

Research Journal of Zoology

A SCITECHNOL JOURNAL

Review Article

Modern Zoology as a "Classical" Branch of Biology has Developed to Play an Integrative Role with a Focus on the Whole Organism Schwerte T*

Abstract

The concept of zoology as a single coherent field arose over the 18th and 19th century. It has been influenced by the systems theory and advances in the modern molecular biological methodology. As a consequence, zoology split into many specialized fields and "organisms" were more and more replaced by "systems". This study intends to identify conceptual changes in zoological research publications by data mining the bibliographic entries of the online database PubMed for topic-specific keywords that may reveal changes in the ratio of molecular and whole organism level in zoology publications (1918-2017). For this, major and minor topics of the publications were counted with the data mining tool RefViz (Thomson Research). The top 64 of these lists were distinguished to be on the molecular or on the whole organism level. The results indicate an increase in whole organism based zoological publications while those on the molecular level were decreasing.

Keywords

Zoology; Natural history; Ecosystem

Abbreviations: 5-ht: 5-Hydroxytryptamine; Ache: Acetylcholinesterase; Ae: Aedes (Mosquito); Ag: Silver; Gnps: Silver Nano Particles; Ar: Androgen Receptor; Ca²⁺: Calcium; Cd: Cadmium; DNA; Deoxyribonucleic Acid; e²: Estradiol; Gaba: Gamma Amino Butyric Acide; Gh: Growth Hormone; Gnrh: Gonadotropin-Releasing-Hormone; Gth: Gonadotropin; Hiv-1: Human Immunideficiency Virus; Hsp70: Heat Shock Protein 70; Igf-i: Insulin-like Growth Factor; Lh: Luteinizing Hormone; Mhc: Major Histocompatibility Complex; Mirnas: Micro RNAs; Nh3: Ammonia; Nps: Nano Particles; Ni: Nickel; P53: Protein P53; Pd: Parkinsons Disease; Pkc: Protein Kinase C; Prl: Prolactin; T3: Triiodo-L-Thyronine; T4: L-Thyroxine

Introduction

The conceptual change of zoology as a science

The term zoology in this study means the branch of biology that studies the animal kingdom, including the structure, embryology, evolution, classification, habits, and distribution of all animals and their interaction with the biotic and abiotic environment.

Received: October 04, 2017 Accepted: Janurary 03, 2018 Published: Janurary 08, 2018

All articles published in Research Journal of Zoology are the property of SciTechnol, and is protected by copyright laws. Copyright © 2018, SciTechnol, All Rights Reserved.

Zoology as a science and "classical" field of biology has a long history of more than 2000 years. The history of zoology traces the study of the animal kingdom from ancient to modern times. Zoological sciences emerged from natural history reaching back to the works of Aristotle and Galen in the ancient Greco-Roman world. The concept of zoology as a single coherent field arose much later over the 18th and 19th century [1,2] and is one of the natural sciences attracting most public attention [3]. In contrast to this, zoology as a scientific field occasionally is considered to be old-fashioned [4]. Reason for this was emerging of more specialized zoology related sub-disciplines as a result of focusing on selected aspects of animal biology. As a consequence, zoology as a science was more and more replaced by a number of autonomous research areas, focusing different levels of the "system life": molecules, cells, tissues, regulation and adaptation, model animals or whole ecosystems. Someone may ask for a strategy for how to keep these fragmented topics together. A look into the history of sciences reveals the answer.

It was in the 1940's when the idea came up to counteract these dynamics by defining systems principles that keep science togethersystems theory was born. This minorize was proposed by the biologist Ludwig von Bertalanffy, and furthered by Ross Ashby [5,6]. Although those ideas and concepts were quite technical and catalyzed the loss of the term "organism" by more and more replacing it by "system" [7]. Nevertheless, the basic ideas were attempts to revive the unity of science and reacting against reductionism. Von Bertalanffy emphasized that real systems are open to, and interact with, their environments. Furthermore, they can gain qualitatively new emergent features, resulting in continual evolution.

