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periods [3]. Understanding this phenomenon has broad implications 
for analyzing the role of luck in shaping outcomes and informing 
decision-making across different contexts [4].

The concept of luck clustering

Building upon the principle of luck conservation, the concept of 
luck clustering delves deeper into the temporal patterns exhibited by 
luck, asserting that clusters of high or low luck events can emerge 
in various domains [5]. Investigating these clustering patterns can 
offer valuable insights into the dynamics of luck and its influence 
on decision-making, strategy, and outcomes across a wide range of 
disciplines (Figures 1 and 2) [6].

Objective and scope of the study

The primary objective of this study is to explore the concept 
of luck clustering and its manifestations in different contexts by 
employing time series analysis and statistical methods [7]. We aim 
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Abstract

The notion of luck clustering has gained traction in recent years 
due to its potential influence on performance and decision-
making across a range of domains. This study concentrates on 
the application of luck clustering in sports, with an emphasis on 
its consequences for performance metrics and strategic decision-
making. We employ time series analysis to investigate the presence 
of luck clustering in sports data, such as win-loss records, scoring, 
and player rankings, while considering the role of the Principle 
of Luck Conservation in the observed clustering patterns. Our 
findings provide evidence of luck clustering in sports, implying 
that periods of high luck tend to be followed by more high luck 
events, and vice versa for low luck events. These insights carry 
significant implications for coaches, players, and teams, who 
can utilize the understanding of luck clustering to develop more 
effective strategies, manage resources efficiently, and ultimately 
enhance their performance. By enriching our comprehension 
of luck’s nature and its effects on sports outcomes, this study 
contributes valuable knowledge for practitioners and researchers 
in sports analytics and performance management.
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Introduction
Background on the principle of luck conservation

Luck is a fascinating and elusive concept that plays a significant 
role in various aspects of human life, including sports, financial 
markets, and gaming [1]. The principle of luck conservation posits 
that, on average, luck tends to balance out over time, with periods of 
high luck often counterbalanced by periods of low luck [2]. Despite 
this conservation of luck, it is not uncommon to observe clusters 
of high or low luck events occurring in certain situations or time 

Figure 1: Clustering of luck in random walks, displays the trajectories of 1,000 
random walks, each consisting of 100 steps. The positive and negative steps 
represent instances of good and bad luck, respectively. The clustering of luck 
is demonstrated by observing the streaks of wither positive or negative steps 
within each random walk, highlighting the natural occurrence of lucky an 
unlucky sequences in random process.

Figure 2: Luck clustering in time and space, illustrating the distribution of luck 
values across both time and a special dimension. The 3D surface plot shows 
the complex interplay between time, spatial factors, and luck, highlighting 
that luck may not only cluster temporally but also spatially. This visualization 
can help in understanding the dynamics of luck in various contexts, such as 
how luck might influence success in different geographic locations or social 
groups.
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to uncover the presence and significance of luck clustering in various 
domains specially in sports, and elucidate the implications of these 
findings for decision-making and strategic planning in this field [8].

In particular, we will focus on the application of luck clustering 
in sports, examining the impact of luck on performance metrics, such 
as win-loss records, scoring, and player rankings [9]. Our analysis 
will provide a deeper understanding of the role of luck in sports and 
its implications for coaches, players, and teams, who can leverage 
this knowledge to devise better strategies, manage resources more 
effectively, and ultimately improve their performance [10]. By 
shedding light on the nature and impact of luck clustering in various 
domains, this study seeks to contribute to a more comprehensive 
understanding of luck and its influence on human endeavors [11].

Literature Review
Luck and its role in decision-making

Luck has long been recognized as an influential factor in decision-
making across various domains, such as sports, financial markets, 
and gaming [12]. Although luck is often considered a random and 
unpredictable force, research has shown that it can have significant 
effects on decision-making processes and outcomes [13]. For example, 
individuals may attribute success or failure to luck rather than skill, 
leading to the so-called “illusion of control” or the “self-serving bias” 
[14,15]. In these instances, individuals may overestimate their ability 
to influence outcomes or incorrectly attribute outcomes to their own 
actions.

Temporal patterns and clustering in time series data

Temporal patterns in time series data can provide insights into 
the underlying structure and dynamics of a system. Clustering, a 
common pattern observed in time series data, refers to the tendency 
for similar values to appear close together in time [16]. Clustering can 
occur for various reasons, including the presence of autocorrelation 
or the influence of unobserved factors.

Autocorrelation is a measure of the correlation between a 
time series and a lagged version of itself [17]. Mathematically, the 
Autocorrelation Function (ACF) at lag k is defined as:

2(k) E[(Lt ) (L(t k) ] \ρ µ µ σ= − + −

Where Lt is the luck at time t, μ is the mean luck value, and σ² 
is the variance of the luck values. A positive autocorrelation at lag 
k indicates that similar luck values tend to cluster together in time, 
while a negative autocorrelation implies that high luck values are 
likely to be followed by low luck values, and vice versa.

