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Abstract 
It is well known that myocardium fails to regenerate due to the lack 
of adult cardiomyocyte proliferation. In this regard, a lot of methods 
for cardiogenic differentiation of different cells are currently 
developed to provide an alternative source of functionally active 
cardiomyocytes, including embryonic stem cells, cardiac stem 
cells, induced pluripotent stem cells and fibroblasts. However, the 
approaches available show quite a poor result in the efficiency as 
well as estimation criteria of cardiac differentiation. Many studies are 
intended to reveal the fundamental mechanisms of cardiogenesis 
to mimic them in vitro, but significant advances in studying of 
intracellular signaling pathways during heart development are 
insufficient to produce high efficient methods. Extracellular matrix 
is another component which is becoming acknowledged as a 
key player in heart differentiation. However, investigation of its 
spatiotemporal effects on cardiomyocyte maturation is limited due 
to the challenges in cell-matrix handling within the heart tissue. We 
consider that cardiomyocyte primary culture may be a good model 
for studying the role of extracellular matrix in cardiogenesis, being 
an easy to manipulate homogenous culture of cardiomyocytes, 
which synchronically follow rearrangements similar to their 
embryonic developmental stages. The better understanding of the 
cell-matrix interactions underlying cardiomyocyte maturation may 
bring researchers closer to the efficient cardiogenic differentiation.
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Introduction
The myocardium fails to regenerate due to the lack of adult 

cardiomyocyte (CM) proliferation. In mammals, most of the 
damages to the heart after myocardial infarction, ischemia, viral 
infection or other pathological conditions lead to a significant loss 
of cell mass, which is replaced by scar tissue [1]. In cardiogenesis 
CMs potently proliferate, but sometime after birth they undergo 
terminal differentiation accompanied by their permanent cell cycle 
exit. Postnatal CMs become highly organized postmitotic cells with 
further growth being associated with hypertrophy [2-6]. Most adult 
CMs do not divide, but there is still evidence that a small amount of 
postnatal CMs can enter mitosis. However, cell divisions were shown 
to occur rarely in the normal adult heart (about 1% per year) [7], 
which cannot contribute significantly to cardiac regeneration [2,3]. 

In turn, some researchers suggest self-renewal of the heart with the 
endogenous precursors of CMs referred to as cardiac stem cells [8]. 
These cells were identified by the various cell surface markers, such 
as c-kit and SCA-1 [9]. Cardiac stem cells were described as self-
renewing, clonogenic and multipotent cells able to differentiate into 
all types of cardiac tissue cells and to express antigens and markers of 
stem cells and endothelial progenitor cells [10]. Some data described 
isolated cardiac stem cells to differentiate and restore heart function 
when transplanted into the   damage area [11,12]. However, much 
fewer data can confirm their existence in vivo. To date, the functional 
role of endogenous stem cells in the heart has not been established. 
The analysis by direct labeling of endogenous c-kit cardiac stem cells 
in vivo showed their negligible percentage in adult myocardium even 
after injury [13]. Overall, although there are likely to be some cells 
in the heart tissue that have a limited potential to differentiate into 
cardiovascular cells when isolated and propagated ex vivo, there is no 
reliable evidence of their role in normal heart homeostasis as well as 
post-injury regeneration. Similarly, despite the data indicating the 
presence of mitotically active CMs in the adult mammalian hearts, 
the percentage of these cells is too small to compensate for the cell 
death caused by the disease [2,3]. In this regard, a huge amount of 
research is aimed to differentiate various cells towards CMs to obtain 
an alternative source of functionally active myocytes.