In the time system theory came up another topic led to disruptive changes. Molecular biology was established in the 1930's [8] and was always an interdisciplinary field (chemistry, biochemistry, and genetics). Advances in the modern molecular biological methodology rapidly enabled researchers in "classical" fields of biology, like zoology and botany, to develop the hypothesis for their observations that have the power to explain phenomena and emergent systems properties on different levels of organization. But can we explain life on a whole organism level with molecular biology alone? Astbury described molecular biology as: "...not so much a technique as an approach, an approach from the viewpoint of the so-called basic sciences with the leading idea of searching below the large-scale manifestations of classical biology for the corresponding molecular plan. It is concerned particularly with the forms of biological molecules and [...] is predominantly three-dimensional and structural-which does not mean, however, that it is merely a refinement of morphology. It must at the same time inquire into genesis and function." [9]. Without doubts, molecular methods added a high value to many aspects of classical fields of biology. Today, researchers are always asked to explain the underlying mechanisms and in most cases, they end up in molecular biological experiments.

But, researchers, especially those with their roots in classic zoology, should always keep in mind the question "What does this mean to the whole animal?". There is still a need for researchers with a holistic view of the results of modern life sciences. Jörg Albrecht, a German science journalist, and biologist asked the question if there is a future for classical zoology and botany. In his article, he came to the

^{*}Corresponding author: Thorsten Schwerte, Institute of Zoology, University of Innsbruck, Techniker Str. 25, A-6020 Innsbruck, Austria, Tel: 004351250751862; Fax: 00435125072930; E-mail: Thorsten.Schwerte@uibk.ac.at

answer "Specialists like to divide the flora and fauna into ever smaller portions, here a cell, there a carbon compound, here an atom, there a neutrino, to the end everything consists of quarks. The secret of life cannot be deciphered on that level, because an animal, a plant, a bacterium, even a virus is always very much more than the sum of its parts. This is why: generalists, desperately sought" [10]. Is it true that zoology is outcompeted by other disciplines? And is it true that analysis on the whole organism level is losing importance?

Re-evolution of the concept of zoology

In the last decade, a process started to evolve the former "old fashioned" zoology into a modern zoology, which serves as an integrative discipline encompassing all aspects of animal life, from the level of the gene to the level of the ecosystem.

The current challenge of the modern zoology is the re-integration of zoological disciplines and simultaneously taking advantage of a broader approach to the holistic study of animal life. This is reflected by the increasing number of new zoology journals, like Zoo Keys, Frontiers in Zoology, International Journal of Zoology, Archives of Zoological Studies and Research Journal of Zoology (the journal, you are reading right now). How did the semantic content of zoology publications change when focusing on the question if molecular biology still displaces the concept of the organism?

In the following, some superficial analysis of the major zoological research topics using the bibliographic information in the database PubMed with the search term "zoology" in title and abstract fields is presented. From 67.475 hits 5404 were excluded (incomplete database entries, like missing titles) and the remaining 62.071 were imported in RefViz 2 (Thompson Reuters, New York). RefViz is data mining software for reference databases like PubMed. It provides a similarity-based clustering by statistical analysis of the vocabulary in the Titles and Abstracts of the reference set and how the terms in that vocabulary were categorized during processing. Major Topics are the terms that best distinguish sets of references - they are the most important concepts. Minor topics are less distinguishing, but have some influence on the grouping of references through their co-occurrence with the major topics. Words that are too frequent or too infrequent to help define groups of references, or they are not distributed in a manner that would help distinguish groups are excluded. PubMed uses the MeSH index to find references with related concepts; thus, the query "zoology" itself may not necessarily appear in the reference itself.