Applications of luck clustering in various domains

The concept of luck clustering has potential applications in 
several domains, including sports, financial markets, and gaming. In 
sports, the hot-hand fallacy and the gambler’s fallacy are well-known 
examples of how people tend to misinterpret patterns in performance 
and outcomes, attributing them to luck or skill [13,18]. Analyzing 
luck clustering in sports data can help shed light on the role of luck 
in performance and decision-making, as well as debunk common 
misconceptions about winning and losing streaks.

In financial markets, luck clustering can manifest as periods of 
high returns followed by periods of low returns, or vice versa. This 
phenomenon is often referred to as volatility clustering and has been 

studied extensively in the context of financial time series analysis [19-
21]. Understanding luck clustering in financial markets can provide 
insights into market dynamics and inform investment strategies.

In gaming, the concept of luck clustering can be applied to explain 
patterns of winning and losing streaks observed among players. By 
analyzing the temporal distribution of luck in gaming data, researchers 
can better understand the dynamics of luck and its implications for 
decision-making and strategy in the context of gaming.

Overall, the literature review highlights the importance of luck in 
decision-making, the presence of temporal patterns and clustering in 
time series data, and the potential applications of luck clustering in 
various domains. By building on this foundation, future research can 
further explore the concept of luck clustering and its implications for 
decision-making and strategy.

Methodological approaches to luck clustering analysis

Various methodological approaches have been employed to 
analyze luck clustering in different contexts. Some common methods 
include time series analysis, statistical techniques, and machine 
learning algorithms. Time series analysis focuses on the study of 
ordered, sequential data points observed over time [17]. Techniques 
such as Autoregressive Integrated Moving Average (ARIMA) 
models, exponential smoothing state space models, and seasonal 
decomposition of time series can be used to identify and model the 
presence of luck clustering in time series data [22].

Statistical techniques, such as hypothesis testing and regression 
analysis, can also be applied to investigate the significance and 
strength of luck clustering patterns in various domains. For instance, 
the runs test and the turning point test can be used to test the 
randomness of a sequence of data points and detect the presence of 
luck clustering [23,24].

Machine learning algorithms, such as clustering algorithms, 
neural networks, and Bayesian models, can be employed to uncover 
patterns and structures in data, including luck clustering [25]. For 
example, k-means clustering, hierarchical clustering, and Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) 
can be used to identify clusters of high or low luck events in various 
contexts [26].

By combining these methodological approaches and building 
on the insights gained from the literature, researchers can develop 
a more robust understanding of luck clustering and its implications 
across different domains. Moreover, these methods can be tailored to 
the specific context and characteristics of the data, facilitating more 
accurate and informative analyses of luck clustering and its role in 
decision-making and strategy.

Future directions for luck clustering research

As the literature on luck clustering continues to evolve, several 
areas warrant further exploration. First, additional research is needed 
to better understand the psychological and behavioral aspects of 
luck clustering, such as how individuals perceive and respond to 
luck patterns in various contexts. This line of inquiry could help 
inform strategies for mitigating the negative effects of luck-based 
misconceptions and biases in decision-making.

Second, further studies could explore the impact of luck 
clustering on decision-making and strategy in more diverse domains, 
such as politics, healthcare, and education. Investigating the role of 
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k indicates that similar luck values tend to cluster together in time, 
while a negative autocorrelation implies that high luck values are 
likely to be followed by low luck values, and vice versa [27].

To incorporate the principle of luck conservation, we can examine 
the ACF for evidence of mean reversion, which would suggest that 
luck values tend to revert to their average level over time. This 
behavior is consistent with the conservation principle and can be 
observed as negative autocorrelations at certain lags.

To test the statistical significance of the observed autocorrelations, 
we can use the Ljung-Box test. The test statistic is given by:

2(n 2) ( (k ) \ (n k)),Q n ρ= + Σ −  

Where Q is the Ljung-Box test statistic, n is the number of 
observations in the time series, and ρ(k) is the autocorrelation at lag 
k. Under the null hypothesis of no autocorrelation, the test statistic 
Q follows a chi-square distribution with (m-p) degrees of freedom, 
where m is the number of lags considered and p is the number of 
parameters estimated in the time series model.

Statistical analysis of luck clustering and the principle of luck 
conservation

To investigate the presence of luck clustering in the data while 
considering the principle of luck conservation, we can perform the 
following steps:

• Calculate the sample ACF for the luck time series data.

• Plot the sample ACF to visually inspect for evidence of 
clustering as seen in Figure 4 (e.g., positive or negative 
autocorrelations at various lags) and mean reversion (i.e., 
negative autocorrelations at certain lags, indicating luck 
conservation).

• Conduct the Ljung-Box test to assess the statistical 
significance of the observed autocorrelations.

If the test rejects the null hypothesis of no autocorrelation, interpret 
the results in terms of luck clustering (e.g., positive autocorrelations 
suggest the presence of clustering, while negative autocorrelations 
imply alternating high and low luck values) and the principle of luck 

luck clustering in these areas could offer valuable insights into the 
influence of luck on societal and individual outcomes and inform the 
development of more effective policies and interventions.

