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Abstract
For the past 25 years, real time quantitative PCR (qPCR) has been 
the method of choice to measure gene expression in biological 
research and diagnosis using semi-automated data analysis 
methods adapted to low throughput. Recently, modern platforms 
have largely increased the throughput of samples and a single HT-
qPCR experiment can produce up to ten thousand reaction curves, 
requiring full automation. An extensive comparison of these methods 
in this new context has not yet been performed. In consequence, 
the community has not yet named a reference method to analyze 
HT-qPCR data.

In this work, we aim to evaluate and compare available qPCR 
data analysis methods when ported to high throughput. In order 
to perform such comparison on a common ground, we developed 
a preprocessing approach based on the design of a robust high 
throughput fitting to correct bias and baseline prior to further 
quantification of gene expression by individual methods. Using four 
quantitative criteria, we then compared results obtained on high 
throughput experiments using five reference methods designed 
for low throughput qPCR data analysis (Cq, Cy0, logistic5p, LRE, 
LinReg) as well as deep learning.

The advantages and disadvantages of these methods in this new 
context were discussed. While deep learning presents the advantage 
of not requiring any preprocessing steps, we nevertheless conclude 
that Cq, one of the oldest method, because of its simplicity, its 
robustness to dataset variability, and the fact that it doesn’t require 
a large training set, should be preferred over other approaches to 
analyze high throughput qPCR experiments.
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Introduction
Polymerase chain reaction, designed in the mid 80’s in order to 

generate billions of copies from a small DNA sample, is a widely used 
technique with a broad set of applications in biological research and 
medicine [1,2]. Development of real time or quantitative polymerase-
chain-reaction (qPCR) followed in the next decade. This consists of 
monitoring the reaction in real time, thus allowing indirect access 
to the amplification efficiency. Consequently, qPCR significantly 
increased the precision of gene copy quantification [3]. For about ten 
years, the throughput of qPCR that could be performed in parallel has 

also significantly increased. It followed the rise of microfluidic devices 
that allow miniaturization of individual reactions at a nanoliter 
scale [4,5]. In practice, whatever the throughput, qPCR produces 
amplification curves that need to be analyzed and quantified.

To date, numerous data analysis strategies have been proposed in 
order to extract meaningful information from qPCR curves [3,6–9]. 
While absolute quantification is, in theory, an interesting goal, its 
usefulness is questionable in a high throughput context [10]. To our 
understanding, a relative comparison of gene copy between samples 
covers most applications [11]. These methods were notably developed 
in the context of low throughput qPCR experiments, where each 
reaction could still be visually investigated and analysis manually 
curated. As a consequence, they were mostly designed as semi-
automated. However, going from one or a bunch of qPCR curves to 
thousands of them raises concrete issues since manual intervention is 
no longer an option. High throughput qPCR requires analysis to be 
both fully automated and robust. From this point, what existing data 
analysis methods can be ported to high throughput? What method 
performs best when applied to high throughput experiments?

In this work, we conducted an objective comparison of the 
performance of six data analysis methods (Cq, Cy0, logistic 5p, LRE, 
LinReg and deep learning), when applied to the same high throughput 
qPCR data sets designed to this end, where initial gene copy numbers 
were known. In order to perform a relevant comparison focusing only 
on the choice of the data analysis strategy for gene copy comparison, 
we developed a robust preprocessing pipeline that corrected raw data 
prior to execution of data analysis methods per se. Starting from this 
common ground made possible a fair comparison of the quantification 
methods, all other factors being equal. This preprocessing pipeline 
consisted firstly to sort out sigmoid curves that corresponded to 
actual reactions to be analyzed, from flat curves corresponding to 
failed reactions or empty wells, secondly, to perform the same bias 
and baseline corrections on them, and finally, to make both these 
steps robust at high throughput. We subsequently performed data 
analysis and reported the results obtained for each method on two 
plates (with respectively 568 and 894 remaining sigmoid curves) 
using four quantitative criteria. These criteria were all related to the 
final goal of such an experiment: accurately reporting an existing and 
repeatable difference of gene copy number between samples.

Material
Microfluidic Plates Design

Target preparation: Total RNA was extracted (RNeasy Microkit 
Qiagen) from fixed zebrafish (PAXgene Container Qiagen) at the 20 
somite developmental stage. Quality control was conducted from 1 
µL of RNA subjected capillary electrophoresis on nanoRNA chips 
(Bioanalyzer Agilent) and gave an RIN score equal to 9.0. The RT 
reaction was conducted with 1 µL of Sensiscript reverse transcriptase 
from 50 ng total RNA in a total volume of 20 µL, according to the 
supplier’s recommendations (Sensiscript RT Kit, Qiagen).

