlands and Venezuela (Caracas) are from the same 
sources as those of the USA. 

Tourism demand is approximated by the number of visitors from 
the Netherlands, the North-Eastern part of the USA, and Venezuela. 
The data were collected from the Central Bank of Aruba. 

Wavelet analysis

Meteorological and economic data can be substantially non-
stationary [32,37]. Therefore the authors performed wavelet 
decomposition, which is a statistical analysis on time-series 
allowing for efficient dealing with non-stationary data. In order to 
perform wavelet analysis, one has to choose a basic function for the 
transformation. For this study we used the Morlet wavelet, which is a 
complex sine wave localized by a Gaussian distribution according to 
the following formula

21/4 /2
0 ( ) i oe eω η ηη π −Ψ =

Where Ƞ is a scaled time variable, describing the relative frequency 
ω0 of the sine wave [31]. We used a non-dimensional frequency 
ω0=6, which is used in ecological, geophysical and economic 
studies [38,39,40]. The continuous wavelet transform consists of the 
convolution of the series xn and the wavelet ψ0 at time t and scale s, 
where xn consists of a series of observations x0, ...,xN-1 spaced equally 
in time by δt [31]. As described in Johansson, Cummings and Glass, 
[31], this is defined as
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where the parameter ψ* is the complex conjugate of the wavelet 
that is normalized by a factor of (δt/s)1/2 to ensure unit energy, and 
allowing comparability between scales and analyses. In order to 

adjust the time-frame to a more meaningful scale, the parameter δt 
is included. Wavelet transformations are complex and describe time 
and frequency-specific power and phase. The strength of the wavelet-
like behavior at every point is indicated by the power |W n,s|

2, and is 
indicated in the power spectrum of each transformation. The angular 
position of each point in its cyclical trajectory is given by the phase 
(θ). It varies from a trough at π radians to a peak at 0 or 2π radians. 
The phase (θ) is calculated as the inverse tangent of the imaginary 
component of the transform divided by the real component [31]:
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The wavelet can extend itself both forward and backward in time. 
Therefore the beginning and end of

a time-series are effectively joined in a loop so that there is prior 
and post information at any point [31]. To avoid this, the authors pad 
the time-series with zeros to the next power of 2 of their length, in line 
with Torrence and Compo [41]. Since the zeros still have an influence 
on the transformation at the extremities, the area of the transform is 
masked where edge effects are significant [31]. Given that the Morlet 
wavelet is a complex wavelet, it allows to quantification of the phase 
and therefore it can calculate time-lags between different time-series. 
Coherence based on wavelets allows one to do similar analysis as 
cross-correlation even for possible nonstationary signals [39]. In this 
study wavelet coherences were calculated to examine the association 
between different time-series, both in time and frequency. Coherence 
spectra allows one to investigate whether different periodic modes 
of two time-series tend to oscillate concurrently, and, if they do, one 
can identify the periodicity around which this relationship takes place 
[39]. For this study we calculated the squared coherency (R2),
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Where S-1 will normalize the energy, Wx is one wavelet transform 
variable, Wy is the other variable, Wxy is the cross-wavelet spectrum 
(WxWy) and S(W) is the sequential smoothing function Sscale(Stime) 
following Johansson et al. [31]. The scale specific convolution of W 
with a normalized Gaussian filter is defined as Stime. Sscale is the time 
specific convolution of the result with a normalized boxcar filter [31]. 
As indicated by Johansson et al. [31] the denominator of the power 
spectra is smoothed prior to finding the modulus and squaring. 
Significance levels were calculated using a Chi-square test assuming 
that the wavelet coefficients are normally distributed, in line with 
Torrence and Compo [41].

The phase of the coherency can also be calculated. This will give 
one time and frequency specific differences in phase between the two-
time series [31]:
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For a more in depth description of the theory for wavelet analysis, 
please refer to Cazelles et al. [42], and Torrence and Compo [41].

Before wavelet decomposition, the applied time-series were altered 
by a Box-Cox power transformation, in order to make the distribution 
values more symmetrical and induce a variance-stabilizing effect, 
following Wilks [43]. As shown by Osborne [44], Box-Cox power 



Citation: Oduber M, Ridderstaat J (2017) Impacts of Cyclic Patterns of Climate on Fluctuations in Tourism Demand: Evidence from Aruba. J Tourism Res 
Hospitality 6:1.

