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Abstract
Theta functions play a major role in many current researches and 
are powerful tools for studying integrable systems. The purpose 
of this paper is to provide a short and quick exposition of some 
important aspects of meromorphic theta functions for compact 
Riemann surfaces. The study of theta functions will be done via an 
analytical approach using meromorphic functions in the framework 
of Mumford. Some interesting examples will be given: the classical 
Kirchhoff equations in the cases of Clebsch and Lyapunov-Steklov, 
the Landau-Lifshitz equation and the sine-Gordon equation. 
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For any m, n Zg, we have

θ (z + n + Bm) = Bm,m 2 m,z ( )i ie zπ π θ− −                  (3)

Any vectors of the form n + Bm is a period of the Riemann theta 
function, they constitute the period lattice.

Proof: The first relation results from formula (1). Concerning the 
second relation, we have

θ(z+ fj)= i

g

Bm,m 2 m,z+f
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i i

Z
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= j j j i
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Z
eπ π+

∈
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j j jBe ,e 2 e ,z ( )i ie z zπ π θ−=

jjb 2 ( ),ji ize zπ π θ− −=

And, the relation (3) immediately follows.

Thus the vectors e1,..., eg are the periods of function θ(z). The 
vectors f1,..., fg are called the quasi-periods. The function θ is quasi-
periodic and is well defined on the Jacobian variety of X.

Consider a generalization of the theta function (1) called the theta 
function with characteristics α and β
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, 2 , ( )i B i ze z Bπ α α π β α θ β α+ += + +                    (5)

To simplify the formulas, we simply note:

( ) ( | )z z B
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when the matrix B is fixed. In particular,

0
( ) ( )
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From equation (3), we have also

( ) ( ), , gm
z z m n Z

n
θ θ

 
+ ∈ 

 

Consequently, it is sufficient to consider the functions ( )z
α

θ
β

 
 
 

 

where α=(α1,… αg), β=(β1,…, βg) ∈ Rg are such that: 0 < αj, β1< 1, j = 
1, ..., g.

Theorem 2
The periodicity property of the theta-functions with characteristics 

is given by the following relation.

, 2 , 2 , ( , , )( )( ) ( )i Bm m i z m i n n mz z n Bm e zπ π π α α βα α
θ θ

β β
− − + −   

+ + =   
   

Proof

It suffices to reason as in the previous proposition.

If α1,… αg and β1,…, βg a are 0 or , we will say that the set 
α
β

 
 
 

 is a 

Introduction
Let X be a compact Riemann surface of genus g ≥1 and jk 1 j,k g(b ) ≤ ≤

a square matrix of order g, symmetric and Im B > 0. We consider the 
Riemann theta function θ(z|B) defined by its Fourier series:
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j
j

Z
=

= ∑

The convergence of this series for all gz C∈ results from the 
fact that Im B >0. We show that this series converges absolutely and 
uniformly on compact sets and thus the function θ(z|B) is holomorphic 
over Cg.

When the matrix B is fixed, we will put in the sequel θ(z) ≡ θ(z|B). 
Let (e1, ..., eg) be a basis of g



with (ej)k=δjk and let fj=(b1j ...bgj)
T be the 

columns of the matrix B or in condensed form fj = bej, j=1, ..., g.

Theorem 1
The function θ satisfies the functional equations

θ(z+ ej)= θ(z)

θ(z+ fj)=  jjb 2 ( ),ji ize zπ π θ− −=                   (2)
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half period. In addition, a half period α
β

 
 
 

 is said to be even if 4 (α, β) 
≡ 0 (mod. 2) and odd if not.

Theorem 3
The function ( )z

α
θ

β
 
 
 

is even if half-period (z) is even and odd if 

half-period 
α
β

 
 
 

is odd. In addition, we have θ(z)=θ(-z).

Proof: By making the substitution

z →−z, m →−m − 2,

into (4), we obtain immediately for the general term of the series,
( ) , 2 ,

( ), , 2 , 4 ,

i B m m i z m

i B m m i z m i

e

e e

π α α π β α

π α α π β α π α β

− − − − + − + − −

+ + + + +

=

Now, from the above definition, the sign e4πi(α, β) is determined by 
the parity of the number 4 (α, β), and the last relation results.

For example, the number of even half-periods is equal to 2g−1 (2g + 
1) and of odd half-periods to 2g−1(2g − 1).

Meromorphic Functions Expressed in Terms of Theta 
Functions

Consider the case of Riemann surfaces of genus 1, i.e., elliptic 
curves. Let us recall that an elliptic function is a doubly periodic 
meromorphic function. In this case, the matrix B is reduced to a 
number that we denote by b with Im b≥0. The numbers 1 and b generate 
a parallelogram of the periods denoted Ω. The four theta functions 

corresponding to the half-periods  
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These functions are holomorphic on. Moreover, we immediately 
deduce from theorem 3 thatθ1(z) is odd and thatθ2(z), θ3(z), θ4(z), are 
even. To determine the zeros of the functions θj it is sufficient, from 
theorem 2, to look for them in the parallelogram of the periodsΩ. 
Sinceθ1(z) is odd, thenθ1(0)=0 and the other zeros of θj(z) are obtained 

via theorem 2. In particular we see that 3
1 0
2 2

bθ  + = 
 

. We claim that 
this zero of θ3(z), in

Ω is unique, which is easy to prove. Namely, we need to prove that 
along boundary δΩ.