10 ng of cDNA was amplified in 20 µL final with 10 µL of 2X Gene 
expression Master Mix and 1 µL of each of the 16 Taqman Gene Assay 
(Thermofischer, Table 1) following the supplier’s protocol: 2 min at 
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50°C, 10 min at 95°C then 40 cycles where the samples were subjected 
to 95°C for 15’’ and 60°C for 60’’. The PCR products were purified 
with the PCR-CleanUp kit (macherey-Nagel) and re-purified in 30 
µL of TE buffer. In a final volume of 6 µL, 4 µL of each PCR product 
was added to 1 µL of saline and 1 µL of TOPO vector and incubated 
for 10’ at room temperature (pCR4-TOPO cloning kit, Invitrogen). 
16 aliquots of 50 µL E. coli One Shot TOP10 bacteria (Invitrogen) 
were transformed with 2 µL each of the cloning reactions according 
to the protocol: 10’ at 4°C, 30’’ at 42°C then 2’ at 4°C before being 
supplemented with 250 µL of SOC medium and incubated under 
agitation at 37°C for 1 hour. The bacteria were spread on ampicillin 
LB plates and incubated overnight at 37°C. After colony PCR analysis, 
the 16 positive clones were amplified overnight in 200 mL ampicillin 
LB at 37°C with agitation and the 16 plasmids were extracted and 
purified following the Macherey-Nagel midi prep protocol and 
diluted to 10 ng/µL or 50 ng/µL in low TE.

Specific target preamplification: Each standard pool was used 
for multiplex pre-amplification in a total volume of 5 μL containing 
1 μL of 5X Fluidigm® PreAmp Master Mix, 1.25 μL of each pool 
standard (PS or PC), 1.25 μL of pooled TaqMan® Gene Expression 
assays (Life Technologies, ThermoFisher), with a final concentration 
of each assay (Table 1) of 180nM (0.2X) and 1.5μL of nuclease-free 
water. The samples were subjected to pre-amplification following the 
temperature protocol: 95°C for 2 min, followed by 20 cycles at 95°C 
for 15s and 60°C for 4 min. The pre-amplified targets were diluted 5X 
by adding 20 μL of low TE buffer and stored at -20°C before qPCR.

Conditions: For the considered datasets, each well corresponds 
to the amplification of a given gene in a sample that was diluted 
a given number of times. For convenience, in this manuscript, 
such a particular combination of gene-sample dilution is denoted 
“condition”. Each such condition was replicated six times. 

PS samples: The targets are mixed to form standard pools (Table 
2) at a rate of 5µL each at 50 ng/µL (i.e. 50/16 = 3.125 ng/µL final 
concentration). The standard pools are diluted 10 by 10 from PS1 
to PS11, then loaded onto the plate, either directly orafter 5 pre-
amplification runs (10, 12, 14, 16 or 18 cycles).

PC samples: The same as PS samples except that the initial target 
concentrations are deliberately variable (Table 2). The standard pools 

are diluted from PC1 to PC11 (pool concentration) then loaded onto 
the plate either directly or after pre-amplification.

Plate no. 1: The 16 targets were diluted to 1 ng/µL and then mixed 
at a rate of 5 µL each in a final 80 µL to produce standard pool 1 (PS1) 
representing the most concentrated mixture for each of the targets. 
PS1 was then diluted serially 10 by 10 to PS11. The standard pools 
were loaded in the 96.96 chip (IFC 96, Fluidigm), after being pre-
amplified or not, in order to evaluate the detection limit of the targets 
in the plate. Each condition was replicated six times.

Plate no. 2: As in plate no. 1, the 16 targets were used to produce 
the 11 dilutions of the PS condition. In addition, 11 dilutions were 
used to produce 10 dilutions of the PC condition. Each condition for 
each target was replicated six times.

High Throughput qPCR: Quantitative PCR was performed using 
the high throughput platform BioMark™ HD System and the 96.96 
GE Dynamic Arrays (Fluidigm®). The expression of 96 target genes 
(16 genes x 6 replicates) was quantified in 96 samples by quantitative 
PCR on 96.96 microfluidic chip which contained a non-template 
control (NTC). 6μL of Sample Master Mix (SMM) consisted of 2,7μL 
of each pool standard (PS or PC) or of 5X diluted pre-amplified 
targets, 0.3μL of 20X GE Sample Loading Reagent (Fluidigm) and 3μL 
of TaqMan® Gene Expression PCR Master Mix (Life Technologies, 
ThermoFisher). Each 6μL Master Mix Assay (MMA) consisted of 
4μL of TaqMan® Gene Expression assay 20X (Life Technologies, 
ThermoFisher) and 4μL of 2X Assay Loading Reagent (Fluidigm). 
5μL of each SMM and each MMA premixes were added to the 
dedicated wells. The samples and assays were mixed inside the plate 
using HX IFC controller (Fluidigm). The loaded Dynamic Array was 
transferred to the Biomark™ real-time PCR instrument and subjected 
to PCR experiment (25°C for 30min and 70°C for 60min for thermal 
mix ; 50°C for 2min and 95°C for 10min for hot start ; 40 cycles at 
95°C for 15s and 60°C for 1min). The parameters of the thermocycler 
were set with ROX as passive reference and single probe FAM-MGB 
as fluorescent detector. To determine the quantification cycle Cq, 
data were processed by automatic threshold for each assay, with 
linear derivative baseline correction using BioMark Real-Time PCR 
Analysis Software 4.0.1 (Fluidigm). The quality threshold was set at 
the default setting of 0.65. (Supp. Figure 1 shows) 20 random qPCR 
curves obtained in this way.

