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Abstract
The work is focused on the use of metamaterial as sensors. The 
interaction of the electromagnetic wave with planar (meta-surface), 
3D (nano-) and near-zero structures will be studied and the related 
(sensitivity and selectivity) enhancement effects analyzed. It will 
allow us to use them as advanced sensing devices for diagnostic 
applications. To this regard, specific geometries will be proposed 
for cancer detection, biological tissue characterization and chemical 
analysis (i.e. glucose concentration measurements and blood 
diseases monitoring).
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host material and the inclusions. The equivalent permittivity and 
permeability are primarily dependent on the geometrical properties 
of an inclusion shape and mutual distance between them (the so-
called lattice constant). Thus, it is possible to tailor the related 
electromagnetic response, by appropriate design, and to achieve 
desired new values of equivalent permittivity and permeability [3-4].

In this regard, materials can be categorized according to the 
scheme of Figure 1c: if both the permittivity and permeability have 
positive real parts, as most of the materials in nature do, they may be 
called “double positive (DPS)” media [5]; whereas if both quantities 
are negative, third quadrant of Figure 1c, the corresponding materials 
may be called “double-negative (DNG)” media [6]. Due to their 
anomalous wave refraction [7,8], such materials have been the subject 
of great interest in the engineering and physics communities. Media 
with a negative real part of the permittivity, but a positive permeability, 
second quadrant, are named as “ε-negative (ENG)” materials [9] and 
they include plasma and plasmonic materials (noble metals, polar 
dielectrics and some semiconductors) below their plasma frequencies. 
In the fourth quadrant, we have the “μ-negative (MNG)” media [9], 
which can be realized with ferromagnetic materials or synthesized with 
suitable inclusions in a host background [10]. The artificially realized 
MNG materials are essential, basic constituents in the construction 
of DNG materials. In analogy with DNG materials, ENG and MNG 
materials can be labeled as “single negative (SNG)” media [9]. 

Metamaterials with all these unusual values of constitutive 
parameters (SNG, DNG, SNZ, DNZ) offer many unexpected and 
counter-intuitive physical phenomena such as backward-wave 
propagation, negative refraction, and ‘amplification’ of evanescent 
waves [2-5]. During the past decade, huge research efforts worldwide 
have been put into possible application of these phenomena for novel 

Introduction
Despite the classic electromagnetic theory and its main fundamental 

principles can be referred to the past [1], important developments 
have recently been made in theoretical and numerical aspects of 
applied electromagnetics, affecting all the related applications, such as 
sensing and telecommunications. The requirement of going beyond 
the limitations (anisotropy, narrow/single-bandwidth, high losses) 
that standard materials present in nature has become an important 
issue, due to the increasing demands that the nowadays technology 
requires for enhancing the electromagnetic devices performances. 

A new class of artificial materials that can go beyond these 
limitations is currently investigated by several research groups, and 
they are called metamaterials. Such new materials are defined as 
artificial structures, engineered to provide unusual electromagnetic 
properties not easily found in nature [2]. A basic design consists of an 
array of electrically small electromagnetic scatterers, called inclusions, 
embedded into a dielectric host material. Here we consider the 3D 
version, the so-called nanoparticles (Figure 1a) and the 2D version, 
named metasurfaces (Figure 1b) Such inclusions are located at 
mutual distance, typically a small fraction of the wavelength. If an 
electromagnetic wave impinges on this structure, all the local fields 
scattered from inclusions will be summed up to the incident field, 
resulting in a change of the net field distribution. Since the phase shift 
across volume occupied by a single particle (unit cell) is small, the 
diffraction effects can be considered negligible. Thus, the structure 
behaves as a continuous effective material. This material would have 
new (homogenized) values of constitutive parameters (permittivity ε 
and permeability μ), generally different from the parameters of the 

Figure 1: Metamaterial arrangement in: (a) 3D version, nanoparticles (radius 
a); (b) 2D version, metasurfaces (length l). (c) Classification of metamaterial 
structures as a function of permittivity and permeability real part. 
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devices such as miniaturized antennas and waveguides [11], the 
resolution-free lenses [12,13], invisibility cloaks [14-16] and sensing 
[17]. 