For the current study, three subsets of publication year periods 1918-1999, 2000-2011 and 2012-2017 were analyzed for their most dominant (distinguishing) and minor (less distinguishing) topics. The results are shown in Table 1 (sorted by number of term occurrence) and Table 2 (alphabetically sorted). Table 3 shows the number of terms indicating the whole organismic level compared to the molecular level. The whole organismic level terms show an increase by 41% in contrast to terms indicating the molecular level, which decreased by more than 50 % both when comparing publications of the past 5 years

Table 1: Text analysis of the top 64 major zoological research topics using the bibliographic information in the database PubMed with the search term "zoology" in title and abstract. From 67.475 hits 5404 were excluded (incomplete database entries, like missing titles). The periods 1918-1999, 2000-2011 and 2012-2017 were analyzed for their most dominant (distinguishing) and minor (less distinguishing) topics in order of term occurrence. Terms in titlics indicates topics on the whole organism level. n=16222 (1918 - 1999), 22222 (2000 - 2011) and 23627 (2012 - 2017) respectively.

1918 - 1999			2000 - 2011				2012 - 2017				
Major Topic	# of papers	Minor Topic	# of papers	Major Topic	# of papers	Minor Topic	# of papers	Major Topic	# of papers	Minor Topic	# of papers
neuron	1065	cell	2947	sperm	509	species	2424	rat	1243	species	3489
fiber	667	activity	1973	oocyte	498	cell	2163	mosquito	613	activity	2219
ca2+	606	species	1751	ca2+	275	activity	1834	malaria	498	cell	2152
oocyte	451	protein	1546	zinc	250	protein	1683	Aedes aegyptii	384	gene	1873
sperm	445	concentration	1442	bat	220	male	1295	sperm	371	protein	1687
virus	329	body	1251	ant	205	gene	1287	oocyte	309	population	1674
wing	266	rate	1248	tick	202	rate	1258	bat	268	expression	1574
prolactin	216	male	1237	spider	195	concentration	1256	snail	246	male	1442
flight	207	female	1218	melatonin	184	expression	1246	tick	245	concentration	1314
seed	203	population	1076	bat	162	population	1157	ant	235	female	1291
tick	199	blood	987	mite	155	female	1153	bee	234	evolution	1109
microtubule	191	hormone	920	pheromone	145	evolution	918	diabetic	200	genetic	1079
goldfish	177	rat	919	locust	144	sequence	881	dog	192	exposure	1050
lh	169	tissue	902	song	140	exposure	866	part per million	182	infection	1044
corticosterone	167	site	883	hypoxia	139	behavior	840	hypoxia	165	signal	935
gnrh	160	receptor	864	shrimp	137	receptor	826	venom	141	host	929
bat	155	gene	842	spindle	135	fish	811	pheromone	136	mouse	915
t3	153	growth	839	vitamin	127	mouse	795	song	135	behavior	895
snake	151	release	835	dog	124	signal	784	placenta	134	size	866
insulin	145	behavior	821	tadpole	123	size	756	aphid	132	blood	813
melatonin	138	size	811	earthworm	122	growth	731	influenza	131	extract	786
gaba	131	muscle	811	venom	120	reproductive	707	ca2+	129	dose	760
turtle	129	expression	776	cortisol	120	water	696	nps	125	water	733
deer	127	membrane	764	vole	118	rat	695	melatonin	123	risk	728
hair	125	model	756	aphid	111	genetic	675	wound	120	receptor	726