3
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From theorem 2, we have 2
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and we have the following result:

Theorem 4
The function θ(z) has in the parallelogram of the periods Ω 

generated by 1 and b), only one zero at the point z= 1
2

 (1 + b).

By putting z = x ∈ R, b = it, t ∈ R+, we shall see (following [16]) 
θ (x|it) as the fondamental periodic solution to the heat equation. 
Equation (1) is written

2 22

1
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∞
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Thus θ  is a real valued function of two real variables. This function 

is periodic with respect to x, i.e., θ(x+1|it)=θ (x|it). Since
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This suggests that we characterise the theta function θ(x|it) as the 

unique solution to the heat equation with a certain periodic initial 
data when t=0. To examine the limiting behaviour of f, we integrate it 
against a test periodic function
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Hence θ(x|it) converges, as a distribution, to the sum of the delta 
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functions at all integral points x∈ Z as t→0. The uniqueness of this 
solution results from the fact that

0
( | ) ( ),mt m

Lim x it xθ δ
∞

→
=−∞

= ∑
Where δm is the distribution of Dirac at m. We have previously 

studied the convergence of the theta function. Thus θ(x|it) may be 
seen as the fundamental solution to the heat equation when the space 
variable x lies on a circle R/Z. Similarly, the function θ1(z) satisfies 
a third-order differential equation. Indeed, it is enough to use the 
relation.

2
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differential equation: 
2 3( ( )) 4( ( )) 2 ( ) 3,z z g z g′℘ = ℘ − ℘ −                 (6)
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Moreover, we have the following classical identities [1-16]:

Theorem 5
The theta function satisfies the addition formulas.
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and 1 denotes the unit matrix of order g or 2g.

In particular, we have the formulas: 
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as well as the identity of Jacobi obtained by posing z = 0,
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We shall see how to express the meromorphic functions on the 
torus C/Λ in terms of the theta function. Several approaches are 
possible:

Approach 1

Recall that any rational fraction (hence a meromorphic function 
on P1(C)) can be written in the form

1

( )
m

j

j j

z P
f z

z Q=

−
=

−∏                   (7)

By analogy, let P1, ..., Pm,Q1, ...,Qm be points of the Riemann 
surface X and f(z) a function having zeros at the points P1, ..., Pm and 
poles at points Q1, ...,Qm. It is assumed that condition (i) (or what is 
equivalent, condition (ii)) of Abel’s theorem1 is satisfied. Since X has 
genus 1, then there exists a single holomorphic differential ω on X. 
Still according to Abel’s theorem [1], the existence of the function f(z) 
imposes the condition.

P1 + P2 + · · · + Pm = Q1 + Q2 + · · · + Qm

Note that for m = 1; P1 = Q1 and the only valid case is f(z)=constante. 
In the case where m≥2, the function f(z) may be expressed in terms 
of θ as follows:

1

1 (1 )
2( ) ,
1 (1 )
2

jm

j
j

z P b
f z C

z Q b

θ

θ=

 − − + 
 =
 − − + 
 

∏                   (8)

where C is a constant. This formula may be considered as the 
straightforward generalization of the representation (7) for the 
meromorphic (rational) function on P1(C). The most important 
difference is that in (7) the positions of the poles and zeros are 
arbitrary. To verify that f(z) in (8) is indeed single valued on X we 
have to check that f(z + 1) = f(z) and f(z + b) = f(z).

The first relation is trivial and according to relation (2) and the 

fact that 1 1
,m m

j jj j
P Q

= =
=∑ ∑ we also have the second relation. Thus 

f is doubly periodic. The function f is meromorphic with zeros in 
1 (1 )
2jQ b+ + and poles in 1 (1 )

2jP b+ + .
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Approach 2

The function log θ(z) can be expressed as the sum of a doubly 
periodic function of periods 1, b and a linear function. Therefore the 

function 2
2 log ( )d z

dz
θ is doubly periodic and meromorphic over X, 

with a double pole in 1 (1 )
2

z b= + . This function coincides with the 

Weierstrass function ( )Z℘ :

2
2( ) log ( ) ,dZ z C

dz
θ℘ = +                    (9)

Where C is a constant chosen in such a way that Laurent’s series 
expansion of ( )Z℘ en Z=0 has no constant term. The connection 
given by (9) between the Weierstrass function ( )Z℘ and the theta 
function is obvious in view of

the right-hand side (as noted above) and the information obtained 
above on the location of the zeros of θ(z). Now from (9) and (6) it 
follows that the function (z) satises a dierential equation of 3rd order.