Methods
Preprocessing

Flat curve detection. High throughput qPCR datasets often display 
10 to 15% of flat curves meaning that either some genes were absent 
from the assay or their quantity was not substantial enough to rise 
above fluorescence background within the 40 amplification cycles. In 
a regular plate, preamplification is tuned such as to limit this effect. 
In the experiments we performed for this comparison, this ratio was 
higher because we aimed to test for the detection limit. In any case, the 
high throughput context required that the discrimination of flat from 
sigmoid curves be performed in an automated fashion. To do so, we 
sorted the amplification curves by their total amplitude (defined as the 
maximum minus the minimum fluorescent values) and plotted these 
values which displayed a curve (Supp. Figure 1A). We hypothesized 
that the neck between the flat part of the curve on the left and the 
increasing part on the right was the threshold distinguishing flat 
from sigmoid curves. We thus designed a way to identify the optimal 
threshold as a peak by computing the area between the curve and all 

Gene name Ref probe
bactine Dr03432610_m1
Bmp4 Dr03118800_m1

Crabp1a Dr03112659_mH
Cyp26a1 Dr03086662_m1
Delta-C Dr03073935_m1
Delta-D Dr03111905_m1
FGF8a Dr03105657_m1
Her7 Dr03125132_g1

Hoxa1a Dr03138352_g1
Hoxa5a Dr03138353_m1
Hoxb1b Dr03432669_g1
Hoxd4a Dr03432559_m1
Notch1A Dr03112159_m1
Rarab Dr03150327_m1

RPL13a1 Dr03119261_m1
RPL13a2 Dr03119263_m1

Table 1: List of Taqman probes used in the chips.
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Condition 1: PS (pool standard)
Sample Initial concentration (ng/µL) Final concentration (ng/µl)
FgF8a 4960 50

B-actine 7150 50
Hoxb1b 5000 50
Hoxa5a 6940 50
deltaC 7150 50
Hoxd4a 560 50
Cyp26A 51 50
Rpl13A2 967 50
RaraB 3310 50

Hoxa1A 7770 50
Notch1A 1440 50

Her7 54 50
Rpl13A1 4450 50
DeltaD 3780 50
CrABP 58 50
Bmp4 7400 50

Table 2: Initial concentration of the targets (plasmids) used in the study before mixing as pool standards. The PS (pool standard) condition indicates identical starting 
concentrations whereas in the PC (pool concentration) condition the initial targets concentrations are deliberately variable. The first dilution step of the targets and the 
corresponding molecules’ concentration are described respectively to PS and PC initial conditions.

Condition 2: PC (pool concentration)
Sample Initial concentration (ng/µL) Final concentration (ng/µl)
FgF8a 4960 500

B-actine 7150 700
Hoxb1b 5000 500
Hoxa5a 6940 700
deltaC 7150 700
Hoxd4a 560 100
Cyp26A 51 51
Rpl13A2 967 200
RaraB 3310 500

Hoxa1A 7770 100
Notch1A 1440 10

Her7 54 54
Rpl13A1 4450 200
DeltaD 3780 10
CrABP 58 58
Bmp4 7400 1

Molecule/µL in PS

Target initial vector 
size (bp) Insert (bp) Final vector 

size (pb) MW (g/mol) ng/µL µg/µL mol/L Molecule/µL 
PS1

RPL13a1 4000 82 4082 2702284 3.125 3.13E-03 1.16E-09 6.96.E+08
RPL13a2 4000 54 4054 2683748 3.125 3.13E-03 1.16E-09 7.01.E+08
bactine 4000 70 4070 2694340 3.125 3.13E-03 1.16E-09 6.98.E+08
Bmp4 4000 106 4106 2718172 3.125 3.13E-03 1.15E-09 6.92.E+08
CraBP 4000 75 4075 2697650 3.125 3.13E-03 1.16E-09 6.97.E+08

Cyp26a1 4000 88 4088 2706256 3.125 3.13E-03 1.15E-09 6.95.E+08
Delta-C 4000 63 4063 2689706 3.125 3.13E-03 1.16E-09 6.99.E+08
Delta-D 4000 94 4094 2710228 3.125 3.13E-03 1.15E-09 6.94.E+08
FGF8 4000 86 4086 2704932 3.125 3.13E-03 1.16E-09 6.95.E+08
Her7 4000 76 4076 2698312 3.125 3.13E-03 1.16E-09 6.97.E+08