Methods for Cardiogenic Differentiation of Stem Cells
Different cell types are being used in the in vitro CM differentiation 

methods, including embryonic stem cells (ESCs), induced pluripotent 
stem cells (iPSCs), mesenchymal stem cells (MSCs) and endothelial 
progenitor cells [14-17]. Since adult stem cells show poor potential to 
produce CMs [18], the main source of differentiated CMs are ESCs 
and iPSCs. ESCs are derived from the inner blastocyst cell mass at 
the early stages of embryogenesis. These cells preserve the ability 
to differentiate in any direction. It has long been known that CMs 
can be obtained by spontaneous differentiation of mouse ESCs in 
suspension culture [19]. However, such approach of non-targeted 
CMs differentiation is little effective and leads to the production of 
not more than 1% of CMs [20]. Some investigators have modified 
this method by the centrifugation step in percoll gradient providing 
up to 70% contracting embryonic bodies [21]. However, they might 
contain non-beating cells and the percentage of contracting CMs in 
different culture areas might vary significantly. Another method of 
ESC coculturing with mouse endoderm-like cells END-2 [22] based 
on the action of END-2-produced signaling molecules also resulted in 
a small amount of CMs (typically about 1%) [23].

More effecient methods are based on the targeted differentiation. 
Such methods typically recapitulate the stages of normal heart 
embryogenesis and the factors implicated therein. Particularly, in 
embryogenesis, the successive stages of CMs differentiation depend 
on the Nodal, bone morphogenetic protein (BMP), Wnt/β-catenin, 
fibroblast growth factor [24], and retinoic acid signal pathways [25]. 
Various methods of directed stem cell differentiation towards CMs 
include manipulating of the Nodal/activin and BMP4 [26] and the 
Wnt/β-catenin signal pathways [27–29]. Yang and co-authors [28] 
developed a more efficient protocol for the differentiation of human 
ESCs, including the sequential stimulation of the Nodal/activin, 
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BMP4, and Wnt signaling pathways as the cells undergo certain 
differentiation stages. This method resulted in about 40% CMs of 
the total cell population [28]. The use of alternative low molecular 
compounds to simulate signaling pathways described above was also 
proposed [30-32]. Despite some advantages in ESC differentiation 
towards CMs, such methods are still of low efficiency (about 1% to 
40% of the total cell population [28,20]) and show different line to 
line results. Moreover, as for the regenerative medicine the use of 
ESC-derived CMs is limited by their potential immunogenicity when 
administered in vivo, as well as ethical implications [33].

The development of CM differentiation methods from the 
induced PSCs (iPSCs) circumvented the above problems. iPSCs 
are produced by inducing a pluripotent state in mature somatic 
mammalian cells with a set of transcription factors [34]. iPSCs were 
first described in 2006, when the Yamanaka group [34] converted 
adult mouse fibroblasts to iPSCs by retroviral delivery of transcription 
factors Oct4, Sox2, c-Myc and Klf4 (known as Yamanaka factors). iPSCs 
were shown to be similar to ESCs in morphology and gene expression 
[34], including the expression of pluripotent markers and the ability to 
differentiate into three germ layers [35-38]. Different researchers have 
shown that iPSC can differentiate towards CMs, with the properties 
of iPSC-derived cells being comparable with those of the ESC-derived 
CMs [39]. To improve the efficiency of directed cardiac differentiation of 
iPSCs, various cytokines, growth factors and low molecular compounds 
affecting signaling pathways involved in the heart development have 
been used [40]. Such compounds include ascorbic acid [41-42], retinoic 
acid [43], pluripotin [44], 5-azacytidine [45], and DMSO [46].

Transdifferentiation Method
Of great importance were the studies showing that mature 

