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Abstract

Over the last few decades, advancements in astrophysics have 
been closely linked to the development of powerful machine-
learning models that can accurately classify celestial bodies. At 
the same time, however, many astronomical datasets are filled 
with new features collected by increasingly powerful 
telescopes. These features can cause overfitting, clouding 
predictive abilities, and dampening the ability of many models 
to classify images. Therefore, motivation to design more 
efficient models has skyrocketed-aiming to optimize for lower 
run times and high accuracies, even with fewer provided 
features. In our project, we seek to optimize a convolutional 
neural network model using a technique known as wavelet 
analysis. This technique allows us to pick the key features of 
an astronomical image and accentuate niche details, saving 
time and boosting accuracy. We applied it to the Mira Best 
Dataset, a dataset compiled from the FIRST sky survey using a 
virtual telescope. In the end, after training our neural network 
on the original images and the five filters (approximation, 
horizontal, vertical, diagonal, and combined), we found that 
with fewer features and less overfitting, the vertical 
Daubechies-family wavelet filter outperformed the original runs 
with the unaltered images by over 10%. Our findings suggest 
that wavelet analysis can help harvest the most valuable 
features in images of celestial bodies–leading to enhanced 
predictions in astronomical applications and perhaps bolstering 
modern astrophysical theory.
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Introduction
Generational advancements in astrophysics have led to the

invention and development of technologies and theories that serve as
better models for understanding the universe. These advancements in
astrophysics are tied to new models that can accurately classify
celestial bodies (radio galaxy, nebulous, dwarf galaxy, etc.).
Additionally, with more powerful processing power, the amount of
astronomical data processed increases each year. As a result,
astrophysicists are provided with a bountiful supply of datasets.

Additionally, as technology becomes more potent in handling big data, 
each dataset can grow in size and quality contemporary surveys can 
now store gigabytes of storage with precise data and details. These 
surveys are also bolstered by technology that provides the view of 
areas of the universe that were unviewable years before. In the context 
of machine learning, all these new details and features can cause 
overfitting which would cloud predictive abilities, and dampen the 
machine’s ability to classify images [1]. Essentially, the model 
overgeneralizes these highly detailed features. These problems 
motivate the design of more efficient models with lower run times and 
higher accuracies that may resolve this issue. This is where we delve 
into the field of signal analysis and the usage of wavelets.

We begin by analyzing a relatively novel signal processing 
instrument: wavelets. Wavelets have been around since the turn of the 
twenty first century. An examination of wavelets and their 
transformations sheds light for its use in image pre-processing and how 
it reveals non-obvious, underlying details.

Materials and Methods

Wavelets
Mathematically, wavelets are functions on the time domain that 

represent a functional waveform whose average value is 0 over an 
infinite interval, as such wavelets typically approach the value 0 when 
approaching positive and negative infinity. A wavelet can be described 
as a “brief oscillation” playing a key role in signal analysis and 
wavelet transforms by functioning as a detail uncoverer. Typically, 
there is a single basic wavelet and then a mother wavelet. We obtain 
the mother wavelet after adding a scaling term to the single basic 
wavelet, essentially normalizing it. A wavelet is inherently complex, 
enabling us to create an infinite, orthonormal set of them, forming a 
Hilbert basis. Just as sinusoidal functions with different frequencies 
form an "orthogonal" set (multiplying and integrating distinct 
functions leads to a Kronecker-Delta function), wavelets share this 
same characteristics [2].

Wavelet transformation
The wavelet transform is a mathematical function used to extract 

specific details and features from a signal. It takes the form of:

One can note this transform similarly models the fast Fourier
transform (they function very similarly). The function transforms the
signal f (x) using the complex conjugate of the particular wavelet ψ by
taking a finite or infinite superposition between the two. The wavelet
transform actually functions very similarly to that of a convolution,
but instead the kernel is actually the wavelet. Similar to a convolution,
wavelets can weed out specific features of a signal. In particular, the
wavelets we used were capable of weeding out horizontal, vertical,
and diagonal detail (Figure 1).
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Figure 1: Example of different filters applied to an image through
wavelet transformations.

An avid reader might wonder the difference between the wavelet
transform and the Fourier transform. Both decompose the signal into
their respective sinusoidal waves uncovering the frequencies, yet the
Fourier transform fails to account for the time at which each
sinusoidal wave is occurring at-the Wavelet transform uncovers both
time and frequency domains [3].

Applications
In a more general sense, wavelet transform has applications in the

fields of data and image compression, most notably in the JGP 2000
format. For example, data with abnormal variation and spikes like
audio files is better compressed with wavelet transforms while data
with periodic variations are better compressed with other methods
such as the Fourier transform [4].

Wavelet analysis has improved the accuracy of image classification
models in a different number of ways. Due to the variability of
wavelets in both the frequency and time domain, wavelet functions
have been used as activation functions or replacing pooling layers with
wavelet transforms [5]. In our project, we simply use wavelets as a
pre-processing technique while leaving many of the standard machine
learning techniques unchanged.