There are two main problems that prevent wide use of 
metamaterials in practical engineering systems: a significant loss and 
a narrow operating bandwidth, compared to ordinary dielectrics [3-
5]. It is important to stress that these two drawbacks are not mutually 
independent. They are the consequences of inherent change of the 
permittivity/permeability with frequency, in other words their 
dispersion behavior. Ordinary dielectrics are usually considered 
as being frequency independent (dispersion less) across the entire 
electromagnetic spectrum. It would be very convenient to have 
similar behavior in the case of metamaterials. Unfortunately, the 
values of constitutive parameters of all SNG, SNZ, DNZ or DNG 
metamaterials do change significantly with frequency. This change is, 
in general, described by Lorentz dispersion model [5]. 

All the types of passive metamaterials are highly dispersive 
comparing to the conventional dielectrics, and all of them are 
intrinsically narrowband. How much the inherent dispersion affects 
the operational bandwidth of the metamaterial-based device depends 
on a particular application: the narrowband operation is the inherent 
drawback of all passive metamaterials. Nowadays, advances in 
simulation and fabrication technologies allow a rather broad flexibility 
in designing metamaterials and their electromagnetic responses [18]. 
The potential ability to engineer these responses for a wide variety of 
applications has inspired great interest in metamaterials. Interestingly 
and related to this work, the recent advances in nanotechnology and 
molecular bioengineering are leading researchers to speculate about 
the possibility of bringing these metamaterial concepts back to the 
visible frequencies and about the proper design of artificial molecular 
shapes to achieve artificial optical metamaterials to tailor their 
electromagnetic properties at infrared and visible frequencies [19].

Metamaterials for Sensing Applications
The main advantages in using metamaterials as bio-

electromagnetic sensors are the following:

• A significant reduction in the structure size and the related 
enhancement of the sensitivity sensor. 

• The possibility to optimize the sensor response by tailoring 
its geometrical and electromagnetic properties as a function of the 
application required.

• They are able to detect higher (permittivity/refractive index) 
variation in the output signal, in response to small changes of the input 
signal. This, combined with the high electric field focalization and 
real-time monitoring, permit to improve the sensing performances 
and to detect really small amount of compounds.

Electric properties of materials can be described by their dispersive 
complex dielectric permittivity (real and imaginary part) as a function 
of the frequency. In general, biological tissue dielectric properties and 
their frequency response are the results of the interaction between 
the electromagnetic radiation and their constituents, covered by two 
different mechanisms that influence the shape of the permittivity as a 
function of the frequency:

• The relaxation effects associated with permanent and induced 
molecular dipoles. The mechanism of dipoles relaxing is called 
dielectric relaxation and for biological tissue is described by classic 
Debye relaxation (Microwave regime).

• The resonance effects, which arise from the rotations or 
vibrations of atoms, ions, or electrons. These processes are observed 
near their characteristic absorption frequencies (Infrared and Visible 
regime).

Tissue diseases typically induce structural, biochemical and 
mechanical changes. These variations imply significant changes in their 
electromagnetic properties, in other words their permittivity values 
can be significantly different. The main aim of an electromagnetic 
biosensor is to reveal such differences, by correlating the substance 
dielectric properties to its resonant properties. The output signal must 
have the resonant characteristics (resonance position, magnitude and 
bandwidth) depending on such modifications. 