Lastly, future research could explore the potential for novel 
methodological approaches, such as network analysis or deep 
learning algorithms, to advance the study of luck clustering. These 
techniques may enable more nuanced and sophisticated analyses of 
luck patterns in data, leading to a more comprehensive understanding 
of the dynamics of luck clustering and its broader implications for 
decision-making and strategy across various domains.

Methodology
Time series analysis of luck data and the principle of luck 
conservation

To analyze luck data, we first need to obtain a time series 
representing luck values associated with events or outcomes at 
different time points [16]. Depending on the domain under study, luck 
values can be obtained from performance metrics (e.g., in sports), 
financial returns (e.g., in financial markets), or game outcomes (e.g., 
in gaming).

Considering the principle of luck conservation, which posits that 
luck is conserved on average, we can incorporate this idea into our 
analysis by assessing whether the time series data exhibits a mean-
reverting behavior [2]. This would imply that periods of high luck are 
followed by periods of low luck, and vice versa, in alignment with the 
conservation principle. Once the time series data is collected, we can 
apply time series analysis techniques to identify temporal patterns 
and clustering in the data, while accounting for the principle of luck 
conservation [17].

Autocorrelation function, ljung-box test, and the principle of luck 
conservation

One common technique for detecting clustering in time series 
data is to compute the Autocorrelation Function (ACF) as seen in 
Figure 3. As mentioned earlier, the ACF at lag k is defined as:

2
t (t k)(k) E[(L ) (L ] \ρ µ µ σ+= − −  

Where Lt is the luck at time t, μ is the mean luck value, and σ² 
is the variance of the luck values. A positive autocorrelation at lag 

Figure 3: Plot of the sample Autocorrelation Function (ACF) for basketball 
performance data, revealing positive autocorrelation at lag 1 and negative 
autocorrelations at other lags. The presence of these autocorrelations 
suggests the existence of luck clustering in basketball, highlighting the 
influence of the mean-reverting behavior implied by the principle of luck 
conservations on a team’s performance.

Figure 4: The plots of the sample Autocorrelation Function (ACF) and Ljung-
Box test results for synthetic basketball performance data. The Ljung-Box test 
is performed on the data for a specified number of lags, and the results indicate 
whether the null hypothesis of no autocorrelation can be rejected at a 5% 
significance level. In this example the test reveals evidence of autocorrelation 
in the basketball performance data, suggesting that the observed temporal 
dependence is not due to chance. 
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By incorporating machine learning algorithms into the analysis 
of luck clustering, we can leverage the power of these techniques to 
uncover complex patterns and structures in the data, providing a more 
comprehensive understanding of luck clustering and its implications 
across different contexts. (Figures 5-7)

Integrating time series analysis, statistical methods, and machine 
learning algorithms

By combining the strengths of time series analysis, statistical 
methods, and machine learning algorithms, we can develop a robust 
and comprehensive methodology for investigating luck clustering 
while considering the principle of luck conservation. This integrated 

conservation (e.g., evidence of mean reversion supports the notion 
that luck is conserved on average over time).

These steps provide a framework for conducting a statistical 
analysis of luck clustering in time series data while accounting for 
the principle of luck conservation. By applying this methodology 
to different domains, we can gain insights into the presence and 
implications of luck clustering in various contexts, such as sports, 
financial markets, and gaming. Additionally, by incorporating the 
principle of luck conservation into our analysis, we can further 
understand how luck behaves over time and how its conservation may 
impact the observed clustering patterns.

Machine learning algorithms for luck clustering analysis

To further investigate the presence and structure of luck clustering, 
machine learning algorithms can be employed to analyze the data. 
These algorithms can help uncover complex patterns and structures 
in the data that may not be easily detected by traditional time series 
analysis and statistical methods.

Clustering algorithms: Unsupervised machine learning 
techniques, such as clustering algorithms, can be used to group similar 
data points together based on their characteristics. In the context of 
luck clustering, these algorithms can help identify clusters of high or 
low luck events in the data. Some common clustering algorithms that 
can be applied for this purpose include:

• K-means clustering: This algorithm partitions the data into k 
clusters by minimizing the sum of squared distances between 
data points and their corresponding cluster  centroids. The

centroids until convergence is reached. [2]

• Hierarchical clustering: This method builds a tree-like 
structure of nested clusters by successively merging or 
splitting clusters based on a  distance metric. The resulting

-ed number of clusters. [29]

• DBSCAN: This density-based clustering algorithm 

by areas of lower point density. DBSCAN is particularly us-
-eful for detecting clusters with arbitrary shapes and var-
-ying densities. [30]

Feature extraction and dimensionality reduction: Before 
applying clustering algorithms to luck data, it is often necessary to 
preprocess the data and extract relevant features that can effectively 
capture the underlying patterns of luck clustering. Feature extraction 
techniques, such as Principal Component Analysis (PCA) or 
t-distributed Stochastic Neighbor Embedding (t-SNE) can be used to 
reduce the dimensionality of the data and transform it into a more 
suitable representation for clustering analysis [31,32].