mammal somatic cells can be converted into functionally active 
mature cells of another type by transdifferentiation [47]. These 
data disclosed high plasticity of terminal differentiated cells and 
offered new approaches in studying the mechanisms underlying 
cell specialization in development [48]. The method of somatic cells 
transdifferentiation into CMs includes several approaches, the first 
being associated with the induction of CMs-specific transcription 
factors overexpression. In 2010, Ieda and colleagues [49] have shown 
that the introduction of transcription factors Gata4, Mefc2, and 
Tbx5 (GMT) into murine cardiac and dermal fibroblasts resulted 
in the conversion of 20% cells into induced cardiomyocyte-like 
cells (iCMs) with the expression of cardiospecific proteins after 
3 days in culture [49,50]. Similar results were obtained by other 
researchers using similar sets of reprogramming factors [51-53]. In 
these cells, activation of cardiac α-myosin heavy chain (αMHC) and 
cardiac troponin T (cTnT1) genes was observed, as well as increased 
expression of other cardiospecific proteins such as cardiac α-actin 
and α-actinin-2. The percentage of cells with the activated αMHC 
promoter was 20% of the total fibroblast population, whereas the 
percentage of cells expressing cTnT was only 6% [49]. Most cells with 
active αMHC showed sarcomeric structures containing α-actinin. 
However, the authors generally described transdifferentiated CMs 
as “partially reprogrammed”. These cells were similar to neonatal 
CMs in gene expression profile and electrophysiological indexes. 
Thus, the differentiation efficiency remained rather low. In addition, 
these methods were characterized by low reproducibility [54,55]. The 
method introducing GMT transcriptional factors in stoichiometric 
amounts appeared to be more efficient [56]. Using a combination of 
5 cardiac transcription factors GMT, Hand2, and Nkx2.5 (GMTHN) 
also resulted in more efficient reprogramming of murine fibroblasts. 

However, even in this case, most of the in vitro differentiated cells were 
only partially reprogrammed CMs with only few cells developing into 
contracting CMs [51,57-59]. Other combinations of transcription 
factors were shown to activate many cardiac genes in fibroblasts, but 
did not result in contracting CMs [52-54, 60,61]. 

The second approach relates to the delivery of microRNAs (miRNA), 
which play an important role in heart development. The miRNA-
mediated conversion of mouse fibroblasts into CMs was first described by 
Jayawardena and colleagues [62] using a combination of 4 miRNAs (miR-
1, -133, -208 and -499) known to be expressed in CMs and involved in 
heart development and function [63-67]. In the reprogrammed cells, CM 
markers and sarcomere organization of the contractile apparatus were 
detected along with mechanical contractions of the cells. An additional 
step of culture treatment with Janus kinase (JAK) inhibitor increased the 
efficiency of mouse fibroblasts transformation into CM-like cells in vitro 
[62]. However, although the cells differentiated with such a method were 
stained for CMs markers, including MHC, cardiac troponin I (TNNI3), 
and α-actinin, spontaneous contractions were observed in only 1 to 2% 
of the cells [62]. 

Other approach called the “epigenetic instability” combines 
several methods described previously. It is based on the induction 
of the intermediate pluripotency state in fibroblasts followed by the 
directed differentiation towards CMs [68]. This method involves 
overexpression of transcription factors used for iPSC production 
(Oct4, Sox2 and Klf4) in embryonic fibroblasts followed by their 
treatment with the low molecular JAK inhibitors and subsequent 
cultivation in cardiogenic medium with BMP4 [68,69]. Differentiated 
cells were stained for CMs markers, such as cTnT (approximately 40% 
of cells), myosin heavy chain and α-actinin. Interestingly, in these 
cells only the atrial isotype of the myosin light chain (MLC-2α) was 
detected, which indicates subtype specialization of CMs obtained. In 
some colonies, contractions were observed [68,69]. 

Limitations of the Cardiogenic Differentiation 
Methods

In spite of the advances achieved in cardiogenic differentiation, 
the current methods have a number of limitations associated with the 
immature phenotype of the resulting cells and their heterogeneity.

To date, all available protocols for cardiogenic differentiation of 
stem cells result in a mixture of different CM subtypes, i.e. ventricular, 
atrial and conducting CMs (see, for example, [70-73]). Although the 
percentage of ventricular CMs increases over time [74,75], general 
heterogeneity of the population makes it difficult to use these cells 
for in vitro studies, and leads to a pro-arrhythmogenic effect when 
administered in vivo [76,77]. To address this challenge, various 
growth factors have been used, regulating specialization of CM 
subtypes. Such factors include, for example, neuregulin stimulating 
maturation of ventricular CMs [72].