vole	123	mouse	714	fin	110	host	596	honeybee	115	growth	723
t4	122	plasma	689	seal	109	hormone	596	earthworm	112	vector	721
odor	121	brain	673	mussel	104	feed	595	feather	109	plant	715
interneuron	119	fish	671	e2	95	dose	563	ni	108	dna	711
cortisol	119	production	669	aromatase	94	dna	538	honey	104	insect	709
cadmium	119	sequence	665	deer	93	temperature	536	turtle	101	reproductive	707
pineal	115	human	650	diabetic	81	mass	529	mirnas	101	genus	694
Flower	110	culture	623	gh	77	insect	522	deer	95	parasite	688
ant	110	bind	601	pineal	76	muscle	502	sponge	93	feed	674
spider	108	feed	594	mhc	76	blood	497	shrew	93	liver	658
gh	107	reproductive	580	imprint	74	release	494	locust	92	toxicity	624
squirrel	100	cycle	580	torpor	74	egg	491	shark	90	anti-oxidant	621
mite	99	temperature	561	nh3	74	intection	486	mussel	88	age	608
gth	96	insect	540	mercury	74	liver	480	horse	88	fish	606
bee	96	evolution	530	horse	74	plasma	474	pd	84	serum	593
e2	94	dose	530	goldtish	74	food	466	mhc	83	oxidative stress	585
venom	90	phase	524	gnrh	74	brain	466	autophagy	82	compound	581
song	88	enzyme	519	arsenic	72	phase	461	agnps	82	brain	577
motoneuron	87	antibody	519	squirrel	71	culture	454	schizophrenia	81	larva	562
lectin	84	nucleus	514	shark	71	age	454	ag	81	selection	514
ethanol	84	signal	510	jump	69	sex	453	biofilm	80	mitochondrial	513
pkc	83	acid	510	sleep	68	bird	452	pollen	79	food	511
fish	81	light	504	ar	68	plant	437	curcumin	79	drug	504
shrimp	78	egg	501	silk	67	selection	436	jump	78	temperature	502
cd	76	nerve	492	leptin	67	mrna	427	hiv-1	78	habitat	499
seal	75	embryo	484	hiv-1	67	bind	416	arsenic	77	pathogen	498
mhc	74	secretion	481	queen	65	extract	409	sensillum	76	wild	492
caffeine	72	drosophila	465	maize	64	embryo	409	vole	74	virus	483
imprint	69	larva	449	cotton	64	larva	407	gastric	71	resistance	478
duck	68	medium	448	methylation	63	degrees c	403	salmon	70	bird	469
pollen	65	genetic	447	p53	62	disease	402	goat	70	acid	465
aromatase	65	host	443	crayfish	62	gland	395	rice	69	strain	461
5-ht	65	dna	443	notochord	60	nucleus	389	whale	68	prevalence	457
mercury	64	density	439	lens	59	density	389	scorpion	68	density	453
wheel	62	bird	439	hsp70	59	metabolic	387	lion	66	trait	452
sensillum	61	water	437	eel	58	stress	384	hamster	67	genome	452
interferon- gamma	61	degrees c	435	igf-i	57	energy	373	buffalo	64	egg	450
ache	61	sex	433	diapause	57	breed	373	silk	61	patient	447
histone	60	liver	431	pollen	56	sexual	368	nh3	61	stress	441

Table 2: Text analysis of the top 64 major zoological research topics using the bibliographic information in the database PubMed with the search term "zoology" in title and abstract. From 67.475 hits 5404 were excluded (incomplete database entries, like missing titles). The periods 1918 – 1999, 2000 – 2011 and 2012 – 2017 were analyzed for their most dominant (distinguishing) and minor (less distinguishing) topics in alphabetical order of terms. Terms in italics indicates topics on the molecular level. Terms in bold indicates topics on the whole organism level. n=16222 (1918 - 1999), 22222 (2000 - 2011) and 23627 (2012 - 2017) respectively.

1918 - 1999				2000 - 2011	000 - 2011				2012 - 2017			
Major Topic	# of papers	Minor Topic	# of papers	Major Topic	# of papers	Minor Topic	# of papers	Major Topic	# of papers	Minor Topic	# of papers	
5-ht	65	acid	510	ant	205	activity	1834	Aedes aegyptii	384	acid	465	
ache	61	activity	1973	aphid	111	age	454	ag	81	activity	2219	
ant	110	antibody	519	ar	68	behavior	840	agnps	82	age	608	
aromatase	65	behavior	821	aromatase	94	bind	416	ant	235	anti-oxidant	621	
bat	155	bind	601	arsenic	72	bird	452	aphid	132	behavior	895	
bee	96	bird	439	bat	220	blood	497	arsenic	77	bird	469	
ca2+	606	blood	987	bat	162	brain	466	autophagy	82	blood	813	
cadmium	119	body	1251	ca2+	275	breed	373	bat	268	brain	577	

Citation: Schwerte T (2018) Modern Zoology as a "Classical" Branch of Biology has Developed to Play an Integrative Role with a Focus on the Whole Organism. Res J Zool 1:1.