Materials and Methods

Data gathering and preprocessing
We gathered data from the mira best batched dataset, a dataset

consisting of 1256 images of radio-loud AGNs from two sky surveys:
FIRST and NVSS [6]. FIRST or Faint Images of the Radio Sky at
Twenty-cm was last updated in 2011 on the NRAO’s Very Large
Array, an influential astronomical radio observatory in New Mexico
[7,8]. It largely centered on the North and South Galactic Caps, and in
the years since, it has become one of the most used surveys in radio
galaxy classification tasks, forming the basis of much of the research
being done in the area [9-11]. NVSS on the other hand, another survey
done on the VLA, covers the sky over a negative forty-degree
declination [12]. Both surveys are publicly available through FTP and
Mira Best is available on Zenodo (Figure 2).

Figure 2: Illustration of mira best dataset.

Using a virtual telescope, the mira best dataset collected images 
from both surveys classified by FRI and FRII-type galaxies. We 
selected Mira Best based on a variety of factors: Size, ease of use, and 
image quality. Additionally, as the dataset was created to help train 
models in the classifying of radio galaxies and had preset data loading 
tools that allowed for compiling AGNs into train and test sets, so its 
results can be readily achieved using simple PyTorch code (as shown 
with its many implementations) [13].

We started by conducting an exploratory data analysis, largely 
looking at the distribution of image labels and ensuring that the dataset 
was not too unbalanced for the classification task we had in mind. We 
found it to have roughly 40% FRI and 60% FRII, and after concluding 
that the data required no other preprocessing or image restructuring, 
we compiled the images into the dataset’s provided train and test sets a 
roughly 70% to 30% split.

Another dataset we looked into was radio galaxy net a dataset with 
both radio and infrared channels [14]. We found its intended purpose 
of automated detection rather than classification to be beyond our 
goals of utilizing wavelet analysis.

However, as the dataset is well furnished with annotations, and 
contains even more galaxies (4,155 across 2,800 images), it could 
have a bearing on a future work’s dataset selection.

Model architecture
Prior research has proven convolutional neural networks to have 

significant promise in the field of computer vision for three main 
reasons [15].

• High accuracies on image classification tasks.
• Les computationally expensive compared to other types of neural

networks and other machine learning algorithms.
• The use of convolutional layers in reducing dimensionality without

losing information.
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Furthermore, a significant level of research has already been done
on the classification of stellar bodies and specifically, radio galaxies
with ConvNets [13-16]. For those reasons, CNN was our model of
choice (Figure 3).

Figure 3: Model architecture.

After creating a baseline model, a standard PyTorch Convolutional
Neural Network with a total of 3,752 neurons, consisting of 3
convolutional layers, 3 pooling layers, and a single flattening layer, we
trained the model. It took in gray-scale images of resolution 150 by
150 pixels.

As mentioned before, the convolutional layers can isolate single
features (similar to how wavelet analysis will be applied later).
Following it are the max pooling layers which reduce spatiality and
tend to help mitigate overfitting.

The first convolutional layer takes in images of size 150 × 150,
with a kernel size of 3, an output size of 3, and an input channel of 1.
Afterward, the result is passed through a max pooling layer with a
ReLU activation function that selects the maximum between 0 and its
input. The same process is repeated twice more, first with a
convolutional layer of kernel size 3 × 3, 3 output channels, and 3 input
channels and second with a layer of the same kernel and input sizes
but with 6 output channels instead of 3 (the ReLU max pooling layers
after the convolutional are identical). Finally, the image is flattened
and put through a fully connected layer with an output channel of 2.
After that, the model was then given a cross-entropy loss function and
the Adam optimizer with a learning rate of 0.01 [17].

Part of the reason behind our decision to create a base model with
so few layers was a prediction that the model would over fit. To
combat that issue without lowering any resolution of images that could
compromise important astronomical features we simplified the model
and reduced the number of neurons.

Hyper parameter optimization
After logging the results of the benchmark model (using Matplotlib

and an epoch-based graphing system) and then analyzing both the
accuracies and loss for the training and validation, we concluded that
the model was overfitting [18].

Because of this unsatisfactory validation accuracy, we began to
optimize hyperparameters hoping to find the right balance between the
number of neurons and validation accuracy. So, to correct the
overfitting, we started by changing the number of convolutional layers
and dropout layers, lowering the number of neurons, changing
activation functions, and playing with the learning rate.

As early as epoch 5 the validation loss (pictured in red) began to
spike upwards, illustrating a drop in loss that continued to worsen as
the model continued to train. In contrast, the training loss and
accuracy point to the model’s performance on the training set being
highly effective. In fact, logs of the model’s results after 20 epochs
have shown training accuracy to reach as high as 90% (Figure 4).

Figure 4: Optimized baseline model’s results on the 20th epoch.