HoxA1a 4000 80 4080 2700960 3.125 3.13E-03 1.16E-09 6.97.E+08
HoxB1b 4000 80 4080 2700960 3.125 3.13E-03 1.16E-09 6.97.E+08
HoxD4 4000 80 4080 2700960 3.125 3.13E-03 1.16E-09 6.97.E+08
HoxA5a 4000 80 4080 2700960 3.125 3.13E-03 1.16E-09 6.97.E+08
Notch1A 4000 74 4074 2696988 3.125 3.13E-03 1.16E-09 6.98.E+08

Rarab 4000 72 4072 2695664 3.125 3.13E-03 1.16E-09 6.98.E+08
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Molecules/µL in PC

Target initial vector 
size (bp) Insert initial vector 

size (bp) MW (g/mol) ng/µL µg/µL mol/L Molecule/µL 
PC1

RPL13a1 4000 82 4082 2702284 12.5 1.25E-02 4.63E-09 2.8.E+09
RPL13a2 4000 54 4054 2683748 12.5 1.25E-02 4.66E-09 2.8.E+09
bactine 4000 70 4070 2694340 43.75 4.38E-02 1.62E-08 9.8.E+09
Bmp4 4000 106 4106 2718172 0.0625 6.25E-05 2.30E-11 1.4.E+07
CraBP 4000 75 4075 2697650 3.625 3.63E-03 1.34E-09 8.1.E+08

Cyp26a1 4000 88 4088 2706256 3.1875 3.19E-03 1.18E-09 7.1.E+08
Delta-C 4000 63 4063 2689706 43.75 4.38E-02 1.63E-08 9.8.E+09
Delta-D 4000 94 4094 2710228 0.625 6.25E-04 2.31E-10 1.4.E+08
FGF8 4000 86 4086 2704932 31.25 3.13E-02 1.16E-08 7.0.E+09
Her7 4000 76 4076 2698312 3.375 3.38E-03 1.25E-09 7.5.E+08

HoxA1a 4000 80 4080 2700960 6.25 6.25E-03 2.31E-09 1.4.E+09
HoxB1b 4000 80 4080 2700960 31.25 3.13E-02 1.16E-08 7.0.E+09
HoxD4 4000 80 4080 2700960 6.25 6.25E-03 2.31E-09 1.4.E+09
HoxA5a 4000 80 4080 2700960 43.75 4.38E-02 1.62E-08 9.8.E+09
Notch1A 4000 74 4074 2696988 0.625 6.25E-04 2.32E-10 1.4.E+08

Rarab 4000 72 4072 2695664 31.25 3.13E-02 1.16E-08 7.0.E+09

possible arcs separated by 10 cycles (this selection was weighted by a 
gaussian distribution centered on the median well, in order to discard 
the irrelevant second peak on the right). This approach enabled us to 
clearly identify the location of a satisfactory threshold discriminating 
flat from sigmoid curves in a robust way (Supp. Figure 1B-C).

Non Linear Baseline Correction: In order to compare all methods 
on a common ground, a preprocessing step was designed to correct 
for baseline fluorescence. Baseline correction, that is correcting the 
observed fluorescence level prior to analysis, is common to most 
described methods in the literature [10]. However, the background 
bias is often considered constant over all cycles of the reaction [6,7,11] 
with several simple approaches to estimate it. The background has 
also been modelled with additional variable components that made 
the correction more precise [10]. Furthermore, as suggested in [10], 
the background should ideally be modeled and corrected individually 
for each curve. It is also the strategy we adopted here to offer a 
dedicated, precise and non-trivial baseline correction. To do so, the 
curves were fitted with Eq.1 where a and b are the two parameters that 
model the background, x is the cycle and Fmin, Fmax, IP and E are the 
usual parameters of the Gompertz equation [12].

( ) ( ) ( )
( )( )( )1

 
E x IPex b

min max minF x a a e F F F e
− × −− ××= − × + − ×× (1)

Once the optimal individual parameters were found,  and  
parameters were used to subtract the background from the fluorescent 
value  at each cycle c according to Eq.2

( )
 

c b
c cF G a a e ×= − − × 				                (2)

This approach produced satisfactory results effectively removing 
a non-linear component, obviously visible on flat curves, but also 
present on all non -flat curves (Supp. Figure 2).

Data Analysis Methods

The goal of this paper is to compare the precision and robustness 
of high throughput qPCR data analysis methods. However, these 
methods were built independently from one another and therefore 
output different types of results that are not directly comparable, as 
the section below describes (Cq, Cy0, F0). In order to obtain a fair 
comparison between methods, we do not directly compare their 

output. Instead, we compare ratios or ranks obtained by applying 
each method on a set of samples. We consider these ratios and ranks 
as providing the ultimate measures of sample comparison, which is 
what interests users in most applications. Below are details on each 
method and their outputs.

Cq Method: In [3,13], a standard curve is used. A standard curve 
is made from a set of qPCR reactions that amplify dilutions of the 
same DNA sample. Theoretically, efficient primers should result in a 
proportional dose-response curve. Thus, the standard curve is a linear 
regression of Cq, the cycle at which the exponential region intersects 
with an arbitrary chosen horizontal line, vs. the theoretical logged N0 
(the actual quantity of gene copy considered as the ground truth). The 
theoretical N0 of any sample can then be assessed from its Cq using 
the standard curve. N0 can thus be computed for each well and their 
ratio or rank used for comparison.

