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Abstract
The combined effect of heat and mass transfer on the peristaltic 
flow of fourth grade fluid in a non-uniform channel has been 
investigated. Flow analysis has been carried out in the presence of 
an induced magnetic field. The governing flow equations have been 
transformed in a wave frame. The arising equations have been 
solved for the stream function, pressure gradient, temperature, 
concentration, magnetic force function, induced magnetic field and 
current density. The role of embedded parameters is displayed and 
discussed.
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Introduction
The study of peristaltic mechanism has become popular among 

the researchers during the last four decades. This is because of its wide 
ranging industrial and physiological applications. In physiological 
processes it is used by the body to propel or mix the contents of the 
tube, for instance, in gastrointestinal tract, ureter, the bile duct, and 
other glandular ducts. Industrial use of peristaltic pumping in finger 
and roller pumps is quite obvious. Engineers adopted this processes 
to pump corrosive materials and fluids that must be kept away from 
pumping machinery. Further the transport of toxic liquid is met by the 
nuclear industry so as to not contaminate the environment [1]. Since 
the seminal work of Latham [2] several theoretical and experimental 
investigations have been carried out in order to understand the 
peristaltic flows of hydrodynamic fluids under varied assumptions 
of long wavelength, low Reynolds number, small wave amplitude 
etc.  Although the literature on the topic is extensive but few recent 
investigations can be mentioned by the studies [3-10].

The peristaltic flows in the presence of magnetic field have also 
been examined. Agrawal and Anwaruddin [11] have studied the 
peristaltic flow of a blood under long wavelength and low Reynolds 
number assumption. Kothandapani and Srinivas [12] reported the 
peristaltic transport of a magnetohydrodynamic (MHD) Jeffrey 
fluid under the effect of magnetic field in an asymmetric channel. 
Mekheimer [13,14] and Hayat et al. [15] discussed the peristaltic flows 
of couple stress, micropolar and third grade fluids in the presence 

of an induced magnetic field. Elmaboud [16] analyzed the induced 
magnetic field effect on the peristaltic flow in an annulus. Since most 
of the ducts in physiology are non-uniform so Pandey and Chaube 
[17] studied the peristaltic transport of a viscoelastic fluid in a tube of 
non-uniform cross section. Mekheimer [18] reported peristaltic flow 
of blood under effect of magnetic field in a non-uniform channel.

The interaction of peristalsis with heat and mass transfer is an 
important topic which has been given little attention so far. Srinivas 
et al. [19] investigated mixed convective peristaltic transport in an 
asymmetric channel. Srinivas and Muthuraj [20] presented peristaltic 
transport of a non-Newtonian fluid with chemical reaction and space 
porosity. Hayat et al. [21] discussed the role of heat transfer on the 
MHD peristaltic flow in a porous space. Kothandapani and Srinivas 
[22] have studied the influence of wall properties in the MHD 
peristaltic transport with heat transfer and porous medium. Ogulu 
[23] studied heat and mass transport of blood in a single lymphatic 
blood vessel with uniform magnetic field. Mekheimer and elmaboud 
[24] had reported the influence of heat transfer and magnetic field 
on peristaltic transport of Newtonian fluid in a vertical annulus. The 
influence of wall properties on the MHD peristaltic flow of a Maxwell 
fluid with heat and mass transfer in a symmetric channel has been 
investigated by Hayat and Hina.

The purpose of present research is to discuss the simultaneous 
effects of an induced magnetic field and heat and mass transfer on 
the peristaltic flow of a fourth grade fluid in a non-uniform channel. 
The considered fluid can predict the shear thinning/shear thickening 
effects. To the best of our knowledge, this problem has not been 
investigated yet. The paper is arranged as follows. Sections two and 
three provide the mathematical formulation and perturbed solution of 
the problem. Graphical discussion is presented in section four while 
the concluding remarks are given in section 5.

Formulation
An incompressible magneto hydrodynamic (MHD) fourth grade 

fluid in a non-uniform channel is considered. X  Axis is chosen in 
the direction of wave propagation and Y  transverse to it. A constant 
magnetic field of strength H0 acts in the transverse direction which 
results in an induced magnetic field ( ) ( )( ), , , , , ,0 .h X Y t h X Y tx yH  The 

total magnetic field is ( ) ( ), , , , , ,0 .0h X Y t H h X Y tx y
 
 
 

+ +H  The following 
expression describes the geometry of the channel wall

( ) ( )2( , ) sinh X t a x b X ctπ
λ

 
 
 

= + −                                                      (1)

With 

( ) .0 1a x a a x= +

Here a0 is half width at any inlet, ( )11a <<  is constant, λ is the 
wavelength, a indicates the channel half width at any axial distance x , b 
the wave amplitude, c the wave speed and t the time.

