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Abstract
Genetic performance for a quantitative trait is often controlled by 
gene-by-gene and genotype-by-environment (GE) interaction 
effects. As an important component, a GE interaction effect is 
highly related to crop stability. As genetic association mapping 
has been widely used to determine markers associated with traits 
of interest, stability analysis based on genetic markers/genes 
of importance could help develop widely adapted or specifically 
adapted cultivars. With linear mixed model approach, in this study 
we analyzed a wheat data set from the USDA Hard Winter Wheat 
Regional Nursery Program in 2010. The data included 32 genetic 
markers and 48 genotypes with three important agronomic traits: 
grain yield, plant height, and heading date, which were measured 
under multi-environments. Our results showed that four important 
DNA markers: Rht2, PPO18NED, Lr34JagTM, and Waxy-A1-AFC-
AR2FAM, were significantly associated with all these three traits. 
Among these, Rht2 contributed 50.34%, 78.65% and 53.90% of the 
phenotypic variation for grain yield, plant height and heading date, 
respectively. Compared to their main effects, however, genotype-
by-environment interaction effects were less important under these 
diverse environments.
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31], rice [32-35] soybean [36-38] and cotton [39,40]. However, many 
association mapping studies were focused on studies under single 
or a few environments. For example, the numbers of environments 
used for many wheat association mapping were normally fewer 
than five [41,42] yet only a few studies used a little large number of 
environments for association mapping in wheat [43].

The Hard Winter Wheat Regional Nursery (HWWRN) Program, 
coordinated by U.S. Department of Agriculture - Agricultural 
Research Service (USDA-ARS), aims to evaluate various advanced 
breeding lines and commercial winter wheat cultivars in multi-state 
environments. More importantly, these winter wheat genotypes have 
been genotyped with various DNA markers with potentially known 
gene functions. For example, the major dwarfing genes like Rht1 
andRht2, which could reduce plant height by reducing the response 
to gibberellin with pleiotropic effects on grain number and yield 
[43,44] were used to genotype 48 winter wheat lines in 2010. Various 
DNA markers linked to important genes in hard winter wheat were 
reviewed in a recent publication [45]. Such resources could provide 
a great opportunity for both yield stability analysis for each winter 
wheat cultivar, but also for determination of DNA marker associations 
with traits of interest under a wide range of growing environments. 
Appropriate genetic data analysis should provide useful genetic 
information to determine appropriate winter wheat cultivars. With 
such wheat data under multi-environments, various genetic models 
can be employed to reveal rich genetic information that can be used 
for winter wheat line selection. 

In this study, we focused on analysis of HWWRN data collected 
by 20 institutes in 2010. The data included three important agronomic 
traits: grain yield, plant height, and heading date measured under 
diverse environments and 32 genetic markers for 48 winter wheat 
cultivars. First we used a one-way ANOVA model to determine each 
of these DNA markers associated with traits of interest under different 
environments. Secondly, we applied a linear mixed model approach 
to investigate the contributions of several these markers associated 
with these three agronomic traits across environments. The main 
objective of this study was to determine the stability of these gene 
expressions under various environments and provide information to 
select superior genotypes with stable performance.

Materials and Methods
Materials and experiments

The nursery program includes the Southern Regional Performance 
Nursery (SRPN), the Northern Regional Performance Nursery 
(NRPN) and the Regional Germplasm Observation Nursery (RGON). 
The winter wheat phenotypic and genotypic data were downloaded 
from the Hard Winter Wheat Regional Nursery Program of U.S. 
Department of Agriculture, which conducted by 20 institutions in 
2010. We only used the phenotypic and genotypic data from SRPN 
in this study. Three agronomic traits, grain yield, plant height, 
and heading date, were available in 30, 18 and 13 environments  
(Table 1) and used in this study. Forty-eight winter wheat lines were 
screened with 38 genes/markers. Six markers were removed due to 
their monomorphism and nine genotypes were removed from the 
data set due to missing markers. Therefore, the data used in this study 

Introduction
Wheat, as an important source of protein, vitamins and minerals 

[1], is a major consumed food crop around the world. The world 
production of wheat in 2012 was 670 million metric tons, making it 
the second most-produced cereal after rice (719 million metric tons) 
[2]. Wheat feeds 4.5 billion people in 95 developing countries [3]. As 
the population continues to increase, genetic improvement in wheat 
yield, quality, and resistance is more urgent to meet such a great need.