• Page 4 of 10 •

doi: 10.4172/2324-8807.1000159

Volume 6 • Issue 1 • 1000159

Variable Data description Min Max Median Mean Standard 
Deviation Data period

Tourism demand   

USATOUR Tourism demand from the NEg USA 7425.00 60371.00 32081.00 30894.32 13834.47 1981-2015ab

VENTOUR Tourism demand from Venezuela 488.00 40387.00 5524.00 7181.84 6499.59 1981-2015ab

HOLTOUR Tourism demand from Holland 146.00 9150.00 2693.00 2410.22 1146.68 1981-2015ab

Weather   

AUAWIND Windspeed data Aruba (m/s) 3.00 10.00 7.50 7.30 1.21 1981-2015ac

AUARAIN Rainfall data Aruba (mm) 0.50 312.70 20.30 39.27 49.96 1981-2015ac

AUATEMP Average temperature Aruba ºC 25.60 30.50 28.20 28.12 1.03 1981-2015ac

USAWIND Windspeed data NEg USA (m/s) 4.13 8.61 6.39 6.35 1.02 1981-2015ad

USARAIN Rainfall data NEg USA (mm) 1.05 197.61 74.98 72.34 37.81 1981-2015ae

USATEMP Average temperature NEg USA ºC 2.93 32.36 19.33 19.31 8.48 1981-2015af

VENWIND Windspeed data Venezuela (m/s) 3.01 7.19 5.12 5.14 0.99 1981-2015ad

VENRAIN Rainfall data Venezuela (mm) 0.50 393.28 67.26 74.78 65.83 1981-2015ae

VENTEMP Average temperature Venezuela ºC 23.51 29.34 25.28 25.59 1.17 1981-2015af

HOLWIND Windspeed data Holland (m/s) 2.64 13.87 8.02 8.03 2.89 1981-2015ad

HOLRAIN Rainfall data Holland (mm) 0.02 167.72 55.10 55.66 36.04 1981-2015ae

HOLTEMP Average temperature Holland ºC 5.50 32.04 19.59 19.53 6.07 1981-2015af

Table 1: Raw variables used in the analysis.

a Through November 2015, b Central Bank of Aruba, c Meteorological Department Aruba
d The European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim)
e Global Precipitation Climatology Centre operated by Deutscher Wetterdienst and Climate Prediction Center Merged Analysis of Precipitation
f National Centers for Environmental Prediction -National Center for Atmospheric Research (NCEP-NCAR) re-analysis (NCEP1) data, g Northeast

transformations were superior to traditional transformations, such 
as square root, log, and inverse. Hinkley’s dλ statistic was used to 
find the best transformation parameter, in line with Wilks [43]. 
Imputations for missing values were done in the Dutch tourism data 
through a kalman filter, based on state space methods, following 
Durbin & Koopman [45]. Loess smoother was also applied to the 
data to remove any trend similar to Cleveland [46], Cleveland et al.  
[47]. The idea of a locally weighted regression, or loess, procedure 
is fitting a regression surface data through multivariate smoothing. 
The dependent variable is smoothed as a function of the independent 
variables in a moving manner, analogous to how a moving average 
is calculated for a timeseries [48]. All analyses were conducted in 
Microsoft Excel (2010) and R [49]. Wavelet analyses were performed 
using the “WaveletComp” R package [50].

Results and Discussion
Figure 2a, 2b, 2c shows the wavelet power spectrum for tourism 

demand from USATOUR, VENTOUR, and HOLTOUR. High power 
will indicate frequency and time specific periodicity [31]. Since we are 
mainly interested in cyclic variations, we looked only between 24 to 
256 months (1 to 21 years). Since we were interested in non-seasonal 
data, we started from 24 months (1 year). The period of 256 (21 
years), was chosen as maximum, since most variables did not show 
any significant power passed this value. 