Approach 3

Recall that meromorphic functions with simple poles on P1(C) 
can be written in the form

( ) ,j

j j

f z C
z P

λ
= +

−∑
where λj∈C and C is a constant. By analogy, we consider on X the 

function

( ) log ( ) ,j j
j

df z z P C
dz

λ θ= − +∑
where Pj∈X, λj∈C such that Σjλj=0 et C is a constant. This function is 
doubly periodic and meromorphic with simple poles in 1 (1 )

2jP b+ +
and residues λj at these points.

We have seen how the meromorphic functions on the torus C/Λ 
can be expressed in terms of theta function. Moreover, for g=1, we 
know that: X C/ Jac(X).Λ   So the construction that was done 
previously on the torus C/Λ or what amounts to the same on Jac(X) is 
also valid on the Riemann surface X. For example, let us take the case 
of a function having poles in P1,..., Pm and zeros in Q1, ...,Qm on the 
Riemann surface X. According to Abel’s theorem, we have

1 1
( ) ( ),

m m

j j
j j

P Qϕ ϕ
= =
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and it is possible, according to approach 1 described above, to express 
the function f(P) in terms of theta function using the formula

1

1( ) ( ) (1 )
2( ) .
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P Q b
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P P b

θ ϕ ϕ

θ ϕ ϕ=

 − + 
 =
 − + 
 

∏

Let us now pass to the case where the surface of Riemann X is of 
genus g>1. Recall that the Jacobi inversion problem [5,16] consists in 
determining g points P1, ..., Pg on X such that:

01
(mod ), 1,....,k

g P

jP
k

z L j gω
=

≡ =∑∫
Where (z1, ..., zg) ∈ Jac(X), (ω1,…,ωg) is a base of holomorphic 

differentials on X, P0 is a base point on X and L is a lattice generated 
by the column vectors of the period matrix. In other words, the 

problem is to determine the divisor 1

g
jj

D P
=∑ in terms of z = (z1, 

..., zg) 2 Jac(X) such that if ‘ is the Abel-Jacobi map, then the equation 
(D) Zϕ = is satisfied. We will study the Jacobi inversion problem 

using theta functions.

Theorem 6
If the function defined by

( ) ( ( ) ), gP P C Cζ θ ϕ= − ∈

is not identically zero, then it admits g zeros (counted with their 
order of multiplicity) on the normal representation X* of X, denoted 
by the symbol 1 1 1 1

1 1 1 1 .... g g g ga b a b a b a b− − − − , where (a1, . . . , ag, b1, . . . , bg) Is 
a symplectic basis of the homology group H1(X, Z). Moreover, if P1, 
..., Pg denote the zeros of this function then we have on the Jacobian 
variety Jac(X) the formula.

1
( ) ,
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k
k

P cϕ
=

≡ − ∆∑ (mod. periods)

Where ∆∈ g
 is the vector of the Riemann constants defined by
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1 (1 ) ( ) , 1,..., .
2

P

j j j k jak P
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b P j gω ω
≠
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Proof: 

Note that X* is a polygon with 4g sides identified in pairs. If one 
traverses the boundary δX*of this polygon, we notice that each side is 
traversed twice, one in the direction of its orientation and the other in 
the opposite direction. So δX* may be represented as follows

* 1 1

1
( ).

g

j j j j
j

X a b a b− −

=

∂ = + − −∑
To calculate the number of zeros, we have to compute the integral 

(logarithmic residue): 
*

1 log ( )
2 x

d P
i

ξ
π

∂
∫ We denote by ζ-the value 

of the function ζ(p) on 1
1a− , 1

1b− and by ζ+ the value of ζ(p) on the 
segments aj,bj. We will use similar notations ϕ + , ϕ −  for the Abel map

( )pϕ . In this notation the above integral can obviously be rewritten 
in the form

* 1

1 1log ( ) ( log log
2 2

g
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Note that

jk(P) (P) b ,j jϕ ϕ− −= +

if P∈ak and
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if P∈bk. From Theorem 4, we have
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k kd log (P) = d log (P) - 2 i  on a ,ϕ ϕ π ω−

_
kd log (P) = d log (P) sur b ,ϕ ϕ+

Therefore (2), implies

1

1 1log 2
2 2

g

kx ak
k

d i g
i i

ζ π ω
π π∂

=
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which shows that the function ζ(p) admits g zeros on X*. To prove 

the second part of the theorem, we consider the integral

*

(P) log (P), j 1, ..., g.j j
ax

I dϕ ζ= =∫
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By designating P1, ..., Pg the zeros of the function ζ(p) and taking 
into account the residual theorem, we have

1( ) ... ( ).j j j gI P Pϕ ϕ= + +

By reasoning as before, one obtains

1

1 ( )( log log ),
2

g

j j j
k ak bk

I d d
i

ϕ ζ ϕ ζ
π

+ + − −
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Note that
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Similarly, by designating by Qj (resp. *
JQ  ) the beginning (or end) 

of the contour bj, then
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where fj=(b1j ...bgj)
T, j=1, ..., g, denote the columns of the matrix B. 