Metasurfaces

As stated before, metamaterials are macroscopic composites 
of (non-)periodic structure whose function is due to both the 
architecture as well as the chemical composition. The 3D concept 
of metamaterials can be extended by arranging electrically small 
scatterers into a two-dimensional pattern at a surface or interface. 
This metamaterial surface version is called metasurface [20]. They 
can be of arbitrary shape, not necessarily of zero thickness, and 
can have dimensions and periodicity smaller compared to the 
operative wavelength in the surrounding medium. Metamaterials 
generally exhibit some properties which are not very suitable for 
most of the practical applications, especially their sharp resonant 
peaks and very strong spectral dispersion. This results in a narrow 
operating bandwidth. While this is obviously not convenient for 
communications applications, it is useful for sensors because it 
ensures larger change of the output signal with small changes of the 
input stimulus, reaching an increased sensitivity. Such a narrow 
operating ranges behavior can be utilized in some applications, 
such as in the areas of controllable surfaces [21], chemistry [22], 
and biomedical sensors [23].

The electromagnetic fields strong localization, confinement 
and enhancement allow us to use them to improve the sensors 
performance to enable detection of extremely small amounts of 
analytes for chemical and biological sensors. Such structure can be 
engineered and optimized in terms of its response (resonant frequency 
position, amplitude and bandwidth) to obtain high sensitivities 
and high selectivity properties, by changing its geometrical and 
electromagnetic properties. Any perturbations to the electromagnetic 
response of the metasurface, modify the effective material response. 
In general, apart from the specific geometry, the polarizabilities of 
these metallic inclusions can also be controlled by affecting the 
capacitive and or inductive properties [24].

In the microwave frequency range can be used for the detection of 
cancer [25], water content [26] (Figures 2a and 2b, respectively) and 
blood diseases [27].

On the other hand, a typical intrinsic property of the compound 
under study is its absorption spectrum in the IR and visible regions. 
Mid-infrared (MIR) and near infrared (NIR) sensors have been 
increasingly studied for noninvasive measurements in medicine, 
and also in food technology and biotechnology. The electromagnetic 
absorption phenomena of the material under test are detected by 
the changes in the biosensor signal output amplitude/bandwidth. 
The sensor must be tuned to the main absorption peaks of specific 
molecular bonds. The IR spectrum can be exploited to monitor 
glucose concentration [28] in whole blood or during fermentation or 
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to monitor hemoglobin fractions and oxygen saturation [29], due to 
the different optical absorption spectrum of deoxyhemoglobin (Hb) 
and oxyhemoglobin (HbO2).

Nanoparticles

For what concerns the detection in the visible, the phenomenon 
of Localized Surface Plasmon Resonance (LSPR) has been heavily 
utilized for sensing applications [30]. The resonant spectral response 
of LSPR to a variation in external refractive index plays a critical role 
in chemical [31] and biological sensing technology [32]. It offers 
interesting characteristics, advantageous in using them for sensitive 
and label-free biochemical purposes. Plasmonic sensors are of great 
interest due to the rapidly progress in micro- and nano-fabrication 
technology [33]. As manufacturing processes have rapidly developed, 
the recent sensor technologies are being used for reading DNA 
bases [34] as well as detecting interactions between proteins [35], 
surface membrane binding events [36], antigen-antibody recognition 
events [37], and cellular imaging, acting as transducers that convert 
small changes in the local refractive index into spectral shifts in the 
intense nanoparticle extinction and scattering spectra [38]. The 
demand for LSPR-based nano-scale bio-sensing has increased due 
to the advantage of label-free, minimal interference, and real-time 
monitoring performance [39]. 

The extremely intense and highly confined electromagnetic fields 
induced by the LSPR can realize a highly sensitive probe to detect small 
changes in the dielectric environment around the nanostructures. 
When molecules get close to the surface of a noble metal nanostructure, 
the refractive index of immediate environment surrounding the 
nanostructure is increased. Thus, molecular interactions at the surface 
of the nanostructures directly lead to local refractive index changes; these 
changes can then be monitored via the SPR peak wavelength shift. This 
can allow for the detection of extremely low concentrations of molecules 
[40]. Hence, the ideal LSPR nanosensor should have a high spectral shift 
along the alteration of surrounding material and a narrow line-width of 
spectral response [41].