caffeine	72	brain	673	cortisol	120	cell	2163	bee	234	cell	2152
d	72	cell	2947	cotton	64	concentration	1256	biofilm	80	compound	581
corticosterone	167	concentration	1442	crayfish	62	culture	454	buffalo	64	concentration	1314
ortisol	119		623	deer	93		403	ca2+	129	density	453
	-	culture				degrees c			-		
leer	127	cycle	580	diabetic	81	density	389	curcumin	79	dna	711
luck	68	degrees c	435	diapause	57	disease	402	deer	95	dose	760
e2	94	density	439	dog	124	dna	538	diabetic	200	drug	504
ethanol	84	dna	443	e2	95	dose	563	dog	192	egg	450
iber	667	dose	530	earthworm	122	egg	491	earthworm	112	evolution	1109
ïsh	81	drosophila	465	eel	58	embryo	409	feather	109	exposure	1050
light	207	egg	501	fin	110	energy	373	gastric	71	expression	1574
lower	110	embryo	484	gh	77	evolution	918	goat	70	extract	786
gaba	131	enzyme	519	gnrh	74	exposure	866	hamster	67	feed	674
gh	107	evolution	530	goldtish	74	expression	1246	hiv-1	78	female	1291
gnrh	160	expression	776	hiv-1	67	extract	409	honey	104	fish	606
oldfish	177	feed	594	horse	74	feed	595	honeybee	115	food	511
gth	96	female	1218	hsp70	59	female	1153	horse	88	gene	1873
nair	125	fish	671	hypoxia	139	fish	811	hypoxia	165	genetic	1079
histone	60	gene	842	igf-i	57	food	466	influenza	131	genome	452
ectin	84	genetic	447	imprint	74	gene	1287	jump	78	genus	694
mprint	69	growth	839	jump	69	genetic	675	lion	66	growth	723
nsulin	145	hormone	920	lens	59	-	395	locust	92	habitat	499
	140	nonnone	320	6113	33	gland	393	ιοταδί	32	navidi	+99
nterferon- gamma	61	host	443	leptin	67	growth	731	malaria	498	host	929
nterneuron	119	human	650	locust	144	hormone	596	melatonin	123	infection	1044
h	169	insect	540	maize	64	host	596	mhc	83	insect	709
melatonin	138	larva	449	melatonin	184	insect	522	mirnas	101	larva	562
mercury	64	light	504	mercury	74	intection	486	mosquito	613	liver	658
mhc	74	liver	431	methylation	63	larva	407	mussel	88	male	1442
microtubule	191	male	1237	mhc	76	liver	480	nh3	61	mitochondrial	513
mite	99	medium	448	mite	155	male	1295	ni	108	mouse	915
notoneuron	87	membrane	764	mussel	104	mass	529	nps	125	oxidative stress	585
neuron	1065	model	756	nh3	74	metabolic	387	oocyte	309	parasite	688
odor	121	mouse	714	notochord	60	mouse	795	part per	182	pathogen	498
		mouoo		notoonora		mouoo		million		patriogen	
pocyte	451	muscle	811	oocyte	498	mma	427	pd	84	patient	447
bineal	115	nerve	492	p53	62	muscle	502	pheromone	136	plant	715
okc	83	nucleus	514	pheromone	145	nucleus	389	placenta	134	population	1674
pollen	65	phase	524	pineal	76	phase	461	pollen	79	prevalence	457
orolactin	216	plasma	689	pollen	56	plant	437	rat	1243	protein	1687
seal	75	population	1076	queen	65	plasma	474	rice	69	receptor	726
seed	203	production	669	seal	109	population	1157	salmon	70	reproductive	707
ensillum	61	protein	1546	shark	71	protein	1683	schizophrenia	81	resistance	478
shrimp	78	rat	919	shrimp	137	rat	695	scorpion	68	risk	728
snake	151	rate	1248	silk	67	rate	1258	sensillum	76	selection	514
song	88	receptor	864	sleep	68	receptor	826	shark	90	serum	593
-	445	release	835	song	140	release	494	shrew	90	signal	935
sperm				-						-	
spider	108	reproductive	580	sperm	509 105	reproductive	707	silk	61	size	866
quirrel	100	secretion	481	spider	195	selection	436	snail	246	species	3489
3	153	sequence	665	spindle	135	sequence	881	song	135	strain	461
4	122	sex	433	squirrel	71	sex	453	sperm	371	stress	441
ick	199	signal	510	tadpole	123	sexual	368	sponge	93	temperature	502
urtle	129	site	883	tick	202	signal	784	tick	245	toxicity	624
/enom	90	size	811	torpor	74	size	756	turtle	101	trait	452
/irus	329	species	1751	venom	120	species	2424	venom	141	vector	721
/ole	123	temperature	561	vitamin	127	stress	384	vole	74	virus	483
wheel	62	tissue	902	vole	118	temperature	536	whale	68	water	733
wing	266	water	437	zinc	250	water	696	wound	120	wild	492