In fixed frame the fundamental equations governing the flow are

V∇ ⋅ 0=                                           		                                (2)
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                                              (3)

2 . ,
dT

C Tp dt
ρ κ= ∇ + T L                                                                     (4)

2 2 ,
DKdC TD C T

dt Tm
= ∇ + ∇                           		                 (5)

( ) 1 2d
dt ς

+ + += ∇× × + ∇H V H H                      		                 (6)

in which eς σµ=  is the magnetic diffusivity, Cp the specific heat, 
T the temperature, D the coefficient of mass diffusivity, Tm the mean 
temperature, KT the thermal diffusion ratio,C the concentration, K the 
thermal conductivity and the Cauchy stress tensor T  and extra stress 
tensor S  are

),p= − +T I S  					                  (7)

( ) ( ) )
( ) ( ) ( ) )

( ) ( ){ } )

2S = A + A + A + A + A A + A A + trA A + A1 1 2 2 1 1 3 2 2 1 1 2 3 2 1 1 4

2 2 2+ A A + A A + A + A A + A A + trA A +52 3 1 1 3 3 2 4 2 1 1 2 2 2

2trA A + trA + tr A A A ,76 2 1 3 8 2 1 1

µ α α β β β γ

γ γ γ γ

γ γ γ

 (8)

( ) ( )TdAnA = + A gradV + gradV A , n >1,n n-1 n-1dt
    	                (9)

( ) ( )TA = gradV + gradV ,1




              		             	               (10)

Where ( ) ( )1,2 , 1 3i ji jα β ′
= = −  and ( )l =1-8lγ  are the material 

constants, An  the Rivilin-Ericksen tensors, /d dt  the material 
derivative, µ the viscosity, λr the trace, T in the superscript is the 
matrix transpose, p the pressure and I  the  identity tensor. The 
velocity V  for two-dimensional flow is of the form 

[ ( , , ), ( , , ),0]U X Y t V X Y t=V              			                 (11)

And the Maxwell’s relations are                         

0, 0,∇ ⋅E H∇ ⋅ = =              			             (12)

, ,e t
µ ∂

∂
HE H J∇ × = − ∇ × =         		           (13)

( )( )eσ µ+ ×J E V H=                      			             (14)

in which , , ,eµ σJ E  and H represent the electric current density, the 
magnetic permeability, the electrical conductivity, the electric field 
and the magnetic field respectively. 

The relations between the fixed frame ( ),X Y  and wave frame 
( ),x y  can be written as 

,            ,
( , ) ,              ( , ) .

x X ct y Y
u x y U c v x y V

= − =

= − =
		              (15)

Here ( ,U V ) and ( ,u v ) depict the velocity components in the 
fixed and wave frames respectively. The two-dimensional equations 
in the wave frame are

0,u v
x y

∂ ∂+ =
∂ ∂

 					                 (16)

2
,02

+c +c h h hSp S Hxyxx e x x xu v u h h He x yx y y x x y yx x

µ
ρ µ

+ ∂ ∂ ∂∂∂ ∂ ∂ ∂ ∂
+ + = + − + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂

             
    (17)

2
+c ,02

h h hS Sp Hyx yy y y yeu v v h h He x yx y y y x y yy x

µ
ρ µ

+ ∂ ∂ ∂∂ ∂∂ ∂ ∂ ∂
+ + = + − + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂

                
    (18)

2 2
+c ,2 2

T T u v u v
C u v T S S Sp xx yy xyx y x y y xx y

ρ κ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ = + + + + +
∂ ∂ ∂ ∂ ∂ ∂∂ ∂

    
        

    (19)

2 2 2 2
+c 2 2 2 2

DKC C T TTu v C D
x y Tx y x ym

∂ ∂ ∂ ∂ ∂ ∂
+ = + + +

∂ ∂ ∂ ∂ ∂ ∂

    
         

  	            (20)

We set the dimensionless quantities as

( )

( ) ( )

( )

