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Introduction
Forest biomass is a major store of carbon, and plays an important 

role in the carbon cycle. Since the net carbon flux of the forest and 
the magnitude of carbon loss and uptake are determined by the 
rate of biomass change (reduction or accumulation) at fine spatial 
and temporal scales, only satellite data can adequately capture its 
dynamics over larger areas [1,2]. 

The Landsat program has experienced seven successful missions 
that have contributed to an unprecedented more than 4 decades’ 
(1972-) record of Earth Observations that capture global land 
conditions and dynamics. Incremental improvements in imaging 
capabilities continue to improve the quality of Landsat science data, 
while ensuring continuity over the full instrument record [3]. The 
longstanding Landsat program goal has been to acquire, archive, 
and distribute repetitive global multi-spectral imagery of the Earth’s 
land surfaces at a scale where natural and human-induced changes 
can be detected, characterized, and monitored over time [4]. Global 
30 m observations have been provided by the Landsat 5 Thematic 
Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 
and Landsat 8 Operational Land Imager (OLI) from 1984 to present. 
The free Landsat data policy opens a new era for mapping land cover 
changes [5]. The NASA funded Web Enabled Landsat (WELD) 
project has demonstrated the capability to generate near-continental 
scale Landsat composited mosaics with a weekly, monthly, seasonal 
and annual reporting frequency [6]. 

Forests are a comparatively easy cover type to map as well as a 
current focus of environmental monitoring concerning the global 
carbon cycle and biodiversity loss. Remote sensing is widely used 
to acquire information on forest biomass and its dynamics. Here, 
we aim to review the opportunities and methods of mapping forest 
carbon stock and its annual increment using Landsat data.

Discussion 
Accurate forest carbon sequestration assessment requires 

estimation of both forest biomass and forest biomass dynamics over 
time. There is close relation between forest aboveground biomass 
(AGB) and total biomass or total carbon stock [7]. Numerous 
studies showed that forest AGB could be successfully mapped from 
multi-spectral satellite images. Landsat data may be most suitable 
for estimation of forest carbon stock and also its annual increment, 
because it provides a balance between the requirements for localized 
high-spatial resolution studies and global monitoring [8]. 

Forest biomass mapping using Landsat multispectral data

Woody biomass is a significant indicator of carbon storage for 
woody vegetation, which is a part of the terrestrial carbon cycle. 
Remote sensing of biomass predominantly depends on empirical 
models because there is no direct physical links between biomass and 
the canopy reflected radiance in optical spectral regions [9]. However, 
some forests’ structural parameters, sensitive to spectral reflectance 
or vegetation indices, are related to biomass allometrically [10,11,12]. 
Some literatures showed the significant relationship between forest 
AGB and spectral reflectances in shortwave infrared (SWIR) band 
[13] near-infrared (NIR) band [14,15], vegetation indices [16]. 

Regression approaches have been widely applied for prediction of 
aboveground forest biomass [9]. Foody et al. [17] found that multiple 
regressions with raw Landsat bands explained at least as much, and 
generally more of the variation in tropical forest biomass as did 
derived vegetation indices in three different sites in Brazil, Malaysia 
and Thailand, and the strongest relationships between the biomass 
predicted and that measured from field survey was obtained with a 
neural network (r>0.71). In Yellowstone National Park, Jakubauskas 
and Price [18] found that multiple regression models of biomass from 
spectral indices did not significantly improve predictions of AGB over 
models using only Landsat bands. In contrast, many other studies 
reported improved estimates of forest AGB using vegetation indices 
[16,19]. Due et al [16] investigated the performance of different 
Landsat bands and vegetation indices for Moso bamboo AGB, and 
they found other vegetable indices such as Perpendicular Vegetation 
Index (PVI), Enhanced Vegetation Index (EVI), and Soil Adjust 
Vegetation Index (SAVI) are better than the Normalized Difference 
Vegetation Index (NDVI). These AGB estimate methods were also 
applied for large area forest region, and linked to the inventory 
data with a significant correlation coefficient of 0.41. For example, 
Tomppo et al. [20] combined Landsat-TM data and IRS-1C Wide 
Field Sensor (WiFS) data, together with field data of National Forest 
Inventories (NFIs) to map forest AGB in Finnish, with a mean relative 
RMSE value of 61%, which varied with different species from 58.3% 
to 128.5%. Gallaun et al. [21] combined national forest inventory data 
and Moderate Resolution Imaging Spectroradiometer (MODIS) data to 
produce pan-European maps of growing stock and above-ground woody 
biomass, with a mean absolute error of 25 m³/ha for coniferous, 20 m³/
ha for broadleaved and 25 m³/ha for total growing stock. Labrecque et 
al. [22] found that AGB estimates for hardwood forests were strongly 
related to stand age and near-infrared reflectance (R2=0.95) while 
the AGB for pine forests was strongly related to the corrected NDVI 
(R2=0.86) in northern Wisconsin, USA. Although numerous studies 