Cy0 Method: In [6], a nonlinear fitting is performed on the 
curves of fluorescence reaction using the Richards equation (Eq.3), 
a five-parameter extension of the logistic growth curve where x 
is the cycle number, F(x) is the fluorescence at cycle x, Fmax, is the 
maximal fluorescence, c is the fractional cycle at the inflexion point 
of the curve, slope is the slope of the curve at c, Fmin, is the minimal 
fluorescence and d represents the Richards coefficient.

( )
  

 

1  

max
mindc x

slope

FF x F

e
 −
 
 

= +
 
 +
 
 

			              (3)

Once the five optimal parameters are obtained by fitting, they are 
then used within Eq.4 to determine the Cy0 value. The Cy0 value is 
the intersection between the x axis and the tangent of the Richards 
curve at the inflection point.

( )0
1 1 1

d
min

y
max

Fd dC c slope ln d slope
d F d

  + +   = + × − × × − ×           
     (4)

Cy0 can thus be computed for each sample and their ratio or rank 
used for comparison.

Logistic 5p Method: In [7], the curves are fitted with a logistic 
(Eq.5) five-parameter equation model in which the fifth parameter 
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f models for a possible asymmetry of the sigmoid (Supp. Figure 3). 
However, both models fail to obtain a reliable F0 by setting x to 
zero in the fitted equation. Instead, the authors used the obtained 
parameters to estimate the efficiency of the reaction at the cycle of 
maximal second derivative using Eq.6. The authors extrapolated the 
value of F0 from an exponential model using these parameters and 
Eq.7.

( )
( )( )( )

  
1

max min
min fslope x IP

F FF x F
e × −

−
= +

+
		             (5)

( )
( )2

2
 

2 1 cpD

F cpD
Eff

F cpD
=

−
				              (6)

( )
0 2

2

2
cpD

cpD

F cpD
F

Eff
= 				               (7)

F0 can thus be computed for each sample and their ratio or rank 
used for comparison.

LRE method. A quantification method, SCF, was proposed by Liu 
and Saint [14] and then revised by Rutledge [8]. It finally became the 
LRE method [11]. In this approach, an estimated F0 is computed at 
each cycle within a window located in the lower amplification region 
of the curve using Eq.8 and Eq.9 :

max
max

EF
E

=
−∆

				                 (8)

( )
0

1  1   1

max

Cmax
max

c

FF
F E
F

=
 

+ − × + 
 

			              (9)

where Emax is the maximum efficiency of the reaction and ΔE its 
decreasing rate. An average F0 can thus be computed for each sample 
and their ratio or rank used for comparison.

Linreg Method: In [9], fluorescent values of a reaction are 
logged and a window of linearity is identified. From this window the 
efficiency and the N0 can be computed. In practice, implementing 
the LinReg method is unstable, since locating the window of linearity 
lacks robustness on real data. Indeed, in practice, despite our effective 
background correction, the second maximum derivative needed for 
this step was not systematically found within the exponential phase 
as expected in principle by the method. Importantly the authors 
acknowledge difficulties in going high throughput: “visual inspection 
of all amplification curves remains necessary in order to identify 
deviating samples that require an individual window or that may have 
to be excluded.” In our hand, full automation of LinReg proved to be 
impossible.

Deep Learning: Since qPCR kinetics seem difficult to fully 
apprehend, we tested a deep learning approach. We used one of 
the two datasets to train and test our model and used the other for 
validation. On each plate, all conditions for 3 genes were left out for 
testing purposes, and all the other conditions were used for training. 
Our deep learning model attempted to regress the logged theoretical 
initial copy number from the 40 fluo values. We used the Keras [15] 
framework and built a small neural network made of 2 hidden layers: 
a convolutional layer of kernel size 5 followed by a fully connected 
layer, in order not to over parameterize the function. We used the 

Adam optimizer, the Mean Squared Error as a loss function and a 
batch size of 128 curves as input. We trained the model over 20.000 
epochs but the loss graph (Supp. Figures 4 and 5) revealed that 2.500 
epochs were sufficient and also more precise in terms of genericity. 
This is thus the trained model we eventually used (Supp. Figure 6). 
With 40 fluorescent values given to this model as input for each 
sample, a predicted copy number can be output and the ratio or rank 
of these values between samples can be used for comparison.