The wavelet transform of USATOUR showed significant 
periodicity in the 3-6 years and 9-15 years, with peaks around 4 and 
11.7 years. The highest peak was around 4 years. The wavelet transform 
of VENTOUR showed significant periodicity in the 2-4 years and 
6-21 years, with peaks around 3, 8.4 and 18 years. The highest power 

was around 8.4 years. The wavelet transform of HOLTOUR showed 
significant periodicity near 4 years, between 6-9 years and 10-20 
years. The highest peak was around 14 years, followed by the next 
peak of 7.2 years (Figure 2). 

The wavelet transformation of AUARAIN showed significant 
periodicity in the 3-7 years, with a high peak around 3.8 years and 
another peak at 5.7 years. The wavelet transformation of AUAWIND 
showed significant periodicity in the 3-8 years and 9-13 years. The 
peaks were at, respectively, 3.7, 5.6 and 10.7 years, where the peak 
around 5.6 was the highest. The wavelet transformation of AUATEMP 
showed no significant periodicity within the time-frame chosen. The 
wavelet transformation of USARAIN showed significant periodicity 
in the 3-4 years, 5-13 years and 14-19 years, peaks were around 3.3, 
5.6 and the highest peak around 8.4 years. The wavelet transformation 
of USAWIND showed no significant periodicity within the time-
frame chosen, whereas that of USATEMP showed no significant 
periodicity within the time-frame chosen. The wavelet transformation 
of VENRAIN showed significant periodicity in around 6 -7 years, 
8-12 years and 17-19 years. The peaks for VENRAIN were 5.9 and 9.8 
years. The wavelet transformation of VENWIND showed significant 
periodicity around 6-8 years, with a peak around 6.4 years. The 
wavelet transformation of VENTEMP showed significant periodicity 
in the 3-4 years, and 5-8 years. The peaks for VENTEMP were around 
3.6 and 6.2 years. The wavelet transformation of HOLRAIN showed 
significant periodicity in around 4 years, between 5-9 years, and 
between 10-12 years, with a peak around 6.1 years. Both the wavelet 
transformation of HOLWIND and HOLTEMP showed no significant 
periodicity within the chosen time-frame.

In order to detect and quantify correlations between variables that 
showed significant periodicity, wavelet coherences were calculated 
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Figure 2: A) Wavelet Spectra USATOUR, 
B) Wavelet Spectra VENTOUR,
C) Wavelet Spectra HOLTOUR.
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according to Gallegati and Semmler [51]. For the wavelet coherences 
only variables that showed significant periodicity between 24 to 256 
months were used. Significant, periods that had relationships are 
given in years. The data are based from wavelet coherences across 
time, of two time-series [52,53].

Significant correlations where found for pull weather factors of 
rain and wind with tourism demand from the Northeast Sector of 

the United States and Holland. Both tourism demand sectors had 
relationships around 4 years. Rain pull factor also had a correlation 
with tourism demand from the Northeast Sector of the United States 
between 10-11 years. The wind-speed on Aruba had also a relationship 
with the tourism demand from the Northeast Sector of the United 
States around 5 years and a relationship with tourism demand from 
Holland near 2 years and tourism demand from Venezuela around 3 
years. For push weather variables, it was noted that wind-speed near 
Caracas had a relationship with tourism demand from Venezuela, near 
2 years and between 7-8 years. Air temperature near Caracas had also 
an influence with tourism demand from Venezuela between 6-7 years. 
Because some of these relationships in the cyclical patterns happened 
simultaneously at different locations, we decided to look into 2 main 
climate phenomena that can influence periodical weather patterns 
around the world. Climate does not influence populations through a 
single weather variable, but through a mix of weather features. Proxies 
for the overall climate condition can, at least at an early stage provide a 
robust estimation of the ecological influences of climate fluctuations, 
not least because the holistic account of the climate system [54]. We 
used the El Niño Southern Oscillation (ENSO) and the North Atlantic 
Oscillation (NAO), since these where shown to be of great use by 
other areas of study [54]. El Niño and La Niña, composes the El Niño 
Southern Oscillation (ENSO), which are periodic anomalies in sea 
surface temperatures (SSTs) in the equatorial Pacific Ocean. These 
warmer or cooler anomalies in ocean temperatures can influence 
weather patterns around the world by influencing high and low 
pressure systems, winds, and precipitation [55]. To measure ENSO, 
we used the Multivariate ENSO index (MEI) [56]. The North Atlantic 
Oscillation consists of a north-south dipole of anomalies, with one 
center placed over Greenland and the other center of opposite sign 
spanning the central latitudes of the North Atlantic between 35 and 
40 degrees north. The positive phase of the NAO mirrors below-
normal heights and pressure across the high latitudes of the North 
Atlantic and above-normal heights and pressure over the central 
North Atlantic, the eastern United States and Western Europe. The 
negative phase of NAO reflects the opposite. Both phases of the NAO 
are associated with changes in temperature and precipitation patterns 
often extending from eastern North America to western and central 
Europe [57]. 