2
2 20, , , , Re , 1,2

0 0
3

0 0,  for , 1,2,3 , , 1 8 ,3
0

0 0 1Re , , , , , ,0
0 0 0

2
1

, , Re , ,22 0

a p cx y ct ix y t p M S R im ia c a

ca a Sij u kS i j u kij kc c a

ca H aveR a c S v mm e c H a c a

H T TEeh h p p Emx y y x cHc e

α
λ

λ λ λµ µ

γ
δ η

λ µ µ

ρ µ ϕ
σµ ϕ

µ ρ

µ
ϕ ϕ δ γ

µρ

= = = = = = =

= = = = = = −

= = = = = =

+ −−
= = − = + = =

( )

0 ,
0

2
0Pr , , 1,2,3 .

0 0

T

cC C Cp j jjC a

βµ
ξ

κ µ

−
= Ω = = =

 (21)

In above definitions , , Re, ,P R Sr mδ  and M denote the Prandtl, 
wave, Reynolds, magnetic Reynolds, Stommer’s and Hartman 
numbers respectively and the total pressure pm is sum of ordinary 
and magnetic pressures, E the electric field strength, m the non-
uniformity parameter, γ the temperature, Ω the concentration and φ 
the magnetic force function. Further T0 and C0 denote the temperature 
and concentration at y=h. 

Equation (1) in dimensionless form reduces to

( )1 sin 2 ,
0

hh mx x
a

α π= = + +     			                (22)

In which the amplitude ratio α is equal to b/a0. 

Putting

, , ,u v h hx yy x y x
ϕ ϕδ δ∂Ψ ∂Ψ ∂ ∂= = − = = −

∂ ∂ ∂ ∂
   		               (23)

Equations (2) automatically satisfied and equations (3-20) can be 
easily arranged as

2Re Re

22Re ,2

Sp S xym xx S
y x x y y x x y y x x y y

S
y

ϕ ϕ ϕδ δ δ

ϕ

   
   
   

∂∂ ∂∂Ψ ∂ ∂Ψ ∂ ∂Ψ ∂ ∂ ∂ ∂ ∂− + = + + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂+
∂

 (24)

2Re

23 2 2 2Re Re ,

pm
y x x y x y

S Syx yy S S
x y y x x y x x y

δ

ϕ ϕ ϕ ϕδ δ δ δ

 
 
 

   
       

∂∂Ψ ∂ ∂Ψ ∂ ∂Ψ− +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (25)

( )
2 2 22Re 1 2 2

2 21 2 ,2 2Pr

E S S Sxx yy xyy x x y x y y x

x y

δ γ δ δ

δ γ

               
 
 
 
 

∂Ψ ∂ ∂Ψ ∂ ∂ Ψ ∂ Ψ ∂ Ψ− = − + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂+ +
∂ ∂

 (26)

2 2 2 21 2 2Re ,2 2 2 2Sry x x y Sc x y x y
δ δ δ γ

                  

∂Ψ ∂ ∂Ψ ∂ ∂ ∂ ∂ ∂− − Ω = + Ω + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (27)

2 21 2 ,2 2E y y x x y Rm x y
ϕ ϕδ δ ϕ

          

∂Ψ ∂Ψ ∂ ∂Ψ ∂ ∂ ∂= − − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

                         (28)

Where, the subscripts depict the partial differentiation. Adopting 
the long wavelength and low Reynolds number procedure we obtain
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22Re ,2
Sp xy S

x y y
ϕ∂∂ ∂= +

∂ ∂ ∂
      			              (29)

0,p
y

∂ =
∂                     				               (30)

2 21 0,12 2Pr
E Sxy

y y
γ∂ ∂ Ψ+ =

∂ ∂
      			               (31)

2 21 0,2 2Sr
Sc y y

γ∂ Ω ∂+ =
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            			              (32)

21
2E

y R ym
ϕ∂Ψ ∂= +

∂ ∂
              			              (33)

With the subjected boundary conditions
2

0, 0, 0    0,2

, 1, 0     ,

0, 0, 0,

0, 0,                     ,

at y
yy

F at y h
y

at y
y y

at y h

ϕ

ϕ

γ

γ

∂ Ψ ∂Ψ = = = =
∂∂

∂ΨΨ = = − = =
∂

∂ ∂Ω= = =
∂ ∂

= Ω = =

                         (34)

where ( )p p y≠  and F is the dimensionless time mean flow rate in the 
wave frame which can be related to dimensionless time mean flow 
rate θ in the laboratory frame by 1,Fθ = +  