Even with optimized hyper parameters, our validation accuracy
only increased minimally, by 5%. As a result, we began to seek other
methods of combating overfitting, other methods that found the right
trade-off between training accuracy and validation accuracy without
compromising on model resolution or adding or removing images
from the dataset.

Wavelet analysis
Referring back to the wavelet transform, we began by inputting

each image as our f (x). The wavelet transform has the capacity to be
modified for higher dimensional signals like images. With each signal
(or image), we applied four different wavelets ψ that acted as filters
for specific features: approximation, horizontal, vertical, and diagonal.
Approximation compressed the image quality, horizontal isolated
horizontal details, vertical isolated vertical details, and diagonal
isolated diagonal details. We also created a “combined” details input,
stacking each of the filters together into one super-image. These
functions were provided by the PyWavelets library (Figure 5).

Figure 5: Example of wavelet analysis on a specific AGN.

Model training
Using the same hyper parameter-optimized CNN architecture, we

created five training loops for each of the details. Each ran for twenty
epochs, which we found to be sufficient to view any overfitting in a
model (Figure 6).
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Then while iterating through the batches for both the train and test 
sets, we started by isolating the different details using the biorthogonal 
bior1.3 families. Afterward, we began updating the loss and step 
functions. Additionally, we updated a variable that tallied the number 
of correct predictions, which we used to graph and log the results for 
both losses and both accuracies every five epochs (Table 1).

Model Accuracy (% Loss

Train Validation Train Validation

Baseline 79.8 74.03 0.4377 0.627

Approximation 77.2 67.53 0.4654 0.5588

Horizontal 79.08 71.43 0.4506 0.5255

Diagonal 79.51 72.73 0.4397 0.5224

Combined 77.63 68.83 0.45 0.5843

Vertical 77.49 81.82 0.5153 0.5054

Results and Discussion

Overfitting
As shown in the graph of the results for original images, the model 

started overfitting on epoch 6. On the other hand, our best-performing 
model, the CNN trained on vertical details, takes 30 epochs to over fit. 
Even then, the overfitting we observed is a much smaller increase in 
the validation loss compared to the much larger validation loss spikes 
of the original images.

Going beyond the vertical wavelet-trained model, and looking at the 
others, it seems like they all perform better with overfitting. Their 
validation loss is much more stable even though they do receive spikes, 
their occurrence is less frequent and much less drastic.

Accuracy
When we used hyperparameter optimization, the model got better at 

predicting new data but at a cost of overall accuracy We know that 
when loss decreases, the “real” accuracy is always going to increase, 
on the other side when loss increases like when the original model 
starts overfitting, the “real” accuracy starts decreasing even though the 
accuracy shown on the graph seems to increase.

Using this knowledge, we estimate the “real” original model 
accuracy to be 74.03%. For the model trained on vertical details, we 
estimate a validation accuracy of 81.82%, an increase of over 10.52%.

Future work
The success of wavelet analysis as a pre-processor for the machine 

learning model is evidence for its usage in the classification of other 
non-galactic images. A future application of wavelet analysis could 
reveal underlying features of different images. For example, if a certain 
RR Lyrae  underwent a  physical process that  enunciated a diagonal feature,

wavelet analysis could distinguish that well enough for the machine 
learning model to recognize. In regards to the methodology, we may 
look to try different wavelets that will filter different detail and note the 
changes in accuracy of those. In regards to our model, we believe that 
pre-trained models will fare better compared to the primitive models 
we used. Additionally, it should be possible to develop algorithms that 
could isolate different details such as a circular detail that detects a 
"curl" of a signal and filters those details out. A larger range of filters 
encapsulates more possibilities of certain predictors that may influence 
the classification process. In future runs of this experiments, different 
wavelets and pre-trained models would provide more insight into the 
predictability of certain astronomical bodies.

Conclusion
Even though some of the models did not get extreme increases in 

accuracy over the originals, every single one of them outperformed the 
model’s tendencies to over fit. Additionally, it appears applying 
wavelet transformations as a pre-processing filter reduced model 
overfitting In the future, wavelet transformations could be used to 
identify which features could be better indicators of certain galaxies 
For our dataset, vertical features were the best indicators in classifying 
galaxies from the FIRST sky survey suggesting theory could be 
developed around the fact that vertical details may be a In general, 
wavelets are extendable to any astronomical image; details that 
identify certain celestial bodies can be identified through wavelets. By 
understanding the relevant details of celestial bodies, it will also help 
develop astrophysics theory explaining the significance of these 
features. As wavelets are a relatively novel idea in signal processing, 
more research and programming can be done to improve the model of 
wavelet transforms, further expanding their usages in image 
classification and pre-processing.
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   Figure 6: Comparison of model train on unaltered images and model 
trained on vertical wavelet images.

   Table 1: Comparison of model accuracies and losses. The model trained on vertical wavelets achieved better performance compared to other 
models with respect to accuracy, loss, and overfitting.
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