The wavelet transformation of MEI, showed peaks in periodicity 
around 2.6, 3.7, 5 and 11 years. The highest peak in periodicity for MEI 
was around 3.7 years. The wavelet transformation of NAO, showed 
peaks in periodicity around 2.5, and 11.6 years. The highest peak 
in periodicity for NAO was around 2.5 years. Following Johansson, 
Cummings and Glass [31], the authors proceeded to calculate wavelet 
coherences between the relevent variables, and phase differences in 
order to find the relationship between the variables. The variable 
MEI showed significant coherence with USATOUR in the periods 
of 2-3 year, 4 years and 10-15 years (Figure 3a). MEI showed also a 
significant coherence with the variable HOLTOUR in the period of 
2-3 years (Figure 3b). For the North Atlantic Oscillation (NAO) we 
noticed a significant relationship around 2 years, and 10-14 years with 
respect to USATOUR (Figure 4a). For HOLTOUR we did not find a 
relationship and for the VENTOUR a significant coherence was found 
around 8 years (Figure 4b).

Similar to Johansson et al. [31] we can deduct from the phase 
difference calculations for the period between 2-3 years and between 
the years 1986 and 1987 that increased ENSO leads tourism demand 
from the North East United States by 6 months (Figure 5a). The years 
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Figure 3: A) Average Wavelet Coherence Power USATOUR, MEI, B) Average 
Wavelet Coherence Power HOLTOUR, MEI. 
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Figure 4: A) Average Wavelet Coherence Power USATOUR, NAO, B) Average 
Wavelet Coherence Power VENTOUR, NAO. 
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relationships to a physical mechanism. For the period of 10-15 years, 
it looked like causality by chance. This is due to the fact that the phase 
difference analysis varied in the period, from MEI (ENSO) leading 
tourism demand from to North Eastern United States, to tourism 
demand leading MEI (ENSO). Since this would be contradictory, we 
dropped the coherence in the period of 10 to 15 years as coherence by 
chance. The fluctuation of the signal in the same time-period would 
also be useless for forecasting purposes (Figure 5).

The phase difference for the period between 2-3 years and between 
2007 and 2009 showed that a decrease in ENSO leads an increase in 
tourism demand from the Netherlands (Figure 5b). This hints that a 
La Niña episode would cause eventually an increase in Dutch tourists.

ENSO will usually have an influence on weather patterns, and 
therefore, we would expect that some of the weather pull or push 
factors could have, also, an influence. Calculations showed that 
AUARAIN would have an influence on USATOUR and HOLTOUR. 
Past literature showed that rain increases during La Nina events 
while rain decrease during El Nino events on Aruba [60]. This would 
indicate that USATOUR would increase during less rain events on 
Aruba, while HOLTOUR would increase during more rain events 
on Aruba. Previous research has shown that strong El Nino’s could 
increase rain in the Netherlands during spring and that La Nina had 
no influence on the rain pattern on Holland [61]. This would indicate 
that a La Nina event would not act as a push factor on tourism 
demand from Holland, but more like a pull factor from Aruba. 
Although at first sight it would not be logical that more rainfall would 
attract a tourist to a destination, the authors believe that maybe a 
more detailed study needs to be conducted on the travel perception of 
the Dutch tourist. Maybe the Dutch tourist would prefer a destination 
with more vegetation, compared to a drought stricken destination. 
Another caveat could be that other destinations that the Dutch tourist 
would have chosen over Aruba, where more heavily influenced 
by un-attractive climate conditions due to La Nina compared to 
Aruba. Finally, the relationship could indicate that the heavy tourism 
marketing of Aruba could have influence the Dutch tourist to choose 
Aruba, even during anomalous rainfall periods. 

