

# Geoinformatics & Geostatistics: An Overview

## **Short Communication**

## A SCITECHNOL JOURNAL

## Livestock Grazing and Greenhouse Gas Emission in Tibet

Wu L<sup>1</sup>, Ma X<sup>1</sup> and Yang Y<sup>1\*</sup>

#### Abstract

The Tibetan plateau, the highest and largest plateau on earth, is experiencing more than twice of the average global warming rate. It is imperative to understand how livestock grazing, the most prevalent economic activity in Tibet, contributes to greenhouse gas (GHG) emissions in regards to global warming. Recent studies revealed intriguing results, which await a full interpretation of the underlying mechanisms.

#### Keywords

Land use; Livestock grazing; Tibetan alpine grassland

## Introduction

The Tibetan plateau is the highest (average 4000 m asl) and largest (2.57 million km<sup>2</sup>) plateau on earth. It is characterized by a cold climate; low oxygen levels, strong ultra violet (UV) irradiation and poor primary productivity, and has a number of fragile alpine ecosystems. In recent decades, Tibet has witnessed strong effects from global warming, experiencing more than twice the average global warming rate [1]. This has raised substantial concerns for greenhouse gas (GHG) emissions and soil carbon instability, partly attributed to permafrost thaw. Livestock grazing is the most prevalent economic activity in Tibet, and two thirds of the Tibetan plateau is comprised of alpine grasslands [1]. Therefore, it is imperative to understand how livestock grazing in Tibet contributes to GHG emissions and soil carbon stocks in conjunction with global warming. Recent studies on the effects of current grazing regimes in the Tibetan alpine grasslands revealed complex results. Our study [2], and those of others, detected reduced CO<sub>2</sub> emissions and/or increased soil total organic carbon (TOC) under grazing compared with grazing exclusion sites [2-4]. However, there are also studies showing an increase [5] or no changes in GHG emissions from grazing [6]. Those conflicting observations await a full interpretation of the underlying mechanisms and implications. Soil microbial communities must be considered in elucidating the mechanisms and assessing the environmental impacts, owing to their pivotal roles in mediating soil biogeochemical cycling.

## Discussion

Most ecosystem models treat microbial community composition as a "black box". However, understanding the mechanisms

\*Corresponding author: Yunfeng Yang, Ph.D, Professor, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, Tel: (+86)10-62784692, Fax : (+86)010-62785687; E- mail: yangyf@tsinghua.edu.cn

Received: March 11, 2016 Accepted: May 16, 2016 Published: May 21, 2016



All articles published in Geoinformatics & Geostatistics: An Overview are the property of SciTechnol, and is protected by copyright laws. Copyright © 2016, SciTechnol, All Rights Reserved.

underlying the microbial response is essential for improving model predictions, as microorganisms play key roles in biogeochemical cycles. Increasing evidence shows that abundances of microbial functional genes could be good indicators for potential geochemical processes. For example, abundances of microbial functional genes associated with carbon degradation were shown to correlate with CO<sub>2</sub> emissions in bare soils but not in soils with vegetation, suggesting that the microbial functional genes were linked to heterotrophic respiration [7]. In contrast, factors affecting ecosystem respiration ( $R_{eco}$ ) are complicated.

Livestock grazing can perturb ecosystem respiration through at least four mechanisms:

(1) reduced vegetation can have negative effects on  $\rm R_{_{eco}}$  as autotrophic respiration decreases;

(2) reduced vegetation increases soil temperature and thereby  $\mathrm{R}_{_{\mathrm{eco}}};$ 

(3) low organic matter in grazing grasslands can reduce  $R_{eco}$  because microbial heterotrophic respiration is sensitive to the input of carbon from living plants; and

(4) inputs of manure from livestock could increase  $R_{eco}$  by stimulating plant growth, microbial activity, labile carbon and nitrogen availability.

These factors intertwine, making it difficult to predict the net effect of grazing on  $R_{eco}$ . In our study [2], most microbial functional genes for organic carbon degradation were decreased by grazing and were correlated with the change in vegetation variables, most likely as a response to decreased carbon input from plants. This explains our observation of increased soil TOC and decreased  $R_{eco}$  from grazing.