.0
hF dy

y
∂Ψ= ∫ ∂                                  			               (35)

From Equation (8) (29) and (30) we obtain 
22 21 2 2

p M Eyyx y yy

                    

∂ ∂ ∂ Ψ ∂Ψ= Ψ + Γ + −
∂ ∂ ∂∂

    		              (36)

34 2 2 222 0,4 2 2 2M
y y y y

 
 
 
 

∂ Ψ ∂ ∂ Ψ ∂ Ψ+ Γ − =
∂ ∂ ∂ ∂

             		              (37)

Where 2 3ξ ξΓ = +  is used for the Deborah number.

Perturbation Solution Writing
.....0 1

.....0 1
.....0 1
.....0 1
.....0 1

.....0 1

F F F

p p p

ϕ ϕ ϕ

γ γ γ

Ψ = Ψ + ΓΨ +

= + Γ +

= + Γ +

= + Γ +

= + Γ +

Ω = Ω + ΓΩ +

				                       (38-43)

And inserting into Equations (31, 32, 34, 36, and 37) we get the 
zero and first order systems. Solving the resulting zero and first order 
systems one obtains

( ) ( )( ) ( )

( ) ( )( ) ( )

0 cosh 4 sinh 4 126
4 4 70 cosh 4 sinh 4 ,8120 2

B
My My C y

M

B M
My My C yiM i

ψ




 
 
     

= −

+Γ − ∑
=

                    (44)

( ) ( ) ( )( )( ) )
( )

( )

2 1 cosh 2 sinh 2 10
33 6 30 ,

120 1

dp B M FM Mh Mh F
dx

B M F h
L yjj

  

 
 
 
   

= − − + +

+
+Γ ∑

=

(45)

( ) ( )( ) ( )

( )
( ) ( )( ) ( )

cosh sinh 12
43 5 60 cosh 4 sinh 4 ,

480 2

Rm My My B y
M

R M B F hm My My B ykk

ϕ 



 
 
 
   

= −

+
+Γ − ∑

=

(46)
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18000 2

My My A y

BrM B F h
My My A yll

γ 

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 
 
 
  

= −

+
+Γ − ∑

=

(47)

( ) ( )( ) ( )

( )
( ) ( )( ) ( )

1 cosh 2 sinh 2 94
46 4 160 cosh 5 sinh 5

18000 9

My My A y

BrM B F h
My My A yll





 
 
 
  

Ω = −

+
+Γ − ∑

=

(48)

Where the values of the involved ( 1 16), ( 0 6), ( 1 7)A l B k C iil k= − = − = −  
and ( 1 3)L jj = −  can be given through algebraic computations and 

0 1F F F= − Γ  has been used in the above expressions. To save space we 
avoid to present the values of Al, Bk, Ci and Lj here.

The definitions of dimensionless axial induced magnetic field hx, 
current density Jz and  pressure rise ∆Pλ are 

hx y
ϕ∂=

∂                    				                 (49)

hxJz y
∂

= −
∂

                  				                (50)

1
0 0

dpP dx
dx yλ

 
 
 

∆ = ∫
=

             			               (51)

Graphical Results and Discussion
In this section we present the effects of various parameters (i.e., 

material parameter Γ non-uniformity parameter m, Hartman number 
M, Brinkman number Br and Schmidt number Sc) on the temperature 
γ, current density Jz, axial induced magnetic field hx pressure gradient 
dp/dx pressure rise ∆Pλ and axial velocity µ. Hence Figures 1-6 have 
been displayed.

Pumping characteristics

Figures 1a and 1b presents the axial pressure gradient dp/dx with 
x when different values of Γ and m are accounted. It is seen in Fig. 
1a that amplitude of dp/dx decreases with an increase in Γ. Figure 1b 
elucidates that dp/dx for a divergent channel (m>0) is higher when 
compared to uniform channel (m=0) On the other hand dp/dx is 
lowest for a convergent channel (m<0). 

The pressure rise ∆Pλ against the flow rate θ is sketched in Figure 
2a, 2b. Pumping action divides the region into four sections: Pumping 
region ( )0, 0p θλ∆ > >  augmented pumping ( )0, 0p θλ∆ < >  retrograde 
pumping ( 0, 0)p θλ∆ > < and free pumping ( )0pλ∆ = . 