Association mapping has been widely used in detecting genetic 
markers associated with traits of importance that can be used for 
crop/animal improvement [4-9]. Various useful statistical methods 
and computing tools have been developed to meet such a great need 
for association mapping studies [10-21]. These methods have been 
applied to various plant species, including wheat [22-27], barley [28-
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contained 39 genotypes and 32 DNA polymorphic genes markers (10 
dominant and 22 co-dominants) (Table 2). 

Genetic models

Due to the winter wheat data structure, several different models 
such as stability analysis and gene expression analysis under different 
environments can be used for analyzing multi-environmental data. In 
this study, we emphasized two genetic models. The first genetic model 
is described as follows.

For a particular marker, there could be all homozygous and 
heterozygous combinations like AA, BB, and/or AB among 39 
cultivars. Therefore, the model 1 actually is a one-way ANOVA model 

for each marker, where g could be different for different markers:

( 1,2,..., ; 1,2,..., )ij i ij iy G e i g j nµ= + + = =   (1)

where ijy  is the phenotypic value for the marker with genotype ; 
 is the total number of for genotype ; and 2~ (0, )ij ee N σ  is a random 

error.

On the other hand, gene expression for each of these traits under 
these environments could be controlled by genotype-by-environment 
(GE) interaction. Investigation of GE interactions at DNA marker 
level is helpful to select cultivars adapted to diverse environments 
with specific markers. Therefore, we also analyzed each marker 
including its GE interactions with the following linear mixed model.

Environment Abbreviation Grain yield Plant height Heading date

Clovis, NM dryland E1 †

Clovis, NM irr. E2

Farmington, NM irr. E3

Bushland, TX dryland E4

Bushland, TX irr. E5

Chillicothe, TX E6

Prosper, TX E7

Stillwater, OK E8

Goodwell, OK irr. E9

Lahoma, OK E10

Granite, OK E11

Akron, CO E12

Burlington, CO E13

Fort Collins, CO irr. E14

Washington, CO E15

Hays, KS E16

Hutchinson, KS E17

Salina, KS E18

Colby, KS E19

Garden City, KS E20

Wichita, KS E21

Winfield, KS E22

Lincoln, NE E23

Clay Center, NE E24

North Platte, NE E25

Sidney, NE E26

Alliance, NE E27

Brookings, SD E28

Dakota Lakes, SD E29

Pine Bluffs, WY E30

Table 1: Winter wheat agronomic traits among different environments in the Hard Winter Wheat Southern Regional Performance Nursery Program of U.S. Department 
of Agriculture in 2010.

†: X indicates a trait being measured under that environment
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( 1, 2,..., ; 1, 2,..., ; 1, 2..., )hij h i hi hij iy E G GE e h l i g j nµ= + + + + = = = (2)

Where hE  is an environmental effect; iG  is a genotypic effect 
for a marker and hiGE  is a GE effect for a marker and environment 
interaction; and hije  is a random error. 

Statistical methods

With model (1), an analysis of variance (ANOVA) method 
was employed and adjusted coefficient of determination ( ) was 
estimated for each DNA marker under each environment. For model 
(2), a minimum norm quadratic unbiased estimation (MINQUE) was 
applied to estimate all variance components with 10-fold jackknife 
technique applied [46-48]. All data analyses were implemented by 
R computer language (Version 3.0.1) [49] and with an R package 
“minque’ [46].  

Results and Discussion
Single environment analysis for three agronomic traits

First, each marker under each environment was analyzed 
separately with model (1). The corresponding contribution 
(represented by an adjusted coefficient of determination, defined as 

2R ) to the phenotypic variation for each of three agronomic traits 
was estimated. The results are provided in Figure 1. 