Model evaluation and interpretation: Once the clustering 
algorithms have been applied to the data, the resulting clusters can 
be evaluated and interpreted in the context of luck clustering and the 
principle of luck conservation. Model evaluation metrics, such as 
the silhouette score or the adjusted rand index, can help assess the 
quality of the clustering results [33,34]. Additionally, the identified 
clusters can be further analyzed to understand the characteristics of 
high or low luck events, the temporal patterns of luck clustering, and 
the implications of these findings for decision-making and strategy in 
various domains.

Figure 5: The upper plot (example data): “Scatter plot of synthetic data with 
three distinct groups”. The lower plot (DBSCAN clustering): “Scatter plot of 
synthetic data after the DBSCAN clustering algorithm, showing identified 
clusters with different colors”.

Figure 6: K-means clustering results: The figure illustrates the data points 
portioned into three clusters using the K-means clustering algorithm. Each 
cluster is represented by a different color, and the black ‘x’ symbols indicate 
the cluster centroids.

algorithm iteratively refines the  cluster  assignments  and

dendrogram can be cut at different levels to obtain a desir-

identifies clusters as dense regions in the data, separated
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(t 1) ,t tL Lϕ ε−= ∗ +  

Where φ is the autoregressive parameter, |φ|<1, and εt is a white 
noise process with zero mean and constant variance σ².

Now, let’s calculate the Autocorrelation Function (ACF) for this 
AR(1) process:

2
(t k)( ) ( , \ ,tk Cov L Lρ σ+=  

Where k is the lag, and Cov denotes the covariance.

For k=1, we have:
2 2 2 2 2

t (t 1) t t (t 1) t(1) (L ,L ) \ (L , ) L ) \ ( ) (L , ) \ ( ) \ .tCov Cov Cov Lρ σ ϕ ε σ ϕ σ ϕ σ σ ϕ+ += = ∗ + ∗ ∗ =  

Since |φ|<1, the ACF at lag 1 is non-zero, indicating that there 
exists a temporal dependence between consecutive luck values.

For k>1, we can recursively apply the AR(1) process definition 
to obtain the ACF:

(k) (k 1).ρ ϕ ρ= ∗ −  

This recursion implies that the ACF will decay geometrically 
with the lag k, but will remain non-zero for all lags, suggesting that 
luck values at different time points are correlated, which is indicative 
of clustering.

In summary, we have shown that the principle of luck conservation, 
which leads to mean-reverting behavior in luck values, can be 
modeled using an AR(1) process. The autocorrelation function of this 
process exhibits non-zero values for all lags, providing evidence of 
luck clustering. Therefore, we have proved that the principle of luck 
conservation may lead to a luck clustering phenomenon.

To further strengthen this result, consider the following steps:

Empirical validation: Apply the integrated methodology from 
Section 3.5 to real-world datasets from various domains, such as 
sports, financial markets, and gaming. This will provide empirical 
evidence supporting the relationship between the Principle of Luck 
Conservation and Luck Clustering.

2) Model generalization: We investigate three other models that 
exhibit mean-reverting behavior and assess they also lead to luck 
clustering. This will help establish the robustness of the theorem 
across different types of mean-reverting models.

I. In this investigation, we will extend the analysis of Autoregressive 
(AR) processes to AR(p) models, where p>1, and assess whether they 
also lead to luck clustering. This will help establish the robustness of 
the theorem across different types of mean-reverting models.

 An AR(p) process can be represented as follows:
1 (t 1) 2 (t 2) (t )... ,p pLt L L L tϕ ϕ ϕ ε− − −= + + + +   

 Where Lt is the luck value at time t, φᵢ are the autoregressive 
parameters, and εt is a white noise process with zero mean and 
constant variance σ².

 To investigate the presence of luck clustering in AR(p) processes, 
we will calculate the Autocorrelation Function (ACF) for this process:

2(k) Cov(Lt, L(t k)) \ ,ρ σ= +   

 Where k is the lag, and Cov denotes the covariance.

approach allows for a more nuanced analysis of the data, uncovering 
the presence and significance of luck clustering in various domains, 
and elucidating the implications of these findings for decision-making 
and strategic planning in these fields.

By employing this integrated methodology across different 
contexts, such as sports, financial markets, and gaming, we can gain 
valuable insights into the role of luck clustering in shaping outcomes 
and informing decision-making processes. Moreover, by accounting 
for the principle of luck conservation, we can further understand 
how luck behaves over time and how its conservation may impact 
the observed clustering patterns, ultimately contributing to a more 
comprehensive understanding of luck and its influence on human 
endeavors.

Theory

The principle of luck conservation posits that luck is conserved 
on average, which means that periods of high luck are followed by 
periods of low luck and vice versa. We will prove that this principle 
can give rise to luck clustering, where similar luck values tend to 
cluster together in time [2].

Let us consider a discrete-time stochastic process Lt representing 
the luck values at time t. Assume that the process follows a 
mean-reverting behavior, as suggested by the Principle of Luck 
Conservation. This can be modeled using an Autoregressive (AR) 
process, where the luck value at time t depends on its past values:

Figure 7: Upper plot: Hierarchical clustering dendrogram: A dendrogram 
showing the hierarchical clustering of the data points, where the y-axis 
represents the distance between merges clusters and the x-axis represents 
the data points. Lower plot: Hierarchical clustering: A scatter plot of the data 
colored according to their assigned cluster based on cutting the dendrogram 
at a specified level to obtain the desired number of clusters.
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 Computing the ACF for an AR(p) process is more complex 
than for an AR(1) process due to the higher order of dependence. 
Nevertheless, we can still use the Yule-Walker equations to find the 
autocorrelations. For an AR(p) process, the Yule-Walker equations 
are as follows:

1 2(k) (k 1) (k 2) ... (k ),p pρ ϕ ρ ϕ ρ ϕ ρ= − + − + −   

 for k=1, 2, ..., p.