For iPSCs or iCMs, the population heterogeneity is complicated 
by epigenetic modifications that can limit the potential of these 
cells to differentiate towards CMs. For example, mouse iPSCs at 
the early passages retain some epigenetic modifications of the cells 
from which they were derived. Such iPSCs differ in their ability to 
differentiate [78] resulting in a culture containing both CMs and 
undifferentiated cells, which limits its in vitro application and can lead 
to a tumorigenity when administered in vivo. Thus, a homogeneous 
culture of differentiated CMs or at least a well characterized combined 
culture of different cardiac cells is still elusive.
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Another significant limitation is that most CMs derived from 
stem cells, as well as produced by transdifferentiation, have a so-called 
“immature phenotype”, i.e. differ from CMs of adult myocardium. 
At the early stages, stem cell-derived CMs are much smaller in size 
and exhibit characteristics of embryonic CMs, such as amorphous 
form and short, poorly organized sarcomeres [79-82]. In addition, 
the pattern of gene expression in these cells corresponds to the 
stages of the embryonic development of the heart [20,83]. Although 
differentiated CMs were shown to increase in size and acquire a 
more typical morphology [80,82,84] and a more mature contractile 
apparatus with time [74-75,80], even at the late stages of cultivation 
(about 180 days in culture) these cells do not correspond to adult 
CMs in electrophysiology and gene expression [85]. Some data 
indicate a decreased mass of mitochondria in stem cell-derived CMs 
and the absence of T-tubules [86-88]. Similarly, the cells produced by 
transdifferentiation do not correspond to adult CMs in morphology, 
gene expression profile, and electrophysiological indices, and are 
generally referred to as “CM-like cells” [54,89]. 

Another challenge is the ambiguous interpretation of CMs 
differentiation results. Despite the “mature” and “immature” CMs 
phenotype referred to in many studies, conventional markers 
for identifying differentiated CMs, as well as the status of their 
maturation, are absent [49,90-92]. Although a large number of 
cardiospecific proteins with characteristic expression patterns in 
cardiogenesis are widely used by researchers to identify differentiated 
CMs, many of them tend to alter in stress or pathological conditions 
[93]. For example, the α-myosin heavy chain gene is highly specific for 
CMs, however, in heart disease, myosin isoform pattern changes [94]. 
Heart failure activates genes specific for embryonic development, 
such as atrial natriuretic factor, βMHC and skeletal actin genes 
[93,95]. In this regard, the results obtained with such unstable 
markers should be interpreted with caution [96]. Another widely 
used marker for cardiomyocyte differentiation is cardiac troponin 
T (cTnT) [97]. However, the expression of cTnT has also been 
shown in other cells, such as smooth muscle cells [98], which 
limits its use as a CMs marker. 

Bedada et al. offered the ratio of cardiac troponin I isoforms as 
a valuable marker of CM maturation status [93]. In the mammalian 
heart, there are two troponin I (TnI) isoforms, encoded by two 
different genes and sequentially expressed in the development 
[94,99]. The slow skeletal troponin I (ssTnI) TNNI1 gene is expressed 
in sarcomeres of embryonic CMs. At the late stages of embryonic 
development and/or at the early stages of postnatal development, 
its expression is suppressed, and the TNNI3 gene of adult cardiac 
troponin I (cTnI) is up-regulated. Thus, in the adult myocardium, 
only the cTnI protein is detected with the absence of ssTnI [94,99]. 
Importantly, stress and pathological conditions do not influence 
the dynamics of ssTnI and cTnI isoforms expression [94,100,101], 
in contrast to reversible markers of cardiomyocyte differentiation, 
commonly used by the researchers [95]. The analysis of the ssTnI 
and cTnI isoforms ratio showed that the expression of troponin I 
isoforms in murine ESC-derived CMs was similar to the pattern of 
their expression in vivo. However, in the case of human iPSC-derived 
cells, CM maturation was significantly delayed compared to normal 
cardiac development [83], with the cTnI being only 2% of total 
troponin I even by 9.5 months in culture [83].