DNA marker 2 (Rht1) made consistently higher contribution to 
three wheat traits than the other markers (Figure 1), indicating that 
Rht1 was highly associated with wheat traits grain yield, plant height, 
and heading date under these environments. The contribution of 
from this DNA marker to grain yield ranged considerably from 0.88 
to 55.02% among 32 environments. As for plant height, the range of 
contribution was 14.81 to 71.24% among 18 environments, while for 
heading date, the contribution ranged from 1.05 to 38.10% among 13 
environments. Rht1 was widely reported as a DNA marker related to 
plant anatomy and morphology, especially plant height [44,50]. The 
marker, VRN-D3-F6R8NED, is related to a vernalization gene and 
has an impact on development at stem elongation, heading date, and 
physiological maturity [51].

DNA marker 23, VRN-D3-F6R8NED, was highly associated with 
heading date (Figure 1). The contribution for VRN-D3-F6R8NED 
ranged from 2.18 to 32.24% for heading date among different 
environments. The wide ranges of genetic association with these three 
agronomic traits for these markers suggested that the expression of 
these markers under different environments varied and utilization of 
these markers should be environment-specific.

Single marker association analysis with three traits across 
environments

Each of these 32 markers was analyzed subject to Model 2 to 
investigate the GE interaction effects. The variance components 
for genotypic and GE interaction effects expressed as proportional 
variance components were estimated by a MINQUE approach and 
results are summarized in Table 3. Most markers showed small or no 
significant contributions to these three agronomic traits. Genotypic 
effects for marker Rht1 accounted for 50.34, 78.65 and 53.9% of total 
variations for grain yield, plant height and heading date, respectively. 
Genotypic effects for markers Lr34JagTM and Lr34 showed significant 
contributions to plant height (44.5% and 27.0%, respectively). 
Genotypic effects for PPO18NED had a major contribution (46.9%) 
to grain yield while no significant contributions to the other two traits. 
Genotypic effects for TSM0120FAM contributed 18.8% and 28.9% of 
total variations to plant height and heading date, respectively. Waxy-
A1-AFC-AR2FAM contributed 13.5 and 43.0% to plant height and 
heading date with genotypic effects. On summary, four markers, 
seven markers, and nine markers made greater than 10% contribution 
to grain yield, plant height, and heading date, respectively. Among 
these markers with major contributions to these three traits, marker 
Rht1 showed major pleiotropic effects on all three traits. The results 
were in agreement with other studies [50,52,53]. 

Compared to genotypic effects, GE effects for these markers made 
small or insignificant contributions to the three traits. Among these 
markers only markers Rht1 and GWM0261NED had significant GE 
effects for grain yield (Table 3), suggesting that yield stability for these 
winter wheat cultivars were not related with genetic expressions of 
these markers and other markers or genes may be responsible for 
yield stability for these cultivars. 

Conclusion
In this study, two different models were employed to identify 

desirable DNA markers with high performance stability in winter 
wheat cultivars. The first model was a single marker model under each 
environment and the second one with GE effects included. The results 
obtained by both methods were comparable. Markers with major 
contributions to these three traits were identified by both models; 

DNA Marker Marker Number Type
WMC0331NED 1 Co-dominant
Rht1 2 Dominant
Rht2 3 Dominant
GWM0261NED 4 Co-dominant
SNP8-FHB 5 Co-dominant
UMN10VIC 6 Co-dominant
Lr19-130NED 7 Dominant
Lr19-DomNED 8 Dominant
csLV34-Lr34FAM 9 Co-dominant
Lr34TM 10 Co-dominant
Lr34JagTM 11 Co-dominant
Lr34 12 Co-dominant
VentriupLn2PET 13 Dominant
Sr2-STM559TGAGNED 14 Co-dominant
Sr2-X3B028F08PET 15 Dominant
Sr24#50FAM 16 Dominant
Sr25-BF145935VIC 17 Co-dominant
PPD-D1,R1,R2VIC 18 Co-dominant
BAR0012FAM 19 Co-dominant
BAR0170VIC 20 Co-dominant
CDO708FAM 21 Co-dominant
VRN-A1-SNPF 22 Co-dominant
VRN-D3-F6R8NED 23 Co-dominant
TSM0120FAM 24 Dominant
UMN19(GluA1)NED 25 Co-dominant
BxMARFAM 26 Co-dominant
UMN25(GluD1)NED 27 Co-dominant
UMN26(GluD1)PET 28 Co-dominant
PPO18NED 29 Co-dominant
PPO29NED 30 Dominant
Waxy-A1-AFC-AR2FAM 31 Co-dominant
GWM0469VIC 32 Dominant