Therefore,

j
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The beginning of the contour aj will be designated by Rj and its 

end obviously, coincides with the beginning Qj of the contour bj. We 
have

j
1
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which ends the proof.

In general, the vector ∆ depends on P0 except in the particular case 

g = 1, Where = 
1
2

(1 + b).  We show that 2∆=ϕ−(K), where K is the 

canonical divisor. Hence, by skillfully choosing the point P0 we can 
express K in a very simple way. For example, consider the case where 
X is a hyperelliptic curve of genus g of affine equation.
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1

( ),
g

j
j

ω ξ ξ
+

=

= −∏
where all zj are distinct. Let (a1, . . . , ag, b1, . . . , bg) be a symplectic basis 
of the homology group H1(X, Z)) and let

σ: X → X, (ω,ξ)→(-ω,ξ),

be the hyperelliptic involution (i.e., which consists in exchanging the 
two sheets of the curve X) with  (aj) = −aj and σ (bj) = −bj . Note that

*

( )

.k k k
aj aj ajσ

ω ω σ ω= − = −∫ ∫ ∫

Then, by choosing P0 = ξ1, we get

( )2 1

1 2 1
k j

1 (1 ) , j = 1, ..., g,
2

k P

j jj k j jk
aj

b
ξ

ξ ξ
ω ω ω

+

+
≠

∆ = + + +∑∫ ∫ ∫
2 1

1
k j

1 (1 )
2

k

jj j k
aj

b
ξ

ξ
ω ω

+

≠

= + + ∑∫ ∫

( ) ( )( )2 2

2 1 2 1 2 1
k j

( ) ( )
k p p

j K j Kk k k
p p

ξ σ

ξ ξ ξ
ω ω ω ω σ

+

+ + +
≠

+∑∫ ∫ ∫
Taking into account that ωk (σP)= ωk (P) and modulo a linear 

combination n+Bm (a lattice generated by the column vectors of the 
period matrix), we obtain in this case the formula :

1
,1 j g.

2

g

j jk
k

jb
=

∆ + + ≤ ≤∑
The zeros of a theta function on g



form a submanifold of Jac(X) 
of dimension g − 1 called theta divisor Θ={z : θ(z) = 0}. It is invariant 
by a finite number of translations and can be singular. Equation (3) 
implies that Θis well defined on the Jacobian variety Jac(X). Since θ(z) 
= θ(z), we deduce that Θ is symmetric: -Θ=Θ.

Theorem 7
(Riemann). The function

ζ(P)= θ(ϕ(P) − C), C∈ g
 ,

is either identically zero, or admits exactly g zeros Q1, ...,Qg on X 
such that:

1
( ) c

g

j
k

Qϕ
=

= + ∆∑
where ∆ is defined by (10).

This result means that when we embed the Riemann surface X 
into its Jacobian variety Jac(X) via the Abel map ϕ, then its image is 
fully include in the theta divisor, or it meets it in exactly g points. In 
fact, if ζ(P) is not identically zero on X, then its zeros coincide with 
the points P1, ..., Pg and determine the solution of the Jacobi inversion 
problem ϕ(D) = z for the vector z = C −. Recall that D ∈ Div(X) is a 
special divisor if and only if dim L(D)≥ and dim L(K −D) ≥1where K 
is a canonical divisor. In the

case where D ≥ 0 a divisor is special if and only if dim Ω1(D)≠0 
Note also that the special divisors of the form

D = P1 + · · · + PN, N = deg D ≥ g,

coincide with the critical points of the Abel-Jacobi map,

SymN X → Jac(X), ( )10 0
,..., ,

D D

ND ω ω∫ ∫

or what amounts to the same

ϕ (P1, ..., PN) = ϕ (P1) + · · · + ϕ (PN).

These critical points are the points P1, ..., PN where the rank of the 
differential of this application is less than g. From Riemann’s theorem 
7, the function ζ(P) = θ(ϕ (P) − C) is identically zero if and only if
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C≡ϕ(Q1) + · · · · · · + ϕ (Qg) +∆

where Q1 + · · · + Qg is a special divisor.

Theorem 8
Let z = (z1, ..., zg) ∈ g

 be a vector such that the function

ζ(P)= θ(ϕ(P) – Z–∆),

is not identically zero on X. Then the function ζ(P) admits exactly 
g zeros P1, ..., Pg on X which determine the solution of the Jacobi 
inversion problem 

ϕ (D)=Z, where D = j
1
P

g

j =
∑  i.e., the solution of

0
1

1
( ) ... ( ) ,1 j gk

g P

j j g j jP
j

P P zϕ ϕ ω
=

+ + = ≡ ≤ ≤∑∫                           (12)

(recall that the symbol≡, as usual, means congruence modulo the 
period lattice). Moreover, the divisor D is not special and the points P1, 
..., Pg are only determined from the system (12) up to a permutation.