Citation: Liu L (2016) Opportunities of Mapping Forest Carbon Stock and its Annual Increment Using Landsat Time-Series Data. Geoinfor Geostat: An 
Overview 4:4.

• Page 2 of 4 •Volume 4 • Issue 4 • 1000151

doi: 10.4172/2327-4581.1000151

Semi-arid ecosystems also significantly contribute to interannual 
variability of the global carbon cycle. Poulter et al. [34] find that 
the global carbon sink anomaly was driven by growth of semi-arid 
vegetation in the Southern Hemisphere. For open forest in such 
semi-arid area, such as woodland, savanna, and shrubland with 
high heterogeneity, the influence of underlying background (soil 
and herbaceous vegetation) on the remote sensing signals would 
influence the estimation ability of optical data for biomass mapping. 
Numerous studies showed that woody cover was significant variable 
for estimating woody above-ground biomass [34,35] .Wang et al. [27] 
designed a linear spectral mixture analysis to estimate the woody 
cover for Landsat imagery, and they found that woody cover from 
multi-temporal Landsat data was much more suitable for estimating 
woody AGB than the than traditional reflectance or vegetation indices 
for this arid region covered with low-cover shrubs.

Forest changes mapping using Landsat time-series data

Human-induced or natural forest changes, such as reforestation, 
deforestation, fire, also represent major sinks and sources of CO2 and 
other greenhouse gases. Landsat data provide a unique data source 
for reconstructing forest change history at regional or global scale. 
Time-series analysis to determine forest change are preferred, as 
applications based on two-dates or multi-dates of Landsat images 
may be strongly affected by phenology differences and bidirectional 
reflectance distribution function effects [36]. 

The availability of dense time series of Landsat images provides 
a chance to reconstruct forest disturbance and change history with 
higher temporal resolution (such as 1 year) and higher precision. 
Both continuous and subtle (associated with afforestation, forest 
degradation, recovery) as well as discontinuous and sudden (e.g., 
clear-cuts) forest change phenomena can be assessed, quantified, 
and monitored using time series of remote sensing data [37,38]. For 
example, Lehmann et al. [39] used time-series Landsat imagery from 
1972–2013 to identify changes in forest extent and trend respectively 
for the Australian continent at multiple epochs for the purpose of 
estimating forest changes associated with carbon accounting. A 
vegetation change tracking algorithm was presented by Huang 
et al. [40,41,42] to detect forest changes from a time-series 
of Landsat images. Li et al. [43] analyzed the forest change 
patterns in Mississippi during the time period 1987–2005 from 
132 Landsat TM and ETM+ scenes using a vegetation change 
tracker (VCT) algorithm and revealed a gradually decelerating 
forest fragmentation during the time period 1987–1993 and 
an accelerating fragmentation during the period 1994–2005. 
Other application of VCT included that in Alabama, USA [43]; 
Mississippi [44]; eastern United States [40]. 