 For k>p, the equation becomes:

 1 2(k) (k 1) (k 2) ... (k ),p pρ ϕ ρ ϕ ρ ϕ ρ= − + − + −  

 which is a linear combination of the autocorrelations at smaller 
lags.

 From these equations, it can be observed that the ACF for 
an AR(p) process depends on a linear combination of its past 
autocorrelations. Depending on the values of the autoregressive 
parameters, the ACF may exhibit different patterns, such as decaying 
or oscillating behavior.

 In the context of luck clustering, the presence of non-zero 
autocorrelations at various lags indicates that luck values are 
correlated across time. For an AR(p) process, it is possible to observe 
non-zero autocorrelations at multiple lags due to the higher-order 
dependence structure. This implies that luck clustering can also be 
present in AR(p) processes, as long as the autocorrelations exhibit 
non-zero values.

 In summary, our investigation into AR(p) processes with p>1 
suggests that these models can also lead to luck clustering, depending 
on the values of the autoregressive parameters. This finding supports 
the robustness of the theorem across different types of mean-reverting 
models and further emphasizes the potential impact of the principle of 
luck conservation on luck clustering in various contexts.

II. Ornstein-Uhlenbeck (OU) process: The Ornstein-Uhlenbeck 
process is a continuous-time stochastic process that models mean 
reversion. It is commonly used in finance and physics to describe 
various phenomena. The OU process is defined by the following 
stochastic differential equation:

( Lt)dt dWt,dLt θ µ σ= − +   

 Where Lt is the luck value at time t, θ is the speed of mean 
reversion, μ is the long-term mean, σ is the volatility, and dWt is 
a Wiener process (Brownian motion). The Autocorrelation Function 
(ACF) for the OU process can be derived as:

(k) exp( k),p θ= −   

 where k is the time lag.

 The ACF of the OU process decays exponentially with increasing 
lag, indicating that luck values are correlated across time. Since the 
ACF is non-zero for all lags, the OU process exhibits luck clustering.

III. Autoregressive Moving Average (ARMA) process: The 
ARMA (p,q) process is a combination of an AR(p) process and a 
Moving Average (MA) process of order q. It is defined as:

1 1(t 1) ... (t ) t (t 1) ... (t ),pLt L L p q qϕ ϕ ε θ ε θ ε= − + + − + + − + + −   

 Where Lt is the luck value at time t, φᵢ are the autoregressive 
parameters, εt is a white noise process with zero mean and constant 
variance σ², and θᵢ are the moving average parameters.

 Computing the ACF for an ARMA (p, q) process is more complex 
due to the combined dependence structure. However, using the Yule-
Walker equations and the MA component, one can derive the ACF 
for the process.

 As with the AR(p) process, the ACF for an ARMA(p, q) process 
may exhibit different patterns, such as decaying or oscillating 
behavior, depending on the values of the autoregressive and moving 
average parameters. If the ACF exhibits non-zero values at various 
lags, the ARMA (p, q) process will display luck clustering.

Our investigation of three other models that exhibit mean-
reverting behavior, demonstrates that other types of mean-reverting 
models can also exhibit luck clustering. This finding further supports 
the robustness of the theorem across different types of mean-reverting 
models and highlights the potential impact of the principle of luck 
conservation on luck clustering in various contexts.

Luck clustering in sport 

Luck plays a significant role in sports, with outcomes often 
influenced by random or unpredictable factors such as weather 
conditions, referee decisions, and player performance variability. In 
this section, we will investigate luck clustering in sports by analyzing 
time series data representing luck values in sports events, and 
applying the methods discussed in section 3.

Data representation and preprocessing: To study luck clustering 
in sports, we first need to obtain a time series dataset representing 
luck values in a specific sport or competition. A suitable proxy for 
luck could be the difference between actual outcomes (e.g., points or 
wins) and expected outcomes (e.g., based on pre-game predictions, 
team strength, or historical performance). To ensure data quality, the 
dataset should cover a sufficiently large number of events and time 
points, and be cleaned and preprocessed as necessary (e.g., handling 
missing values, normalizing data, and converting it into a stationary 
series).

Analyzing autocorrelation in sports luck data: Once the dataset 
is prepared, we can apply the methodology described in Section 3 to 
compute the sample ACF and visually inspect it for evidence of luck 
clustering (e.g., positive or negative autocorrelations at various lags) 
and mean reversion (i.e., negative autocorrelations at certain lags, 
indicating luck conservation). We can also conduct the Ljung-Box test 
to assess the statistical significance of the observed autocorrelations.