With respect to NAO, we noticed a significant relationship around 
2 years, and 10-14 years for USATOUR and around 8 years for the 
VENTOUR. The phase difference for USATOUR for the period 
around 2 years between 1981-1982 and 1990-1991 showed that an 
increase in USATOUR would be related to a decrease in NAO, where 
USATOUR leads NAO (Figure 6a). The phase periods for other years, 
within the two-year period, where dropped due to their short periods 
of length. The phase difference for USATOUR for the period between 
10-14 years indicated that for the period from 1992-2015, NAO and 
USATOUR would be in phase were NAO would lead USATOUR 
(Figure 6b). The relationship between NAO and USATOUR for the 
short period of 2 years indicates that temperature could be a culprit, 
since during negative phases of NAO, the eastern part of the USA is 
colder, and drier [54] (Figure 6). Since the authors did not find any 
relationship between long-term temperature deviations and long-
term deviations from tourism demand from the Northeast sector and 
the relationship between drier weather conditions and more tourism 
demand from the northeast sector of the USA is not logical, they 
dropped the relationship between the NAO and USATOUR for the 
period of 2 years. The relationship between USATOUR and NAO for 
the 10-14 years indicated that positive phases of NAO would lead to 
an increase of tourism demand from the Northeast sector. Positive 

1986-1987 were also a moderate ENSO year according the Climate 
Prediction Center [58]. The causality hints that El Niño events that 
oscillate between 2-3 years would act as a pull factor for tourist 
from the North East sector of the United States. The period of 4 
years showed small areas of wavelet coherence, and therefore they 
are unlikely to be causal taken on their own [59]. According Keener 
et al. [59] more extensive areas of significance, are less likely to be 
due to chance and should be included in the analysis for additional 
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Figure 5: A) Phase Angle USATOUR, MEI (ENSO) (1986-1987), B) Phase Angle HOLTOUR, MEI (ENSO) (2007-2009). 
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Figure 6: A) Phase Angle USATOUR, NAO (1981-1982), B) Phase Angle USATOUR, NAO (1992-2015).
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phases of NAO usually relate to wetter and warmer conditions 
on the eastern USA [54]. In the current study, the authors did not 
find any relationships with USARAIN, and USATOUR. Therefore, 
precipitation cannot be considered as a push factor. Since the authors 
did not find any relationships with temperature they did not consider 
temperature as a significant push factor, too. It is also not logical that 
warmer temperature at a location would induce a tourist to go to an 
even warmer destination. Wind could, also, not act also as a push factor 
since no coherence was found between USAWIND and USATOUR. 
During positive NAO conditions one would expect drier and breezer 
conditions on Aruba, due to a stronger than average atlantic surface 
pressure and stronger upwelling near Aruba [62,63]. These conditions 
would corroborate on earlier findings on the Aruban wind and rain 
relationship and tourism from the United States. This would suggest 
that wind and rain conditions on Aruba would act as a pull factor, 
and explain the relationship between positive NAO anomalies and 
toursim from the United States.

The phase difference for VENTOUR and NAO for the period 
around 8 years indicated that for the period from 1991-1985 and 2012-
2015, VENTOUR and NAO would be in phase were NAO would lead 
VENTOUR. This pattern indicates that positive values of NAO would 
cause Venezuelans to travel to Aruba. Since any effect of a positive 
phase of NAO would be the same for Aruba as for Venezuela, the 
authors dropped this relationship. Past literature shows that positive 
NAO conditions would relate to drier Caribbean, including northern 
part of Venezuela, due to subsidence and sea surface temperature 
anomalies [62]. These manifest themselves due to a stronger than 
average Atlantic high pressure area.