Thus, although many authors refer to the high yield of CMs 
obtained with differentiation approaches, the methods for evaluating 
of CM differentiation status are generally ambiguous, and the 

actual percentage of the functionally active CMs is much lower. For 
example, the authors describing the cultures containing 82% to 95% 
CMs identified differentiated cells by the expression of cardiospecific 
transcription factors and cardiac troponin T staining. However, study 
results indicate that contractions were observed only in some areas of 
the culture [31]. In another study, despite the various cardiospecific 
markers detected, the contracting CMs were completely absent 
from the culture [89]. One more research described spontaneous 
contractions only in 1% to 2% of the cell population, whereas such 
markers as MHC, cardiac troponin I (TNNI3) and α-actinin were 
detected in a significantly larger cell percentage [62].

Extracellular Matrix in CM Differentiation
Despite a lot of efforts targeting cardiogenic conversion of different 

cells, the use of differentiated CMs is still limited due to the lack of a 
standard method providing for a homogeneous culture of mature, 
functionally active cardiac cells. Therefore many studies are intended 
to reveal the key mechanisms of the in vivo CM differentiation to 
mimic them in vitro. Despite significant advances in studying of 
intracellular signaling pathways during heart development, much less 
is known about the role of extracellular matrix (ECM) in cardiogenesis. 
This gap in our knowledge is likely to be accounted for the difficulties 
associated with the in vivo investigation of cell-matrix interactions in 
heart tissue. At the same time, heart ECM is emerging as a powerful 
regulator of migration, proliferation and differentiation of cardiac 
cells [102]. It should be noted that some methods include ECM as 
a scaffold to enhance differentiation of different cells towards CMs. 
For example, commercial matrixes Matrigel and Geltrex have been 
demonstrated to support the early cardiac program in direct cardiac 
reprogramming methods [68]. Recent study has shown that biological 
cardiac matrix facilitated sarcomere alignment in human iPSC-CMs 
[83]. Moreover, a fibroblast-derived ECM called cardiogel was shown 
to improve maturation of mouse ESC-derived cardiomyocytes [103]. 
Native ECM, obtained by heart decellularization, was also described 
to maintain the differentiated state of iPSC-CMs and their capability 
of forming tissue segments [104]. Besides its supplementary role some 
studies indicate the direct matrix influence on cardiac differentiation 
in the absence of other stimulating factors. Bone-marrow-derived 
stem cells from adult mice grown on cardiogel showed increased 
cardiomyogenic differentiation without specific chemical induction 
[105]. Interestingly, some authors credit several effects of chemical 
cardiogenic factors not with their direct action, but with their 
stimulation of matrix components production. For example, several 
groups have suggested that ascorbic acid enhances differentiation of 
ESCs and iPSCs into cardiomyocytes through induction of collagen 
synthesis [106,107]. Some data indicate ECM identity to be important 
for CMs differentiation. The expression of cardiac myosin heavy 
chain (cMHC) and cardiac troponin I (cTnI) in murine ESC-derived 
CMs was high in cells cultured on the heart ECM compared to those 
cultured on the liver ECM [108]. MSC-derived cardiomyocyte-like 
cells showed enhanced expression of cardiospecific markers GATA4 
and Nkx2.5 when cultured on a collagen V as compared to a collagen 
I matrix [109]. According to another study fibrin gels supported 
cardiac differentiation in cardiac reprogramming method, whereas 
Matrigel and collagen I gels were poorly efficient [107]. Besides the 
ECM identity, its mechanical properties have been implicated in cell 
fate directing [110,111]. ECM density and/or stiffness was shown 
to regulate embryonic and neonatal cardiomyocyte structure and 
function [112,113] as well as early embryonic or embryonic stem-cell 
derived cardiomyocyte differentiation [114-117]. 
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In spite of the fact that current approaches using ECM show 
better results, they still fail to provide an appropriate culture of 
functioning CMs. Matrix involvement in CMs differentiation appears 
to be much more complicated in embryonic heart tissue than is 
achieved by the crude differentiation methods using different ECM 
scaffolds. The data from the last decade have shown that myocardium 
ECM is finely regulated dynamic system and is capable of fast 
reacting to the alterations in heart load. Some authors have shown 
that ECM composition and distribution alters during cardiogenesis 
and these alterations may be crucial for cell differentiation process 
[118-120]. Moreover, the matrix stiffness was also shown to alter in 
cardiogenesis with the cardiac tissue becoming less compliant during 
development [117]. 