The pressure rise ∆Pλ for different values of Γ is shown in Figure 
2a. It is noticed that pumping rate decreases by increasing Γ however 
for certain values of flow rate the pumping curves coincide which 
indicate that there is no difference between the Newtonian and fourth 
grade fluids. The pressure rise ∆Pλ for convergent channel is also 
larger in magnitude when compared with the straight and divergent 
channels (Figure 2b).
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Flow characteristics

The performed analysis shows that axial velocity at the wall 
( )( ) 1u y h= = − satisfies the no -slip boundary condition for all values 
of the parameters. The parametric presentation near the channel walls 
is different from the behavior at the center of channel. The velocity µ 
for different values of Γ is shown in Figure 3a. We observed that the 
velocity profile increases with an increase in Γ. Figure 3b illustrates the 
effects of m on u. Velocity for divergent channel is larger in magnitude 
in comparison to the straight and convergent channels at y=0. 

Magnetic field characteristics

The axial induced magnetic field hx and the current density 
distribution Jz across the channel for various values of Γ and m are 

displayed in the Figures 4a and 4b) and Figures 5a and 5b respectively. 
The prominent features of induced magnetic field are as follows. 
In the half region of the channel, the induced magnetic field is in 
one direction whereas it is in the opposite direction in the other 
half region. It is zero at y=0 which is compatible with the imposed 
boundary condition.

Figure 4a indicates the variation of axial induced magnetic field hx 
against γ for the various values of Γ. It is found that magnitude of hx 
increases with Γ. Figure 4b Depicts that an induced magnetic field hx 
for divergent channel is largest in magnitude.

We have constructed Figures 5a and 5b just to see the variation 
of current density distribution Jz within γ for the different values of Γ 

Figure 1b: The pressure gradient dp/dx versus x for α=0.2, T=0.01, M=2.0, 
E=1 and θ= -1.1. 

Figure 2a: The pressure rise ∆Pλ versus flow rate θ for m=0.1, α=0.2, 
M=1.5, and E=1. 

Figure 2b: The pressure rise ∆Pλ versus flow rate θ for M=1.5, α=0.2, 
T=0.001and E=1.

Figure 3a: The axial velocity u for x=0.2, m=0.1, α=0.2, θ=2.3 and M=2.

Figure 3b: The axial velocity u for T=0.001, M=2, α=0.2, θ=2.2 and 
x=0.2.

Figure 1a: The pressure gradient dp/dx versus x for α=0.1, M=2.5, m=0.1, 
E=1 and θ=1.2. 
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and m Obviously the graphs of current density are parabolic in nature. 
Behavior of parameters at the center of channel is quite different from 
near the walls of channel.

The current density distribution Jz within γ for various values of Γ 
have been plotted in Figure 5a. It is observed that magnitude of Jz decreases 
when Γ increases at the Centre of channel while it increases range of y 
near the channel walls. The behavior of Jz against γ for the different values 
of m is shown in Figure 5b. This Fig. depicts that magnitude of Jz increases 
as we move from convergent to divergent channel at y=0. 

Temperature characteristics

Here we analyze the salient features of Γ,M,m and Br on 
temperature distribution. Keeping such in mind, Figures 6a-6d have 

Figure 4a: The axial induced magnetic field hx versus y for M=4.5, θ=3.5, 
X=0.2, α=0.2, Rm=1, m=0.1 and E=1.

 Figure 4b: The axial induced magnetic field hx versus y for M=1.5, 
θ=2.5, X=0.2, α=0.2, Rm=1, T=0.1 and E=1.

Figure 5a: Current density Jz versus y for M=1.5, θ=1.2, x=0.2, m=0.1, 
α=0.8, Rm=0.1 and E=1.

Figure 5b: Current density Jz versus y for T=0.001, θ=2.5, x=0.2, M=0.1, 
α=0.2, Rm=1 and E=6.

Figure 6a: The temperature distribution ϒ versus y for M=1.5, θ=3, 
x=0.1, α=0.2, m=0.1 and Br=0.2.

Figure 6b: The temperature distribution ϒ versus y for T=0.01, θ=1, 
x=0.1, α=0.6, m=0.1 and Br=0.2.

been sketched. Clearly the temperature distribution is an increasing 
function of Γand Br. Hartman number M has an increasing effect on γ 
when y=0. However γ decreases near the walls of channel (Figure 6b). 
Figure 6c elucidates that the temperature for a convergent channel 
(m<0) is lower when compared with uniform channel (m<0). The 
temperature distribution is highest for a divergent channel (m<0).