Methods comparison
The datasets we use for comparison consist of two plates. In 

“Plate no. 1”, the initial copy number is only known for a subset of 
wells, whereas in “Plate no. 2”, the initial copy numbers are known 
for every well. Overall, we only used the wells for which the ground 
truth is known and no preamplification steps were performed prior 
plating, in order to limit biases. This sums up to 176 conditions (a 
11-fold dilution of 16 genes) in sextuplicates on “Plate no. 1” and 
352 conditions (a 11-fold dilution of the same 16 genes for PS and 
PC samples) on “Plate no. 2”. After identification and removal of flat 
curves with the approach we described earlier, we only considered 
sigmoidal curves for comparison. For “Plate no. 1”, this selection 
process ended up with 568 usable curves. To consider only robust 
data, we further discarded a few condition sextuplicates when at least 
one of the replicates did not exhibit a sigmoid profile. Overall, we 
retained 534 curves in 89 conditions. For “Plate no.2”, we discarded 
Notch1a gene in all samples and Crabp2a and BMP4 genes in PC 
samples due to uncertainties concerning their theoretical N0. 
Identification and removal of flat curves ended up to 1.120 curves, 
and further discarding all condition replicates when at least one of 
the sextuplicates did not exhibit a sigmoid profile, ended up in 894 
curves in 149 conditions.

In practice, in our experience, replicates are rarely performed 
for high throughput qPCR experiments, as measurements are 
fairly reproducible. In this experiment, we nevertheless performed 
sextuplicates in order to assess variability, to compare methods with 
precision on the one hand, and to estimate the LOD as a function of 
preamplification cycles on the other hand. We compared the methods 
in four different ways in order to better understand the pros and 
cons of each approach in a high throughput setup. When comparing 
methods, the two main aspects we found important to monitor were: 
1) their capacity to properly rank samples, because this is often the 
primary goal of an experiment, and 2) their capacity to retrieve the 
original gene copy log ratio difference between samples, since what 
is being sought is not only the right rank but also the right difference 
between samples. These two aspects were monitored by four metrics 
[16-18].

Metric 1: Absolute Log Ratio Difference Distribution. The 
distribution of absolute difference between the known gene copy 
(theoretical N0) log ratio for two samples S1 and S2 and the log ratio 
of measures between these samples provided by a given method. It 
quantifies the amplitude of the method deviation from the ground 
truth (Figure 2A).

Metric 2: Percentage of Proper Pairwise Ranking. The percent 
of correct ranking of measures between S1 and S2 provided by a given 
method (that is S1 < S2 or S2 < S1) as compared to the known gene 
copy (theoretical N0) rank between two samples S1 and S2. Note that 
the Cq method can return the same (integer) cycle result for different 
samples and since only the expected ranking is considered correct, 
ties are considered wrong. This metric counts the amount of ranking 

https://paperpile.com/c/F5IH9h/KcOQ
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error (Figure  2B) as it is often the primary goal of an experiment: 
evaluating if a gene expression has increased or decreased between 
two conditions. 

Metric 3: Replicates Coefficient of Variation. The coefficient 
of variation is computed from the sextuplicates available for each 
sample. The coefficient of variation is preferred to the standard 
deviation to limit the effect of the amplitude difference between 
output of each method (F0, Cy0, Cq, N0,..). This metric evaluates the 
method reproducibility for the same condition (Figure 2C).

Metric 4: t-test Between Sextuplicates. A t-test between groups 
of sextuplicates for each couple of conditions (Figure 2D). This 
metric encompasses metric 2 and 3 simultaneously by evaluating if 
the variation between replicates is small enough to detect a difference 
in gene copy numbers. The result is considered either correct (i.e. 
significantly different and ranked in the right order), undetermined 
(i.e. not significantly different) or wrong (i.e. significantly different 
but ranked in the wrong order) with an alpha level of 0.05. To obtain 
a closer understanding of how well the method fits, the possible 
comparisons were divided into 3 Groups:

•	 Group 1, “Large differences”: theoretical log ratio greater than 
2 (n=2.391)

•	 Group 2, “Intermediate differences”: theoretical log ratio 
between 0.2 and 2 (n=2.571)

•	 Group 3, “Subtle differences”: theoretical log ratio less than 0.2 
(n=662)

Results
A Robust Curve Fitting Method Adapted to High Through-
put qPCR

In order to compare data analysis approaches, we ought to 
properly fit thousands of samples from our high throughput 
experiments to all parametric models proposed. However, stochastic 
optimization performed automatically for thousands of curves 
necessarily results in numerous fitting failures. This is mainly due 
to the fact that parameter search is often initialized randomly, thus 
far from the global optimum. In order to avoid this, we developed a 
dedicated fitting procedure (Figure 1). Our approach takes advantage 
of the throughput to initialize parameters as closely as possible to 
the best local minima, so as to ensure that the optimization process 
converges toward the global minimum. It relies on the hypothesis 
that the ~10.000 curves of a typical high throughput qPCR plate 
encompass a limited set of shapes that can be roughly described as a 
set of clusters on the parameter space.