Proof

The first assertion results from theorem 1. Moreover, the divisor 

1

g

j
J

D P
=

= ∑ is not special because otherwise the function ζ(P) would 

be identically null from what precedes, which is absurd. For the last 
point, assume that the system (12) admits another solution Q1, ...,Qg. 
We will have on the Jacobian variety Jac(X),

1 1
( ) (Q ),

g g

j j
J J

Pϕ ϕ
= =

≡∑ ∑
where L is the lattice generated by the period matrix. According to 
Abel’s theorem, this means that there exists a meromorphic function 
on X having zeros in Q1, ...,Qg and poles in P1, ..., Pg. Now we have just 
shown that the divisor is non-special, so such a function must be a 
constant, which means that Pj = Qj , j = 1, ..., g.

For example, if

1

g

j
J

D P
=

= ∑
is a non-special divisor on a Riemann surface X of genus g, then the 
function θ(ϕ(P) – ϕ(D)–∆), admits exactly g zeros on X at the points P 
= P1, ..., Pg. We have the following characterization of the theta divisor:

Theorem 9
We have θ(C) = 0, if and only if there exists P1, ..., Pg−1 ∈ X with 

base point P0, such that:

0

1

1 1
1

(P ) ... (P ) .j
g p

g p
J

C ϕ ϕ ω
−

−
=

≡ + + + ∆ = + ∆∑∫   

Proof

Let us return to the function

ζ(P)= θ(ϕ(P) – C),

and assume first that it is non-zero on X. By theorem 6, this 
function admits g zeros P1, ..., Pg on X and

C≡ϕ(P1)+…+ ϕ(Pg)+∆.                  (13)

The set of these zeros being unique and as by hypothesis θ(C) = 0, 
then Pg = P0. Therefore ϕ(Pg)= ϕ(P0) and from (13), we have

C≡ϕ(P1)+…+ ϕ(Pg-1)+∆.

Let us now turn to the case where the function ζ(P) is not 
identically zero on X. According to theorem 6, we have

C≡ϕ(Q1)+…+ ϕ(Qg)+∆.            (14)

where Q1 +· · ·+Qg is a special divider. The latter implies the existence 
on X of a non-constant meromorphic function ζ having poles in Q1, 
...,Qg with (P0)=0. Then,

ϕ(P1+…+ Pg-1+ P0) ≡ϕ(Q1+…+ Qg),

according to the Abel theorem where P1 + · · · + Pg−1 + P0 is the 
divisor of the zeros of ζIt is therefore su-cient to replace in the formula 
(14), ϕ(Q1+…+ Qg), by ϕ(P1+…+ Pg-1+ P0) while taking into account 
that  (P0) = 0.

Theorem 10
Let D be a non-special divisor of degree g, D′ a positive divisor 

of degree n, a positive divisor of degree n, (ω1,…,ωg) a base of 
holomorphic differentials on a base of holomorphic differentials 

on X, 
0 0

1(P) ( ,..., )
p p

gp p
ϕ ω ω= ∫ ∫ the Abel map with base point P0, η 

normalized differential of the 3rd kind 2 on X having poles on D′ and 

residues −1, U = (U1, ...,Ug) the vector-periods with UK= kb η∫ and 
finally ∆ the vector defined using the Riemann constants by (10). If ψ 
is a meromorphic function on X having g + n poles on D + D′, then 
this function is expressed in terms of theta function by the formula

0
( ( ) ( ) )( ) ,

( ( ) ( )

p

pP D UP A e
P D

ηθ ϕ ϕϕ
θ ϕ ϕ

− + − ∆ ∫=
− − ∆

A = constante.

Proof: It should be noted that the integration contour in 

integrals 
0

,
p

p
η∫  and 

0

, 1,....,
p

jp
w j g=∫ is the same. The function ψ 

(P) admits poles only on D + D′. Let us show that this function is 
well defined on X; i.e., it does not depend on the path of integration. 
In other words, it does not change when P goes through any 

cycle 1
1
( ) ( , )

g

k k k k
k

n a m b H X Zγ
=

= + ∈∑ the expressions 
0

,
p

p
η∫  and 

( )
0 0

1( ) ,.....,
p p

gp p
Pϕ ω ω= ∫ ∫ is transformed respectively as follows:

0 0
1

1
2 , , ( ,.... ) ,

k

gp p g
k gp b p

k
m i m U m m mη η η

=

+ = + = ∈∑∫ ∫ ∫ 

and Moreover, using formula (4), one obtains 
, 2 , ( ) ( )

2 ,
, 2 , ( ) ( )

( ( ) ( ) ,
( ( ) ( )

i Bm m i m P D U
i m U

i Bm m i m P D

P D U e e
P D e

π π ϕ ϕ
π

π π ϕ ϕ

θ ϕ ϕ
θ ϕ ϕ

− − − + −∆
−

− − − −∆

− + − ∆
= =

− − ∆

and the result follows from the above transformation.