In the semi-arid and sparsely forested regions strongly influenced 
by human activities, forest change mapping, especially afforestation, 
may be more challenging. Liu et al. [31] developed a vegetation 
change tracking method to reconstruct the forest change history 
(afforestation and deforestation) from the time-series Landsat GSR 
images based on the integrated forest z-score (IFZ) model by Huang 
et al. [40], which was improved by multi-phenological IFZ models and 
the smoothing processing of IFZ data for afforestation mapping. The 
mapping result showed a large increase in the extent of forest, from 
380,394 ha (14.8 % of total district area) in 1974 to 1,128,380 ha (43.9 
%) in 2010. Their results confirmed a great achievement of the ecological 
revegetation projects in Yulin district, a key region of the Three-North 
Shelter Forest Program (TNSFP), over the last 40 years [31].

showed that forest AGB were retrieved from spectral reflectance or 
vegetation indices with varying degrees of success, there were always 
big problems in transferring predictive relations over space or time. The 
relative contribution of different Landsat TM wavebands or vegetation 
indices to predictive relations differed between sites, years and seasons, 
and the accuracy of predictive relations declined when they were applied 
to a region other than that upon which they had been developed, or to 
other seasons [17,19].

However, complex forest stand structures and biophysical 
environments often result in a major source of uncertainty in 
biomass estimation, especially for dense forest [23,24,25]. In mature 
forest, aboveground biomass and vegetation density may vary greatly 
depending on soil conditions, species, and local topography. The 
Landsat spectral signatures cannot effectively reflect the biomass 
differences between distinct mature forest sites although their biomass 
amounts vary significantly. The texture information calculated from 
Landsat data may be related to tree height and canopy diameter [26]. 
Lu and his colleagues found that the combination of spectral response 
and textural signals could effectively improve biomass estimation 
performance, especially in the areas with complex forest stand 
structures [23,27]. And they also showed that most textures derived 
from Landsat data are weakly correlated with successional forest 
biomass, while Landsat spectral signatures are significantly correlated 
with successional forest biomass.

Mapping tree heights with multi-spectral imagery is a relatively 
new application and is dependent on integrating synoptic coverage 
optical data with samples of height data, often from LiDAR-derived 
reference data. Although optical data are considered to be sensitive 
to forest cover properties in the horizontal plane and relatively 
insensitive to vertical structure, there is a growing literature on 
integrating samples of LiDAR data with synoptic optical data coverage 
[28]. Tyukavina et al. [29] employed annual Landsat 7 growing 
season composite images and height data from the Geoscience Laser 
Altimeter System (GLAS) to estimate pan-tropical forest height [28]; 
improved upon the Landsat inputs, moving from a single growing 
season composite to a set of multi-temporal metrics derived from 
Landsat 7 and 8 data, and they reported an overall mean absolute 
error (MAE) for tree height estimation of 2.45 m.

Exploiting both the temporal and spectral information domains 
offers the possibility of use of Landsat in the characterization of forest 
vertical structure and biomass. Recently, some studies showed the 
potential of time-series satellite images for forest AGB mapping. 
Andersen et al. [30] indicated that spectral trajectories developed from 
a time series of Landsat TM imagery can be used to accurately predict 
various inventory parameters, including biomass. Main-Knorn et al. 
used the LandTrendr algorithm to detect and describe biomass trends 
with near-annual time-series data, and produced yearly biomass 
maps based on the spectral empirical model validated by field data. 
Liu et al. [31] developed a method to retrieve tree age of planted forest 
from the Landsat time-series stacks in the last forty years, and the 
validation result showed to be consistent with the surveyed tree ages, 
with a RMSE value of 4.32 years and a determination coefficient (R²) 
of 0.824. Then, Liu et al. [32] presented an AGB regression model by 
integrating vegetation indices and tree age, and the forest AGB model 
was significantly improved with an R² values from 0.50 to 0.727. Both 
the forest biomass and its annual increment were mapped based on the 
yearly ground surface images and afforestation age information, and a 
noticeable carbon increment for the planted artificial forest was observed 
with an annual rate of about 1 t/ha over the last four decades [32].
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Conclusion 
Forest ecosystem plays a complex role in regulating our climate, 

and there is great global interest in quantifying forest changes and 
the associated interchange between atmospheric and terrestrial 
carbon pools. Landsat time-series multi-spectral data provide 
valuable opportunities for mapping of forest dynamic, including 
forest biomass and forest changes. Numerous studies clearly show 
that both forest biomass and its annual increments can be mapped by 
the spectral, spatial and temporal information from the time-series 
Landsat dat.
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