As a preprocessing step, initial parameter sets were randomly 
sampled within relevant ranges and the fitting parameters were 
obtained through parallel minimization of the mean square error on a 

Figure 1: (A) A massive parallel regular fitting on a high throughput dataset results in a large fraction of curve fitting failure due to inadequate random initialization 
of the parameters. (B) A subset of curves are randomly fitted and a clustering step identifies k spreaded locations in the parameter space covering close 
approximations of all possible curves. (C) Non random parameter initialization by the k centers results in a robust fitting of all curves.
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random subset of curves (~1.000). As expected, many fitting attempts 
failed in this first trial. However, parameter vectors obtained from the 
successful fits were further normalized and considered in a clustering 
step using a simple k-means. The k classes thus obtained described a 
close approximation of all the possible curves one might encounter 
in such a dataset. The k-centers of these classes could then be used 
as k initial parameter sets to fit all the curves in the dataset with two 
interesting properties. First, k was a small number (typically lower 
than 10) which made tractable the fitting of tens of thousand curves in 
a reasonable time on a regular computer. Secondly, given the clusters 
covered all possible curves, it ensured that at least one of the k-centers 
was already close to a good if not optimal solution. From this point, it 
was then sufficient to attempt k fit initialized by the k-centers on each 
curve and to choose the one minimizing the error among them. In 
practice, it is permitted to obtain an accurate fit for tens of thousands 
of curves in a row without optimizer divergence.

We designed and performed an objective comparison of available 
qPCR data analysis methods when ported to high throughput. 
Importantly, output of the method tested could not be directly 
compared, as they do not carry on the same information. For 
instance, Cq relates directly to the cycle, while F0 produced by LRE 
or the logistic5p is the theoretical estimated fluorescence value at 
cycle 0 that can be transformed into a molecule count through optical 
calibration. Furthermore, deep learning approaches don’t have to use 
this calibration step but do need a large training set with known initial 

amounts to directly produce a molecule count. For these reasons, we 
boil down the comparison to the final outcomes that are expected 
from the analysis of such a high throughput qPCR experiment: Are 
any two samples properly ranked in terms of gene copy number? Is 
the amplitude of the difference between these two values properly 
retrieved? Is the measure robust?

On all of the four metrics (see methods), the Cq method 
performed the best by providing on average the most accurate results, 
with the Cy0 method being almost as good. While depending on a 
training dataset, the deep learning approach also seemed to perform 
well (Figure 2B-D). In all metrics, 5p and LRE are outperformed 
with a lower accuracy on the log ratio compared to the ground 
truth (Figure 2A) and higher replicates coefficient of variation (Fig 
-ure 2C). Note that most methods properly rank 80% of the samples 
because the initial amount of some of these samples is highly different. 
Therefore, in order to distinguish obviously different quantities from 
intermediate amounts and samples displaying subtle differences, we 
split the samples into three groups (Figure 2D). While the Cq method 
performs best on intermediate amounts, Cq, Cy0 and deep learning 
could barely be decided, as they produce errors of different kinds on 
subtle differences of initial gene copy number.

Discussion
To our knowledge, no study currently exists to compare 

qPCR data analysis methods when ported to high throughput. 

Figure 2: Comparison of qPCR data analysis methods when ported to High throughput
Top to bottom and left to right. A) The distribution of the pairwise sample absolute log ratio difference to compare how close/far are the results obtained by a 
given method to the ground truth. (B) Percentage of correct pairwise sample ranking per method. (C) Replicate samples coefficient of variation per method. (D) 
Replicate samples t-test to determine whether the gene/condition sextuplicates pairs are correctly ranked in regard to  the closeness of the initial quantities.
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One reason for this may be that there was no method developed 
for low throughput data that was readily or easily portable to high 
throughput experiments. Indeed, porting low throughput methods to 
high throughput data analysis can encounter several difficulties. For 
instance, if a method used to require a user input for each sample it 
would become a critical issue. This input can take different forms such 
as choosing a threshold, selecting a set of cycles, etc. Among the ones 
we tested, LRE and LinReg methods seemed to be the one that suffers 
automation the most. In the case of LinReg, we simply didn’t succeed 
to port it to high throughput. As for LRE, the authors acknowledged 
that a user intervention might be needed to choose the starting point 
of the linear window to consider to regress efficiency. In the original 
paper, the author suggests choosing it within the lower region of the 
amplification profile, an instruction not straightforward to automate. 
In a further revision. Rutledge proposed choosing the cycle where 
fluorescence reaches half of its maximum, acknowledging that it is 
suboptimal and could be refined by hand if desired. In our hand, we 
weren’t able to automatically find a “universal” starting point that was 
fully satisfactory for all curves and thus producing the output accuracy 
claimed at low throughput by the authors. Actually, this choice has an 
important impact on the computation of efficiency and thus on the 
F0 value. In the same way, for the logistic5p method, we encountered 
two issues. In the log-logistic equation Eq.5 was preferred over the 
logistic, but we had to use the latter, because the parameter sensitivity 
of the former induced a large number of fitting divergence, despite the 
robust fitting method we proposed. Moreover, in our case, we derived 
the second derivative from the fitted model, rather than the raw data 
as specified in the original paper, so as to avoid the plateau effect and 
make the measure more robust, for otherwise many curves would 
not have produced a relevant value. Overall, all methods required 
an adaptation to be ported to high throughput without which they 
couldn’t have been tested.