On the Riemann surface X of genus g, singular functions 
possessing g poles and essential singularities play a crucial role in 
the study of integrable systems, in particular the Korteweg-de Vries 
equation K-dV),

3

36 0,u u uu
t x x

∂ ∂ ∂
− + =

∂ ∂ ∂

the Kadomtsev-Petviashvili equation (KP),
2 3

2 34 12 0,u u u xu
y x t x x

 ∂ ∂ ∂ ∂ ∂
− − − = ∂ ∂ ∂ ∂ ∂ 

the nonlinear Schrödinger equation
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2 2 4 2 2

2 2 4 2 0,u u u u
t x x x

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
the Boussinesq equation

2 2 4 2 2

2 2 4 2 0,u u u u
t x x x

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

the Camassa-Holm equation
3 2 3

2 2 33 2 ,u u u u u uu u
t t x x x x x

∂ ∂ ∂ ∂ ∂ ∂
− + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂
whose exact solutions are solitons [14], i.e., self-reinforcing solitary 
waves that maintain their shape as they propagate at a constant rate. 
We shall see by analogy from the previous theorem how to express 
these functions (known as Baker-Akhiezer functions) in terms of 
theta functions and at the same time prove their existence. Let Q1, 
...,Qn be points on a Riemann surface X of genus g and zj are local 
parameters such that : zj(Qj) = ∞. We associate to each point Qj an 
arbitrary polynomial denoted by qj(zj).

Let

D = P1 + · · · + Pg,

be a positive divisor on X and ψ(P) a function (called Baker-
Akhiezer function) satisfying the following conditions :

(i) ψ(P) is meromorphic on X\ {Q1, ...,Qn} and admits poles only at 
the points P1, ..., Pn of the divisor D.

(ii) the function ψ(P) ( ( ))j jq Z Pe−  is analytic in the neighbourhood 
of Qj ,j=1, ..., n.

The condition (ii) can be replaced by this condition: the function 
ψ admits an essential singularity of the form ψ(P) ( ( ))j jq Z Pce−



at the 
points Qj, j = 1, ..., n where c is a constant. These functions ψ(P) form 
a vector space that we note L≡ L(D;Q1, ...,Qn, q1, ..., qn).

Theorem 11 
Let D = P1 + · · · + Pg be a non-special divisor of degree g. Then the 

space L is of dimension 1 and its basis is described using

0
1

( ( ) ( ) )( ) ,
( ( ) ( )

p

pP D VP e
P D

ηθ ϕ ϕϕ
θ ϕ ϕ

− + − ∆ ∫=
− − ∆

                (15)

Where ηis a normalized differential of the 2nd kind3 having poles 
at the points Q1, ...,Qn, the main parts coincide with the polynomials 
qj(zj), where j = 1, ..., n, V = (V1, ..., Vg) with Vk = kb∫  η, k = 1, ..., g,

( )
0 0

1( ) ,..., ,
p p

gp p
Pϕ ω ω= ∫ ∫

the Abel map with base point P0, ∆ is the vector defined using the 

Riemann constants by (10). The integration contour in integrals 
0

,
p

p
η∫

and 
0

,
p

jp
ω∫ j = 1, ..., g is the same.

Proof: The function ψ1(P) has poles on the divisor D and essential 
singularities at the points Q1, ...,Qn. The function ψ1(P) is well defined; 
It does not depend on the integration path. Using the notations and 
reasoning similar to those of theorem 10, we obtain

2 ,( ( ) ( ) ,
( ( ) ( )

i m vP D V e
P D

πθ ϕ ϕ
θ ϕ ϕ

−− + − ∆
=

− − ∆

and the result follows from the transformation used in the proof 
of the preceding theorem. Moreover, according to the Riemann-

Rock theorem [5,15], the dimension of the space L is equal to deg 
D−g+1. As deg D=g, then the dimension of the space in question is 
equal to 1, which proves the uniqueness of the function with 1ψ (to 
a multiplicative constant). Let 1ψ ∈L be any function. Therefore, the 
quotient

1

ψ
ψ

is a meromorphic function with g(= degD) poles. The 

divider of the poles of 
1

ψ
ψ

coincides with the divisor 1 ... gD P P′ ′ ′= + +
of the zeros of ψ1(P)

and we must have ϕ(D′)-ϕ(D)=Vy choosing the polynomials qj 
with sufficiently small coefficients (or what amounts to the same, the 
vectors of V sufficiently small), then the theta function which is in the 
numerator of the above expression is not identically zero. Therefore, 
its divisor D′ of the poles is not special and therefore 

1

ψ
ψ

 is a constant.