Table 3: Text analysis of the top 64 major zoological research topics using the bibliographic information in the database PubMed with the search term "zoology" in title and abstract. From 67.475 hits 5404 were excluded (incomplete database entries, like missing titles). The periods 1918-1999, 2000-2011 and 2012-2017 were analyzed for terms indicating molecular or organism level. n=64.

# of terms	1918-1999	2000-2011	2012-2017
Whole Organism level	24	28	34
Molecular level	40	29	18

to the period of 1918-1999. Although these numbers only represent a superficial analysis, they show the trend that the whole organism level in zoology publications can expect a renaissance. A reason for this may be the fact, that the number of animal models increases (bat, snail, ant, turtle, hamster, earthworm) as well as the number of important animals transferring human diseases (e.g. mosquito) or being of agri-and aquaculture interests (bee, honeybee, salmon/ fish, locust, deer, goat, buffalo) are increasing. The Kroghs Principle (in modern language) "Among the diversity of animal species there will be one ideally suited as an experimental model for any biological problem" [11,12] is still and even more true in the modern world of science.

Conclusion

Zoology as a science has a future. Modern zoology has an important integrative role with a focus on the organism level and a holistic understanding of structures and functions. Besides the molecular level model animals have to be characterized on the whole organism level as well and the question that always has to be kept in mind is "What does it mean to the (whole) animal?"

References

- 1. Coleman W (1977) Biology in the nineteenth century:problems of form, function, and transformation. Cambridge University Press, New York, USA.
- Sapp J (2003) Genesis: the evolution of biology. Oxford University Press, New York, USA.
- 3. Heinze J, Tautz D (2004) Introducing "Frontiers in Zoology". Front Zool 1: 1.
- Koestler A (1972) The case of the midwife toad. Random House, New York, USA.
- Ashby WR (1956) An Introduction To Cybernetics. Chapman & Hall Ltd, New York, USA.
- Bertalanffy LV (1969) General system theory; foundations, development, applications. George Braziller, New York, USA.
- Laubichler M (2005) Systems theoretical organism concepts. Philosophy of Biology-An Introduction. Suhrkamp, Berlin, Germany.
- 8. Weaver W (1970) Molecular biology:origin of the term. Science 170: 581-582.
- Astbury WT (1961) Molecular biology or ultrastructural biology? Nature 190: 1124.
- 10. Albrecht J (1992) Lost overview-Do classical zoology and botany still have a future? The Time, Zeit Online, Hamburg, Germany.
- 11. Krogh A (1929) The Progress of Physiology. Science 70: 200-204.
- 12. Lindstedt S (2014) Krogh 1929 or 'the Krogh principle'. J Exp Biol 217: 1640-1641.

Author Affiliation

Тор

Institute of Zoology, University of Innsbruck, Techniker Str. 25, A-6020 Innsbruck, Austria

Submit your next manuscript and get advantages of SciTechnol submissions

- 80 Journals
- 21 Day rapid review process
- 3000 Editorial team
- 5 Million readers
 More than 5000 facebook
- Quality and quick review processing through Editorial Manager System

Submit your next manuscript at • www.scitechnol.com/submission