Whatever the method used, background removal had to be 
performed and it looked like the unexplained background signal 
didn’t display a unique pattern. This sort of bias is related to factors 
such as the chemistry and device used or the batch. It does however 
seem reasonable to deal with background removal in a data analysis 
in an independent fashion. We choose to make it independent of 
the quantification method itself but it could be interesting to merge 
both steps. For instance we observed that the deep learning approach 
performed almost as well without background correction because 
these factors were also learnt and cancelled out by the model.

The literature and most of the methods presented here consider 
efficiency as being a parameter that can be defined, extracted and used 
to estimate the number of copies in the original sample. However, 
its definition itself is debated: some as in LRE consider that this 
efficiency varies over time, others consider that the efficiency is fixed 
per gene, per condition or per reaction... It thus makes sense that its 
computation has divided the community for a long time. Each of the 
Logistic5p and LRE methods suggests a way to compute the efficiency 
to obtain the F0 value. In our hand, because it is ill-defined and 
variable, we found that its determination was very sensitive and led to 
errors that were especially obvious on the metric 1 (Figue 2A). Overall, 
we concluded that the efficiency is sample and cycle dependent and 
that it didn’t make things easier to attempt to explicitly evaluate it in 
order to reach the final objective: comparing samples.

Overall, Cq and Cy0 methods seem to be the most accurate 
methods. However, in practice, Cy0 method is very easy to set 
up. This modified standard curve-based method does not require 

assumption of uniform reaction efficiency between curves, does 
not involve any choice of threshold level by the user and does not 
imply any reference gene. It’s perfectly adapted to automated high 
throughput data analysis since it’s based on a fitting and computation 
on the optimal fitting parameters. Though it is not the method that 
provides the best results, it doesn’t show any particular weakness over 
the 3 first metrics (Figure 2A-C). Regarding the 4th (Figure 2D), most 
complete one, it shows a remarkably low undetermined rate, though, 
as for all methods, on the group 3 comparisons, it has almost as much 
wrong results as correct ones.

The different methods were compared using two datasets we 
produced from the same machine and chemistry but with a three-
year shift and done by two different people. It makes a reasonable 
dataset with thousands of samples but some of the conclusions we 
draw here could be challenged with additional datasets produced on 
other platforms. For instance, some methods could be more adapted 
to a specific chemistry. For example, Rutledge acknowledges that 
the LRE method was not extensively tested on TaqMan. In order 
to improve both the method and the comparison, we provide the 
scientific community with the code of the methods and our datasets 
with the known initial molecule amount per well.

The robust fitting method we propose requires three input 
parameters: the number of curves randomly selected to determine 
a relevant set of initial fitting parameters (in practice a thousand), 
the number of fitting trials for each of these curves (in practice a 
hundred) and, finally, the number of clusters designating the number of 
initial parameter sets (in practice a dozen), or equivalently the number 
of different curve types we roughly expect. In practice, the results were 
robust to the variation of these parameters on our own datasets with all 
nine thousand curves of a plate being always successfully fitted. Therefore, 
we anticipate that the approach should remain robust when applied to 
other datasets because of its core principle: it scans all possible curve 
shapes, identifies their parameters and uses them as initial parameters 
to subsequently fit all the curves of a plate. Beyond HT-qPCR, the fitting 
protocol presented here could be directly applied to other types of 
applications whenever high throughput fitting is required.

An advantage of the deep learning approach we observed was 
that it did not require the background removal preprocessing step. 
Indeed, not using it didn’t degrade the results significantly. However, 
we had expected that deep learning could decipher qPCR hidden 
features better than the regular methods. Our finding is that qPCR 
sigmoid curves exhibit a rather simple model that doesn’t need a 
very sophisticated neural network to be captured since for each 
curvethe cycle values are highly correlated. In effect, the spectrum 
of the possible functions that relate cycle value to fluorescence is 
rather narrow. In practice, the deep learning model we created and 
trained ended up not being very deep since increasing the amount of 
parameters simply led to overfitting. Furthermore, we were limited 
to performing a training on the data available to us for which we 
had designed a way to produce ground truth, but a well known 
weakness of machine learning is that it depends on a training dataset 
that necessarily includes bias. Therefore, we cannot assume that the 
training we perform could be used as such to evaluate data obtained 
from another experimentalist, from another device and/or another 
chemistry. We could even hypothesize that it would yield poor results.

Conclusion
Altogether, we presented an objective quantitative comparison 

of data analysis methods for high throughput qPCR data. 6 methods 
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were compared (Cq, Cy0, logistic5p, LRE, LinReg and deep learning) 
using four metrics on two high throughput datasets with known 
ground truth. The results indicate that LinReg could not be ported to 
high throughput and that logistic5p and LRE produced less accurate 
results than Cq, Cy0 and deep learning. Among these last three, the 
simplest method, Cq, was also slightly more accurate at retrieving the 
actual difference between samples. We therefore conclude that Cq 
should be preferred over more complex methods for high throughput 
qPCR data analyses.
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