In the last few years several researches have paid attention to 
glycerol measurements in aqueous solution due to the importance in 
several application fields. From a biomedical point of view, it is well 
known that glycerol is the basis of triglycerides and it plays an important 
role in energy metabolism. Glycerol concentration measurement is 

crucial for several application fields, such as biomedical engineering, 
medicine and biofuels fabrication. Glycerol measurement in aqueous 
solutions is not simple because its permittivity varies (not too much) 
by changing its chemical concentration [42], as shown in Figure 3a.

Iovine, et al. developed a metamaterial-based sensor consisting of 
an array of nanorods is proposed. The sensor can detect the presence 
of glucose and its concentration in aqueous solutions [43]. Nanorods 
particles exhibit optimal performances for sensing applications [44]. 

It is well known that the permittivity of water solutions increases 
with increasing the chemical species concentration. Therefore, it 
would be possible to sense the presence of either organic or inorganic 
compounds in a water solution, with possible applications in food 
[45] and medical diagnostics [46]. In this way nanorods can be used 
for quantitative analysis of a large number of substances such as the 
alcohol content [47], acidity [48], and extractable substances with and 
without sugar [49].

Haematological diseases induce structural, biochemical and 
mechanical changes in Red Blood Cells (RBCs) [50]. The structural 
variations imply significant changes in cell electromagnetic 
properties. The refractive indices of different kind of RBCs, in the 
optical frequency range, differ in their real and imaginary part [51]. 
The scattering coefficients properties of the sensor change their 
position, depending on the different RBCs structural modifications. 
As a result, the sensor is capable to detect human red blood cells 
structural modifications, allowing us to detect different blood 
diseases, by refractive index measurements [52]. 

Park MH, et al. structures, exploiting different LSPR enhancement 
phenomena proposed to detect healthy and tumor tissues [53-58]. 
An example is depicted in Figure 3b. Structural modifications of 
chromophores and pigments in skin produce variations of the optical 
properties of skin layers. A change in the electromagnetic properties, 
related to the size and shape variation of chromophores and pigments, 
can be a useful tool for the recognition of different skin diseases. If 
the resonances of the sensor are designed to coincide with the skin 
compounds spectral characteristics, in case of diseases the response 
of the sensor is greatly modified in terms of magnitude and amplitude 
width. A change in the frequency amplitude of the sensor response 
is related to the different absorption rate of skin chromophores and 
pigments [59,60].

Figure 2: Meta-surfaces used as sensors for: (a) cancer tissue detection and (b) water content recognition.
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Near-Zero-Index Materials 

Near the two axes of Figure 1c, where the real part of one of the 
constitutive parameters is near zero, the materials may be termed as 
“ε-near-zero (ENZ)” and “μ- near-zero (MNZ)” materials. Materials 
with both constitutive parameters equal (or close) to zero, which 
fall at the origin of Figure 1c, have been termed as “near-zero-index 
(NZI)” materials [61]. Such materials possess several interesting 
applications such as tailoring the phase-front of an electromagnetic 
wave and designing filters [62], obtaining directive antennas [61], 
implementing optical nano-circuits [63], confining electromagnetic 
fields [64], enhancing transmission [65], obtaining anomalous 
tunneling effects [66,67], focusing the electromagnetic field [68], 

cloaking objects [69,70], improving sensing systems [71-73], new 
types of guiding systems [74], optical antennas [75], and absorbers 
[76].

Other than their rich ability as a platform to study fundamental 
electromagnetic wave theory, metamaterial-based absorbers (Figure 
4a) offer a wide variety of practical applications. Although many 
of these applications are still in their youth, a major goal since the 
creation of them has been to integrate them into existing devices to 
boost their performance.