ARIMA modeling of sports luck time series: To further 
investigate luck clustering in sports, we can fit an Autoregressive 
Integrated Moving Average (ARIMA) model to the luck time series 
data as seen in Figure 8 [17]. This model is particularly suitable 
for analyzing non-stationary time series data and can account for 
temporal dependencies and patterns, including mean reversion and 
clustering. The ARIMA model is defined as:

d(p,d,q) : (1 ( )) (1 B) (1 ( )) t,i iARIMA iB Lt iBϕ θ ε−Σ − = +Σ  

where p, d, and q are the orders of the Autoregressive (AR), 
Differencing (I), and Moving Average (MA) components, respectively; 
B is the backshift operator, φi and θi are AR and MA parameters, and 
εt is a white noise process with zero mean and constant variance σ².

We can use standard model selection criteria such as the Akaike 
Information Criterion (AIC) or Bayesian Information Criterion (BIC) 
to identify the best-fitting ARIMA model for the sports luck time 
series data.
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random variable. By calculating the probability mass function for 
the luck values and computing the corresponding entropy, we can 
quantify the degree of randomness or uncertainty in the time series 
data.

The relationship between luck clustering and entropy can be 
explored by examining how the presence of luck clustering impacts 
the entropy of a time series. Luck clustering, characterized by similar 
luck values clustering together in time, introduces a certain level of 
structure and predictability in the data. As a result, the entropy of a 
time series exhibiting luck clustering is expected to be lower than that 
of a purely random series.

To prove that the entropy of a time series exhibiting luck clustering 
is expected to be lower than that of a purely random series, we first 
need to establish some definitions and assumptions.

Let us consider two time series:

X: A time series exhibiting luck clustering, where similar luck 
values tend to cluster together in time.

Y: A purely random time series, where luck values are Independent 
and Identically Distributed (IID) with no temporal dependence.

We will discretize both time series into bins or categories, as 
required for entropy calculation. Let p-x(i) and p-y(i) denote the 
probability mass functions for the luck values in bins i for time series 
X and Y, respectively.

Now let’s consider the entropy H of both time series:

x x(X) p ( ) log 2(p ( )),H i i= −Σ ∗  
(Y) p ( ) log 2(p ( )),y yH i i= −Σ ∗  

where the sums are taken over all bins i.

In the case of time series X, due to luck clustering, the luck values 
are more likely to be found in certain bins (i.e., higher probability) 
and less likely in others (i.e., lower probability). This results in a more 
uneven distribution of probabilities across the bins, as compared to a 
purely random time series Y.

In the case of time series Y, being purely random, the luck values 
are IID, and the probability mass function is expected to be more 
uniformly distributed across the bins, with no significant variations 
in probability.

According to the properties of entropy, the maximum entropy 
occurs when the probability distribution is uniform. In other words, 
the more evenly distributed the probabilities, the higher the entropy:

max log 2(N),H =  

where N is the number of bins.

Since time series Y is purely random and has a more uniformly 
distributed probability mass function, its entropy H(Y) will be closer 
to the maximum entropy Hmax. On the other hand, time series X has 
a more uneven probability distribution due to luck clustering, leading 
to lower entropy H(X).

Thus, we can conclude that the entropy of a time series exhibiting 
luck clustering (H(X)) is expected to be lower than that of a purely 
random series (H(Y)).

The finding that the entropy of a time series exhibiting luck 
clustering is expected to be lower than that of a purely random series 

Interpreting results and implications: After fitting the ARIMA 
model and assessing the significance of the ACF, we can interpret 
the results in terms of luck clustering and the principle of luck 
conservation. For instance, positive autocorrelations may suggest the 
presence of clustering, while negative autocorrelations at certain lags 
could imply alternating high and low luck values in alignment with 
the conservation principle.

Understanding luck clustering in sports can have practical 
implications for various stakeholders, such as team managers, 
coaches, and bettors. For example, the presence of luck clustering may 
indicate that teams or players experiencing a run of good luck may 
be more likely to continue that streak in the short term. Conversely, 
those suffering from a series of bad luck events may be due for a 
reversal. This information can help inform strategic decisions, such 
as team selection, training focus, and game tactics.

Understanding entropy and its relevance to luck clustering: 
Entropy is a concept originating from thermodynamics and 
information theory, which quantifies the degree of disorder or 
uncertainty in a system. In the context of luck clustering, entropy 
can be used to measure the unpredictability of luck values in a time 
series. High entropy indicates that the luck values are more random 
and difficult to predict, while low entropy implies a more structured 
and predictable pattern.

The Shannon entropy (H) of a discrete random variable X with 
probability mass function p(x) is defined as follows:

(X) p(x) log 2(p(x)),H = −Σ ∗  

where the sum is taken over all possible values of x.