We also showed that  $\rm N_2O$  emissions in the Tibetan alpine grassland were significantly and positively correlated with the abundance of amoA genes (encoding enzymes for ammonia oxidizing) and ureC genes (encoding a subunit of urease that converts urea to ammonia), but negatively correlated with the abundance of nirS genes (encoding nitrite reductase), suggesting that nitrification is the major process of  $N_2O$  emission in this ecosystem [8,9]. The abundance of microbial genes related to nitrification increased, while that related to denitrification decreased [2], revealing potential alteration of soil nitrogen cycling from grazing. A recent grazing experiment in Tibet has consistently shown that the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) increased by 3.7 and 42 fold in grazing sites, while the abundance of nirS-harboring denitrifiers decreased [10]. The effects of grazing on ecosystems are not uniform due to different grazing management and local environment conditions. A study in Atlantic mountain grassland [11] showed that livestock grazing decreased soil respiration and microbial metabolic quotients at sites, but the effects on other grassland ecosystems may vary. For example, Inner Mongolian grasslands have lower soil water content, annual average temperature, vegetation biomass, and soil organic matter compared with Tibetan alpine grasslands. Many studies conducted in Inner Mongolia have found that grazing led to loss of soil organic carbon and nitrogen [12-16], partly owing to increased CO<sub>2</sub> and N<sub>2</sub>O emissions. Proper management grazing can sustain soil carbon sequestration and lower GHG emissions [17-19].

#### doi:http://dx.doi.org/10.4172/2327-4581.1000143

### Conclusion

Livestock grazing in the Tibet alters aboveground vegetation and belowground microbial community composition, as well as soil variables and biogeochemical cycling. It is noted that grazing effects vary in different regions. Therefore, it is imperative to crack the "black box" of microbial communities to gain a mechanistic understanding of the effects of environmental changes. By linking process rates with microbial functional traits, we begin to achieve more accurate predictions of microbial responses that are amenable to ecosystem modeling.

#### References

- 1. Qiu J (2008) China: The third pole. Nature 454: 393-396.
- Yang Y, Wu L, Lin Q, Yuan M, Xu D, et al. (2013) Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob Chang Biol 19: 637-648.
- Chen J, Shi W, Cao J (2015) Effects of grazing on ecosystem CO<sub>2</sub> exchange in a meadow grassland on the Tibetan Plateau during the growing season. Environ Manage 55: 347-359.
- Hafner S, Unteregelsbacher S, Seeber E, Lena B, Xu X, et al. (2012) Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO<sub>2</sub> pulse labeling. Glob Chang Biol 18: 528-538.
- Wei D, Ri X, Wang Y, Wang Y, Liu Y, et al. (2012) Responses of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O fluxes to livestock exclosure in an alpine steppe on the Tibetan Plateau, China. Plant and Soil 359: 45-55.
- Lu X, Yan Y, Sun J, Zhang X, Chen Y, et al. (2015) Carbon, nitrogen, and phosphorus storage in alpine grassland ecosystems of Tibet: effects of grazing exclusion. Ecol Evol 5: 4492-4504.
- Zhao M, Xue K, Wang F, Liu S, Bai S, et al. (2014) Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping. ISME J 8: 2045-2055.
- Yue H, Wang M, Wang S, Gilbert JA, Sun X, et al. (2015) The microbemediated mechanisms affecting topsoil carbon stock in Tibetan grasslands. ISME J 9: 2012-2020.

- 9. Yang Y, Gao Y, Wang S, Xu D, Yu H, et al. (2014) The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME J 8: 430-440.
- Xie Z, Le Roux X, Wang C, Gu Z, An M, et al. (2014) Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows. Soil Biol Biochem 77: 89-99.
- Aldezabal A, Moragues L, Odriozola I, Mijangos I (2015) Impact of grazing abandonment on plant and soil microbial communities in an Atlantic mountain grassland. App Soil Ecol 96: 251-260.
- Steffens M, Kölbl A, Totsche KU, Kögel-Knabner I (2008) Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China). Geoderma 143: 63-72.
- Yong-Zhong S, Yu-Lin L, Jian-Yuan C, Wen-Zhi Z (2005) Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena 59: 267-278.
- Pei S, Fu H, Wan C (2008) Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agri, Eco Environ 124: 33-39.
- Zhao Y, Peth S, Krümmelbein J, Horn R, Wang Z, et al. (2007) Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland. Ecol Model 205: 241-254.
- Han G, Hao X, Zhao M, Wang M, Ellert BH, et al. (2008) Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agri, Eco Environ 125: 21-32.
- Chen W, Huang D, Liu N, Zhang Y, Badgery WB, et al. (2015) Improved grazing management may increase soil carbon sequestration in temperate steppe. Sci Rep 5: 10892.
- Zhang Y, Huang D, Badgery WB, Kemp DR, Chen W, et al. (2015) Reduced grazing pressure delivers production and environmental benefits for the typical steppe of north China. Sci Rep 5: 16434.
- Liu N, Zhang Y, Chang S, Kan H, Lin L (2012) Impact of grazing on soil carbon and microbial biomass in typical steppe and desert steppe of Inner Mongolia. PLoS One 7: e36434.

## Author Affiliation

#### Тор

<sup>1</sup>State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China

#### Submit your next manuscript and get advantages of SciTechnol submissions

- 50 Journals
- 21 Day rapid review process
- 1000 Editorial team
  2 Million readers
- 2 Million readers
- Publication immediately after acceptance
   Quality and quick editorial, review processing

Submit your next manuscript at • www.scitechnol.com/submission