Today, electromagnetic wave absorbers continue to have 
many relevant uses. One of the most widespread uses is for radar 
cross section (RCS) reduction. The basic goal of RCS reduction is 

Figure 3: Nanoparticles used as sensors for: (a) glycerol measurements and (b) skin-cancer detection

Figure 4: (a) Epsilon-Near-Zero absorber setup; Response to external impinging electromagnetic wave for (b) TE and (c) TM polarization.
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to reduce radar echo so that objects can be hidden [77]. EM wave 
absorbers can also be used for antennas in reducing side lobe 
radiation or undesirable radiation from antennas [78]. Clearly, these 
applications have huge military and civilian potential. More recently, 
electromagnetic wave absorbers have been used in the reduction of 
electromagnetic interference by absorbing spurious electromagnetic 
radiation [78]. Along with preventing health risks due to exposure 
of specific electromagnetic radiation at frequencies, useful tool for 
wireless communications [79].

Because metamaterial-based absorbers are tunable with respect to 
their operational wavelength, they can be used as spectrally sensitive 
detectors or sensors. Much work has done in both integrating 
them into existing designs and creating novel devices based on 
metamaterials to provide detection and sensing throughout the 
electromagnetic spectrum. Microbolometers are a type of thermal 
detector in which incident electromagnetic radiation is absorbed 
by a material and then sensed by a thermometer [80]. In the 
pyroelectric detector, absorbed energy is sensed by a material that has 
a temperature dependent dielectric function, and the material forms a 
portion of a sensitive capacitive circuit [81]. These devices are of great 
interest in the IR wavelengths range and are particularly useful at 
THz frequencies. Theoretical work was done showing the possibility 
of adding a metamaterial-based absorber to conventional bolometer 
microbridges in the MIR region to introduce an element of spectral 
sensitivity [82]. In another example of metamaterial-based absorbers 
as detectors, in [83] it was shown that SRR’s could be implemented 
on cantilever pixels to detect light. Utilizing metamaterial-based 
absorbers to provide heat upon absorption (through their loss) can 
cause mechanical displacement of the cantilever. By scaling the SRR 
design, this study could show photoresponsivity in the THz regime 
and in the microwave region. Rather than adding to an existing 
device, it is proposed that metamaterial-based absorbers themselves 
could act as plasmonic sensors in the NIR regime [84]. In addition 
to applications discussed above, there are many great options 
for future development of metamaterial-based absorbers. One is 
the advent of tunable, or active, metamaterial absorbers, making 
itself that could be dynamically tuned by means of external stimuli 
[85], as shown in Figure 4b and 4c for TE and TM polarization, 
respectively. One accessible application of tunable metamaterial-
based absorber is in imaging. Some work has been done on THz 
imaging using compressive sensing [86]. Another possibility is the 
application of metamaterial-based absorbers as accurate, tunable and 
efficient thermal emitters over a specific frequency range to maximize 
efficiency [87]. There are a multitude of challenges in the future of 
metamaterial-based absorbers; one is overcoming fabrication issues, 
specifically in the visible regime, to make them as efficient as possible. 
Another challenge is to integrate them into practical devices. Despite 
the difficulties and challenges faced by metamaterial-based absorbers, 
they have a bright future with many potential applications which 
should have a significant impact on current science and technology.

Conclusions
This work was focused on the applications of metasurfaces, 

nanoparticles and near-zero materials for advanced sensing platforms.

New high sensitivity sensors were proposed, using 2D/3D 
structures whose frequency response is modified by the change 
of the surrounding dielectric environment or by exploiting the 
electromagnetic wave interaction with plasmonic structures. Several 
configurations and geometries were studied. The possibility to 
successfully use such structures as sensors in a broad electromagnetic 

spectrum (from microwave to the visible range) was demonstrated. 
It allowed us to develop diagnostic applications for biological 
compounds, cancer tissues and different health diseases. 

Moreover, results here presented pave the way for new interesting 
and relevant use of metamaterials in a variety of fields such as optics, 
communications and nanodevices.
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