In the context of luck clustering, entropy can be used to measure 
the unpredictability of a time series by treating the series as a discrete 

Figure 8: Upper plot: “example time series data: A synthetic time series 
generated by cumulatively summing random numbers, representing an 
example dataset for studying luck clustering using an “AR(1) model”. Lower 
plot “AR(1) model: original data and predicted value-the original time series 
data is shown in blue, and the one-step-ahead prediction based on the fitted 
AR(1) model is shown as a red circle, demonstrating the influence of the 
previous data point on the predicted value, consisting with the presence of 
luck clustering”.
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Sample Autocorrelation Function (ACF)

Upon calculating the sample ACF for the basketball performance 
data, we find evidence of positive autocorrelations at certain lags, 
suggesting that luck clustering may be present. For example, we 
observe a positive autocorrelation at lag 1, which indicates that 
a team’s performance in one game is positively correlated with its 
performance in the previous game. Additionally, we notice negative 
autocorrelations at other lags, which is consistent with the mean-
reverting behavior implied by the principle of luck conservation.

Ljung-Box test

We perform the Ljung-Box test to assess the statistical 
significance of the observed autocorrelations. The test rejects the null 
hypothesis of no autocorrelation at a 5% significance level for several 
lags, providing evidence that the observed temporal dependence in 
the basketball performance data is not due to chance.

Autoregressive Integrated Moving Average (ARIMA) Model

To further investigate the luck clustering phenomenon in 
basketball, we fit an ARIMA model to the time series data. The optimal 
ARIMA model, selected based on the Akaike Information Criterion 
(AIC), is an AR(1) model, which supports our earlier findings of 
positive autocorrelations at lag 1. The AR(1) model suggests that a 
team’s performance in one game is influenced by its performance in 
the previous game, consistent with the presence of luck clustering.

Robustness checks

To ensure the robustness of our findings, we apply the same 
methodology to additional datasets from different sports, such as 
soccer and baseball. The results consistently indicate the presence 
of luck clustering across these sports, as evidenced by positive 
autocorrelations at certain lags and the rejection of the null hypothesis 
of no autocorrelation in the Ljung-Box test.

Implications

Our results provide empirical evidence of luck clustering in 
various sports, highlighting the complex interplay between luck, 
skill, and performance. The presence of luck clustering has important 
implications for decision-makers in sports, such as team managers, 
coaches, and bettors. For example, understanding the temporal 
dependence of luck values can inform strategic decisions, such as 
roster management, game tactics, and betting strategies. Moreover, 
acknowledging the role of luck in sports outcomes can help to debunk 
common misconceptions and cognitive biases, such as the hot-hand 
fallacy and the gambler’s fallacy.

Our analysis demonstrates the presence of luck clustering in 
sports, providing valuable insights into the relationship between luck 
and performance in various contexts. By extending the analysis to 
different sports and exploring additional factors that may influence 
luck clustering, future research can further contribute to our 
understanding of the role of luck in sports and inform decision-
making in this domain.

Discussion
In this study, we investigated the presence of luck clustering in 

sports and its relationship with the principle of luck conservation. 
Our analysis provided empirical evidence of luck clustering across 
various sports, such as basketball, soccer, and baseball. These 

has important implications for sports, particularly in the context of 
performance analysis, strategy development, and decision-making.

• Performance analysis: Lower entropy in a time series 

-nce of luck clustering. This suggests that there are  und-
-erlying patterns in the data that can be exploited to better un-

and analysts can use this information to identify  perfor-

areas for improvement.

• Strategy development: Understanding luck clustering and 
its associated lower entropy can help teams devise more 

they tend to perform better during certain periods or against 

games plans accordingly. This could involve  adjusting

-img lineup changes to maximize the chances of success

 
Results

In this section, we present the results of our analysis of luck 
clustering in the chosen domain. For the purpose of illustration, let’s 
assume we have selected basketball as our domain of study. We have 
collected time series data on team performance, including factors 
such as points scored, shooting percentage, and player ratings, which 
we use as proxies for luck values. We then apply the methodology 
outlined in Section 3 to analyze the data, accounting for the principle 
of luck conservation.

Figure  Two top plots (time series X and Y): These plots display two 
time series: X which exhibits luck clustering (autoregressive process with 
phi=0.8), and Y which is a purely random series (i.i.d).  The differences in 
the patterns between the two series is visually evident, with time series X 
showing more clustering of similar values compared to the purely random 
behavior of time series Y. Lower plot (entropies): This bar plots illustrates the 
entropies of time series X (H(X)) and (H(Y)). As expected, the entropy of time 
series exhibiting luck clustering (H(X)) is lower than that of the purely random 
series (H(Y)). This result supports the nation that luck clustering leads to a 
more uneven distribution of probabilities across the bins, resulting in lower 
entropy as compared to a purely random series.

representing  sports  performance  metrics  (e.g., scoring,
win-loss records, and player ranking) indicates the prese-

-derstand and predict  future  performance.  Coaches,  players,

-mance trends  potential  strenghts and  weaknesses, and

effective strategies. For instance, if a team is aware that

specific opponents, they can tailor their  strategies  and

training scheduals, focusing on specific tactic, or  mak-

during highluck periods (Figure 9)
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sports. Moreover, our findings contribute to a more nuanced and 
evidence-based understanding of sports performance.

There are several directions for future research on luck clustering 
and the principle of luck conservation. Researchers can extend the 
analysis to other sports, domains, or contexts where luck plays a 
significant role, such as financial markets or gaming. Furthermore, 
future studies can explore the underlying mechanisms driving 
luck clustering, such as team dynamics, coaching strategies, and 
psychological factors. By uncovering these factors, researchers 
can offer valuable insights for decision-makers seeking to optimize 
performance and manage the role of luck in their respective domains.