Interactions between cells and ECM are provided by integrin 
receptors, which are transmembrane heterodimers connected with 
the ECM components by their extracellular domain and with cell 
contractile structures via intracellular domain. Therefore integrins 
are able to transmit mechanical signals from ECM to the anchored 
cells and transfer them into the intracellular stimuli [121,122]. This 
process is known as mechanotransduction, which differs from those 
involved in adhesion [123]. Some studies imply that neonatal and 
adult myocytes have different integrin receptors suggesting that 
integrin expression is developmentally regulated [112]. Therefore 
complex interactions between the ECM molecular composition 
and the integrins expression patterns are likely to coregulate 
contractile apparatus remodeling during cardiac development with 
spatiotemporal control [112]. 

To improve differentiation of different cells towards CMs the 
ECM dynamics involved in cardiogenesis are to be extensively 
studied and strongly considered in method developing. Due to the 
challenges with the in vivo estimation of cell-matrix interactions, to 
discover the chronological relationship between the matrix changes 
and contractile apparatus maturation during heart development a 
good in vitro model is needed. 

CMC in Primary Culture
It is well known that neonatal as well as adult CMs are readily 

transferred to the culture system resulting in a homogenous culture 
of functionally active CMs. However, CMs in long-term culture were 
shown to undergo reversible rearrangements of their contractile 
apparatus with conversion of typical myofibrils into the structures 
of non-muscle type and the loss of contractility [124-127]. These 
rearrangements are accompanied by the transient expression of 
α-smooth muscle actin in CMs, which is normally restricted to 
vascular smooth muscle cells and myofibroblasts. Interestingly, the 
following recovery of CM myofibrillar apparatus and contractile 
activity occurs with new myofibrils formation and re-expression of 
cardiac actin [128-130]. Similar actin isoform switch is well described 
in early cardiogenesis, as well as during stem cell differentiation 
towards cardiomyocytes [131,132], where α-smooth muscle actin is 
transiently expressed and replaced by sarcomeric actin isoforms as 
development proceeds [125,133-136]. 

These data allow us to consider the rearrangements observed 
in CM primary culture as dedifferentiation process followed by the 
maturation from embryonic to adult CM phenotype. 

Previously we have shown that dynamics of CMs contractile 
apparatus in primary culture are strongly dependent on the ECM 
[127]. Our recent data indicate that rearrangements of contractile 

apparatus are accompanied by ECM synthesis by CMs themselves 
[127,130]. Significantly, the ECM accumulation goes along 
with α-smooth muscle actin downregulation and precedes the 
upregulation of α-cardiac actin expression and myofibrillar apparatus 
assembly, suggesting the feedback loop between the ECM dynamics 
and contractile apparatus maturation in the cultivated CMs [130]. 

In the light of these data, we suggest that CM primary culture can 
be a good model for studying the ECM involvement in cardiogenesis, 
being a homogeneous culture of CMs, which synchronically 
undergo rearrangements corresponding to the stages of embryonic 
development. 

In conclusion, the differentiation of different cells towards CMs 
is significant and promising trend. However, current methods are 
still of low efficiency. Meanwhile, the important role of ECM in 
the heart development is becoming apparent through the last 
decade offering a new approach to optimize cardiac differentiation 
methods via matrix cues. Better understanding of the cell-matrix 
interactions underlying CM maturation may allow for the 
management of this process and bring researchers closer to the 
efficient CM differentiation.
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