Conclusion 
This study hints that tourism is evidently connected to long-term 

climate signals. Past literature showed that tourism literature has paid 
not much attention to the effects of meteorological factors to explain 
tourism flow and a great majority of the international tourism-
demand models do not contain climate and weather conditions as 
explanatory variables [26]. The main objective of this study was to 
underline that long-term climate factors matter in tourism, and 
that they should be taken into account. The authors specifically 
investigated the existence of statistical relationship between 3 
main push and pull climate variables (rain, temperature and 
wind) and tourism demand from many markets, namely USA, the 
Netherlands and Venezuela. They further looked into the climate 
factors, by incorporating two important modes of atmospheric 
variability, the NAO and ENSO, and investigated their possible 
relationships with tourism demand from the three markets. Results 
indicated that rain would act as a pull factor for the North-Eastern 
USA, and the Netherlands; wind would act as a pull factor for the 
North-Eastern USA, the Netherlands and Venezuela. We further 
noticed that ENSO events had an influence on the tourism demand 
from the United States and the Netherlands. The NAO also had 
an influence on the tourism demand from the United States. The 
present study adds some important contributions to the existing 
literature pertaining to tourism and climate on small island states, 
especially related to the two atmospheric variables:

A. Although some previous studies had already examined 
the influence of NAO and tourism, and ENSO influences 
on energy, agriculture and transport activities, it is to our 
knowledge, the first time that the effects of ENSO and NAO 
themselves on tourism have been looked for small island 

states, whereby several tourism markets were combined. The 
study by Álvarez-Díaz, Giráldez, & González-Gómez [26], 
focused more on a develop country (Spain).

B. The results of this study indicate that two important 
atmospheric variability, the NAO and ENSO, have an 
influence on tourism demand from the USA, the Netherlands. 
The influences manifests themselves in possible push and pull 
climate factors.

C. The results imply that a NAO or ENSO index can be useful 
to tourism in general. When constructing a possible tourism 
demand model the NAO or an ENSO index as the MEI can be 
used as explanatory variables to tourism demand. According 
to Alvarez-Diaz et al. [26] one can get parsimonious models 
since one can introduce into a model meteorological 
informations using less variables. 

D. According to Alvarez-Diaz et al. [26], meteorological data 
summarized in, for example, a NAO index can be useful 
in the operational decission-making process and risk 
management of business in the tourism sector. The same 
idea can be implemented when considering an ENSO 
index such as MEI.

The results also have managerial implications. Policy makers 
and other key decision makers need to understand the combined 
influence of cyclical oscillations of push and pull climate elements 
on oscillations of tourism demand. According to Hamilton  and 
Lau [64] climate is conceivably the third-most important trait in 
tourists’ decision making process, after the aquatic and natural 
attributes of a destination. This study shows that monitoring 
economic factors alone is not enough when it comes to analyzing 
the determinants of tourism demand for Aruba. Climate patterns 
have an influence on travelers from the Netherlands, the USA 
and Venezuela to Aruba. Knowledge about the structure of 
the climate variations could assist tourism managers and 
government representatives to (better) cope with long-term 
demand fluctuations in their planning, forecasting, and marketing 
efforts. For example, one possible strategy that policy makers and 
tourism leaders could follow would be to keep an eye on longer-
term climate forecasts, for ENSO conditions such as that of the 
International Research Institute for Climate and Society (http://iri.
columbia.edu/our-expertise/climate/forecasts/enso/current/) in 
order to get a lead on expected cyclical climate conditions such as 
ENSO and oscillation in tourism demand from the North-Eastern 
USA and the Netherlands. For instance, if an El Niño event is 
foreseen than the likelihood of higher tourism demand from the 
North-Eastern USA increases,while the tourism demand from the 
Netherlands decreases. Policy makers and tourism chiefs in Aruba 
could react to this information increasing marketing efforts for 
the Netherlands, while decreasing marketing efforts for the North-
Eastern USA thereby compensating for the expected fall-down in 
demand from the Netherlands.

Finally, in spite of the promising results, the present study was 
limited to only 30 years of tourism demand for only the island of 
Aruba. It is recommended to add other destinations in the Caribbean 
and find destinations that have longer tourism demand data to give 
further insight into the relationships found. Also as indicated by 
Álvarez-Díaz, Giráldez, & González-Gómez [26] studies such as 
this one represent only a first step that opens a new line of research 
possibilities. Futher research will be needed in order to construct 
a tourism-demand model that includes the NAO index as an 
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explanatory variable to further quantify and explain the impacts of 
NAO on tourism. Our study hints that an ENSO index should also be 
included in such a tourism-demand model. 
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