Table 2: DNA marker information.
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Grain yield Plant height Heading date

Marker #

1 0.020* 0.000 0.005 0.000 0.044* 0.000
2 0.503** 0.147** 0.787** 0.027 0.539** 0.069
3 0.059** 0.000 0.020 0.000 0.077 0.000
4 0.051** 0.081* 0.019 0.000 0.084* 0.000
5 0.011 0.000 0.000 0.000 0.084* 0.000
6 0.008 0.000 0.037 0.000 0.069 0.000
7 0.045 0.000 0.017 0.000 0.096** 0.000
8 0.004 0.000 0.007 0.000 0.117** 0.000
9 0.052** 0.000 0.007 0.000 0.010 0.000
10 0.054** 0.000 0.036 0.000 0.017 0.000
11 0.021 0.000 0.445** 0.000 0.121 0.000
12 0.034** 0.000 0.270** 0.000 0.047 0.000
13 0.017* 0.010 0.073** 0.000 0.009 0.000
14 0.003 0.004 0.006 0.000 0.043 0.000
15 0.001 0.000 0.017 0.000 0.010 0.000
16 0.007 0.000 0.021* 0.000 0.007 0.000
17 0.118** 0.000 0.001 0.000 0.021 0.000
18 0.028* 0.000 0.009 0.000 0.150** 0.000
19 0.126** 0.000 0.000 0.000 0.048 0.000
20 0.066** 0.000 0.214** 0.000 0.149* 0.000
21 0.040** 0.000 0.013 0.000 0.003 0.000
22 0.001 0.000 0.040** 0.000 0.002 0.000
23 0.002 0.000 0.079** 0.000 0.221* 0.000
24 0.003 0.000 0.188** 0.000 0.289** 0.011
25 0.021* 0.000 0.003 0.000 0.024 0.000
26 0.037 0.000 0.044 0.000 0.201 0.000
27 0.005 0.000 0.011 0.000 0.091* 0.000

Table 3: The proportional variance components of genotypic effects ( ) and genotype-by-environment interaction effects ( ) for three wheat traits subject 
to Model 3.

Figure 1: The contribution (coefficient of determination ) of each marker to three wheat traits (grain yield, bu/ac; plant height, in; and heading date, days) under 
different environments in Model 1 (Abbreviation for locations and markers can be found in Tables 1 and 2).
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28 0.021 0.000 0.036* 0.000 0.101** 0.000
29 0.469** 0.000 0.131 0.000 0.030 0.000
30 0.019* 0.000 0.032 0.000 0.000 0.000
31 0.014 0.000 0.135** 0.000 0.430** 0.000
32 0.009 0.000 0.087** 0.000 0.005 0.000

=Genotypic variance component due to marker effects; =Variance component due to marker and environment interaction effects; and =Phenotypic variance

however, GE interactions for these markers under these diverse 
environments were very small (Figure 1 and Table 3). DNA marker 
Rht1 on the short arm of chromosome 4B [54] was significantly 
detected for all three traits. This DNA marker was reported to be 
associated with plant anatomy and morphology [55,56]. Rht1 was 
also reported to be associated with Septoria tritici blotch [57]. It 
appears that Rht1 shows pleiotropic effects [58-61]. We also detected 
that the DNA marker VRN-D3-F6R8NED was highly associated with 
heading date [51]. The marker VRN-D3-F6R8NED is a vernalization 
gene, which controls heading date [51]. With the application of linear 
mixed model-based association mapping, in addition to DNA marker 
Rht1, DNA markers PPO18NED is associated with grain yield [62], 
Lr34JagTM is a wheat leaf rust resistance gene and was reported to 
be associated with plant growth and grain yield in Barley [63,64]. We 
found the similar result that this marker was significantly associated 
with plant height. Waxy-A1-AFC-AR2FAM, a co-dominant marker 
located on chromosome 8AS, was significantly associated with for 
heading date. Our results showed that the expression levels of the 
DNA marker Rht1 varied among different environments by single 
marker model and were confirmed by Model 2 as well.
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