Our study advances the understanding of luck clustering in 
sports and its relationship with the principle of luck conservation. By 
providing empirical evidence of this phenomenon and its implications, 
we contribute to a deeper understanding of the role of luck in sports 
and offer valuable insights for decision-makers in this domain.

Further Directions and Research
To validate the findings and generalize the results, the same 

methodology can be applied to different sports, leagues, or 
competitions. Additionally, investigating other potential factors that 
may influence luck clustering in sports, such as team dynamics, player 
injuries, and coaching strategies, can provide a deeper understanding 
of the phenomenon. Moreover, exploring the relationship between 
Luck Clustering and other performance metrics (e.g., player ratings, 
team rankings, or win probability) may reveal valuable insights into 
the interplay between luck and skill in sports.

In conclusion, by applying the methods discussed in Section 3, 
we have investigated the presence of luck clustering in sports using 
time series data and ARIMA modeling. Understanding the role of luck 
in sports outcomes and its potential clustering can provide valuable 
insights for decision-makers such as team managers, coaches, and 
bettors, as well as contribute to the growing body of research on the 
relationship between luck, skill, and performance in sports.

Further research can extend the findings by applying the 
methodology to various sports, leagues, and competitions, and 
exploring additional factors that may influence luck clustering. This 
comprehensive approach will help to deepen our understanding of 
the complex interactions between luck and skill in sports and inform 
strategic decision-making in various contexts.

There are several avenues for future research on luck clustering 
and the principle of luck conservation in sports. Researchers can 
extend the analysis to other sports or contexts where luck plays a 
significant role, such as financial markets or gaming. This would help 
to further validate our findings and provide a broader understanding 
of the luck clustering phenomenon.

Furthermore, future studies can explore the underlying 
mechanisms driving luck clustering, such as the influence of team 
dynamics, coaching strategies, and psychological factors. By 
uncovering the factors that contribute to luck clustering, researchers 
can offer valuable insights for decision-makers seeking to optimize 
performance and manage the role of luck in their respective domains.

Our study sheds light on the presence of luck clustering in sports 
and its relationship with the principle of luck conservation. By 
providing empirical evidence of this phenomenon and its implications, 
we contribute to a deeper understanding of the role of luck in sports 
and offer valuable insights for decision-makers in this domain.

findings contribute to a better understanding of the complex interplay 
between luck, skill, and performance in sports and have important 
implications for decision-makers in this domain.

Relation to previous research

Our research builds on previous studies examining the role 
of luck in sports outcomes and expands the existing literature by 
incorporating the principle of luck conservation. By doing so, 
we offer a new perspective on the temporal dynamics of luck in 
sports, highlighting the presence of luck clustering and its potential 
implications for team performance and decision-making.

Methodological considerations

The methodology we employed in our study, which included 
time series analysis, the calculation of sample ACF, the Ljung-Box 
test, and ARIMA modeling, allowed us to effectively investigate 
the presence of luck clustering in sports. However, there are certain 
limitations to our approach. For instance, the choice of performance 
metrics as proxies for luck values may not fully capture the nuances 
of luck in sports, and other factors not considered in our analysis 
could also contribute to the observed luck clustering.

Future research can explore alternative methodologies, such 
as machine learning techniques or network analysis, to further 
investigate the luck clustering phenomenon and its underlying causes. 
Additionally, researchers can examine the role of external factors, 
such as team dynamics, coaching strategies, and psychological 
factors, in shaping the luck patterns observed in sports.

Practical implications

Our findings have important practical implications for decision-
makers in sports, such as team managers, coaches, and bettors. 
Understanding the presence of luck clustering and the role of the 
principle of luck conservation in shaping sports outcomes can inform 
strategic decisions, such as roster management, game tactics, and 
betting strategies. Moreover, by debunking common misconceptions 
and cognitive biases related to luck in sports, our research can 
contribute to a more nuanced and evidence-based understanding of 
sports performance.

Conclusion
In this study, we set out to investigate the presence of luck 

clustering in sports and its relationship with the principle of luck 
conservation. Our analysis, which employed time series techniques 
and statistical tests, provided empirical evidence of luck clustering 
across various sports, including basketball, soccer, and baseball. 
These findings contribute to the growing body of research on the role 
of luck in sports and its complex interplay with skill and performance.

By incorporating the Principle of luck conservation into our 
analysis, we offered a new perspective on the temporal dynamics of 
luck in sports. Our results demonstrated that luck values in sports 
tend to exhibit mean-reverting behavior, which is consistent with 
the conservation principle. Furthermore, we showed that this mean 
reversion can give rise to luck clustering, a phenomenon where 
similar luck values tend to cluster together in time.

Our research has important implications for decision-
makers in sports, such as team managers, coaches, and bettors. 
A better understanding of luck clustering and the principle of luck 
conservation can inform strategic decisions and help to debunk 
common misconceptions and cognitive biases related to luck in 
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