Examples
It is well known that the solutions of many integrable systems are 

given in terms of theta functions associated with compact Riemann 
surfaces. We will see below some solutions for some interesting 
problems.

As a first example, we consider the motion of a solid in a perfect 
fluid described using the Kirchhoff equations [3]:

,HP p
l

∂
= Λ

∂


,H Hi p l
p l

∂ ∂
= Λ + Λ

∂ ∂

Where, p=(p1, p2, p3) ∈ R3, l = (l1, l2, l3) ∈ R3 and H is the 
Hamiltonian. This system has the following three first integrals: 

H1=H,
2 2 2

2 1 2 3 ,H P P P= + +

3 1 1 2 2 3 3.H p l p l p l= + +

Two cases can be distinguished: case of Clebsch and case of 
Lyapunov- Steklov. In the case of Clebsch,

3
2 2

1

1 ( ),
2 k k k k

k
H a p b l

=

= +∑
with condition

1 1 1
2 3 1 3 1 2 1 2 3( ) ( ) ( ) 0.a a b a a b a a b− − −− + − + − =

The above system is written in the form of a Hamiltonian vector 
field. A fourth first integral is given by

3
2 2

4
1

1 ( ),
2 k k k

k
H b p l

=

= +∑ 

where is a constant such that
1 1 1

1 2 3 2 3 2 3 1 3 1 3 1 2 1 2( )( ) ( )( ) (b )( )b b b a a b b b a a b b a aρ − − −= − − = − − = − −

The method of resolution obtained by Kötter [9] is extremely 
complicated and relies on an astute choice of two variables s1 and s2. 
Using the substitution ,1 3k kb b kρ→ ≤ ≤  and an appropriate linear 
combination of H1 and H2, we can rewrite the above equations in the 
form

2 2 2
1 2 3

2 2 2 2 2 2
1 1 2 2 3 3 1 2 3

2 2 2 2 2 2
1 1 2 2 3 3 2 3 1 1 3 2 1 2 3

1 1 2 2 3 3

p p p A

b p b p b p l l l B

b l b l b l b b p b b p b b p c
p l p l p l D

+ + =

+ + + + + =

+ + − − − =

+ + =
where A, B, C et D are constants. Let us introduce coordinates ϕk, ψk, 
1≤k≤3 by setting
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1 1,k k kp T l Sψ + += +

and

1 1,k k kp T l Sψ − −= +

where
3 3

1 21 1
1

1 2
1 2

( ) ( )j jj j

k k
z z

z b z b
T

R Rz b z b

= =
±

− −
= +

∂ ∂
− −

∂ ∂

∏ ∏

4
1 1

1
1

1 2

, ( ) ( )k k
i

i

z z

z b z b
S i R z z z

R R±
=

− −
= + = −

∂ ∂
∂ ∂

∏

and z1, z2, z3, z4 are the roots of equation

33
2 2

1 1

2 ( ) 0.k
k k

A z z b Bz C D z bk
= =

 
− + − + − = 

 
∑ ∏

Let s1 and s2 be the roots of equation
2 2 1 2 2 1 2 2 1
1 1 2 2 3 3( ) ( ) ( ) 0,v s v s v sψ ψ ψ− − −− + − + − =

Where
1

3 4 1 2

3 4 1 2

, 1 3.k k k k
k

z z z z

z b z b z b z b
v k

R R R R

−
  
  

− − − −  = + + ≤ ≤  ∂ ∂ ∂ ∂    ∂ ∂ ∂ ∂  

We can express the variables p1, p2, p3, l1, l2, l3 in terms of s1 and s2 
[9]. After some algebraic manipulations, we obtain

1 5 1
1

2 1

( ) ( )
,

as b P s
s

s s
+

=
−



2 5 2
2

1 2

( ) ( )
,

as b P s
s

s s
+

=
−



where a, b are constants and P5(s) is a polynomial of degree five 
having the following form:

2 2 2 2 2 2
5 1 2 3 1 2 3( ) ( )( )( )( ).P s s s v s v s v s v v v= − − − −

Consequently, the integration is done by means of hyperelliptic 
functions of genus 2 and the solutions can be expressed in terms 
of theta functions. The problem of this motion is a limit case of 
the geodesic flow on SO(4). Let us remind that for an algebraically 
completely integrable system [1], we require that the invariants of the 
deferential system be polynomial (in appropriate coordinates) and 
that the complex manifolds obtained by equating these polynomial 
invariants with generic constants form the afine part of a complex 
algebraic torus (Abelian variety) in such a way that the complex 
flow generated by the invariants are linear on these complex tori. 
Meromorphic solutions dependent on a sufficient number of free 
parameters play a crucial role in the study of these systems. We show 
[1,6] that the differential system.

in question is algebraically completely integrable and the 
corresponding flow evolves on an Abelian surface 

where the lattice is generated by the period matrix.
2 0

,Im 0, ( , , )
0 4

a c a c
a b c

c bc b
   

Ω = > ∈   
  



The affine surface Mc defined by putting the invariants of the 

system equal to generic constants, can be completed into a non-
singular compact complex algebraic variety (Abelian surface)

c cM M D= ∪   by adjoining at in infinity a smooth curve D of genus 
9. The latter is a double cover of an elliptic curve ε ramified over 16 
points. The application

7
1 2 1 1 2 7 1 2,( , ) [1, ( , ),..., ( , )],cM P t t X t t X t t→

 

is an embedding of cM into 7P  where (1,X1, ...,X7) forms a base 
of the space L(D) of meromorphic functions with at worst a simple 
pole along D (The functions X1, ...,X7 are expressed in a simple way 
as a function of x1, ..., x6). The solutions of the differential system in 
question in terms of theta functions are given by

( )
( )

0 0
1 2 1 2

0 0
0 1 2 1 2

, ( , )
( ) , 1,....,7

, ( , )
k

k

t t t n n
X t k

t t t n n

θ

θ

 + = =
 + 

where (θ0, ..., θ7) forms a base of the space of theta functions associated 
with D. The two functions theta θ0, 7 are odd while the six functions 
theta θ1, ..., θ6 are even. In the case of Lyapunov-Steklov,

3 3
2 2

1
1 1

1 ( ) ,
2 k k k k k k k

k k
H H a p b l c p l

= =

= = + +∑ ∑
a1 = A2b1 (b2 − b3)

2+B, a2 = A2b2 (b3 − b1)
2+B, a3 = A2b3 (b1 − b2)

2+B,

c1 = Ab2b3 + C, c2 = Ab1b3 + C, c3 = Ab1b2 + C, where A, B and C 
are constants. A fourth first integral is given by

3 3
2 2

4
1 1

1 ( ) ),
2 k k k k k k

k k
H H d p l A d p l

= =

= = + −∑ ∑

where d1 = A2 (b2 − b3)
2, d2 = A2 (b3 − b1)

2, d3 = A2 (b1 − b2)
2. A long and 

delicate calculation [10] shows that in this case too, the integration 
is performed using hyperelliptic functions of genus two and the 
solutions can be expressed in terms of theta functions. Another 
interesting example concerns the Landau-Lifshitz equation [2,11]:

2

2 ,S SS S JS
t x

∂ ∂
= × + ×

∂ ∂

where S = (S1, S2, S3), 2 2 2
1 2 3 1s s s+ + =  and J=diag (J1, J2, J3). This 

equation describes the effects of a magnetic field on ferromagnetic 
materials. The real solutions (with magnetic anisotropy of the axis of 
easy magnetization type) are given by

1
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

d m d m r d d rS
d d m r d r d m

θ ω θ ω θ ω θ ω
θ ω θ ω θ ω θ ω

+ + + + + − + + +
=

+ + + + − + + + +

2
( ) ( ) ( ) ( ) ,
( ) ( ) ( ) ( )

d m d m r d d rS i
d d m r d r d m

θ ω θ ω θ ω θ ω
θ ω θ ω θ ω θ ω

+ + + + + − + + +
= −

+ + + + − + + + +

3
( ) ( ) ( ) ( ) .
( ) ( ) ( ) ( )

d d m r d r d mS
d d m r d r d m

θ ω θ ω θ ω θ ω
θ ω θ ω θ ω θ ω

+ + + + + + + + +
= −

+ + + + − + + + +

Here the theta function is linked to a hyperelliptic curve of 

genus g, 22 2 2
1

( ) ( )g
jj

a eω λ λ
=

= − −∏ whose cycle a = a1+... ga+∑  

encircles the cut [1a,a], r du
−

+

∞

∞
= ∫ where the integration path 

crosses the cycle a∑ , the vector gd ∈ is such that : Im
1 1Imr,m (m1,...mg), ( ).
2 2

d Vx Wtω
π

= − = = +

We cite yet another example which concerns the sine-Gordon 
equation [2]:
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2 2

2 2 sin .
x t
ϕ ϕ ϕ∂ ∂

− =
∂ ∂

It is a non-linear wave equation with multiple applications in 
physics. Its solution can be written in the form

( \ )
( , ) 2 ln 2 ,

0
( \ )

0

Ux Vt W B
x t i C m

Ux Vt W B

α
θ

β
ϕ π

θ

 
+ + 

 = + +
 

+ + 
 

où U, V,W ∈ g


, C∈ R,m∈ Z.

Moreover, the study of the theta functions of a Riemann surface 
of the genus g can be done from the point of view of tau function of 
a hierarchy of soliton equations [13]. The tau functions are specific 
functions of time, constructed from sections of a determinant bundle 
on a Grassmannian manifold of in definite dimension and generalize 
the Riemann theta functions.  
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