Concentration characteristics

The variation of concentration field Ω with y for various values 
of Γ,M,m and Br and Sc are discussed in this section. It is worth 
noting that concentration profiles show quite opposite behavior than 
temperature distribution. Concentration field is a decreasing function 
of Γ Br and Sc (Figures 7a, 7d and 7e). It is clear from Figure 7b that 
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Hartman number M has direct proportionality with concentration 
field at y=0. However, the situation is quite opposite near the walls. 
Figure 7c indicates concentration field is highest for the convergent 
channel in comparison to straight and divergent channels.

Concluding Remarks
The peristaltic flow of fourth grade fluid has been examined in 

a non-uniform channel. Analysis is presented when an induced 
magnetic field, heat, and mass transfer effects have been accorded. 
The main observations have been summarized below.

•	 Both pressure gradient and pressure rise are smaller for the 
divergent channel (m>0).

Figure 6c: The temperature distribution ϒ versus y for α=0.6, T=0.01, 
θ=1.5, x=0.1, M=3.5 and Br=0.1.

Figure 6d: The temperature distribution ϒ versus y for T=0.01, θ=1.5, 
x=0.1, α=0.6, M=2. 

Figure 7a: The concentration distribution Ω versus y for T=0.01, θ=1.5, 
x=0.1, α=0.6, M=2.

 Figure 7b: The concentration distribution Ω versus y for T=0.01, θ=1.5, 
x=0.1, α=0.6, M=2.

Figure 7c: The concentration distribution Ω versus y for T=0.01, θ=1.5, 
x=0.1, α=0.6, M=2.

Figure 7d: The concentration distribution Ω versus y for T=0.01, θ=1.5, 
x=0.1, α=0.6, M=2.

Figure 7e: The concentration distribution Ω versus y for T=0.01, θ=1.5, 
x=0.1, α=0.6, M=2.
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•	 Pressure gradient and pressure rise are decreasing functions 
of Γ. 

•	 The magnitude of velocity is an increasing function of Γ at the 
Centre line of the channel.

•	 Magnitude of induced magnetic field decreases with m.

•	 The magnitude of current density profiles has a decreasing 
effect for Γ. 

•	 The temperature distribution increases with increasing values 
of Γ,M and Br near the walls of channel.

•	 The concentration field is an increasing function of M and 
decreasing function of Sc, Γ and Br when y=0.

•	 Magnitude of γ and Ω is larger for divergent channel(m=0) 
in comparison to straight channel (m=0) and convergent 
channel (m=0).

References

1.	 Srinivasacharya D, Radhakrishnamacharya G, Srinivasulu CH (2008) The 
effect of wall properties on peristaltic transport of a dusty fluid. Turkish J Evn 
Sc 32: 357-365. 

2.	 Latham TW (1966) Fluid motion in a peristaltic pump. MIT Cambridge MA, 
UK.

3.	 Tripathi D (2011) Peristaltic transport of viscoelastic fluid in a channel. Acta 
Astronaut. 68: 1379-1385.

4.	 Mustafa M, Hina S, Hayat T, Alsaedi M (2012) A Influence of wall properties 
on the peristaltic flow of a nano fluid: Analytic and numerical solutions. Int J 
Heat Mass Transf 55: 1871- 4877. 

5.	 Hayat T, Qureshi MU, Ali N (2008) The influence of slip on the peristaltic 
motion of a third order fluid in an asymmetric channel. Phys Lett A 372: 2653-
2664. 

6.	 Tripathi D, Pandey SK, Das S (2010) Peristaltic flow of viscoelastic fluid with 
fractional Maxwell model through a channel. Appl Math Comput 215: 3645-
3654.  

7.	 Tripathi D (2012) A mathematical model for swallowing of food bolus through 
the oesophagus, under the influence of heat transfer. Int J thermal Sci 52: 
91-101.

8.	 Hayat T, Ali N (2008) Effects of an endoscope on the peristaltic flow of a 
micropolar fluid. Math Comp Model. 48: 721-733.

9.	 Hayat T, Hussain Q, Ali N (2008) Influence of parial slip on the peristaltic flow 
in a porous medium. Phys Lett A 387: 3399-3409.

10.	Nadeem S, Akbar NS (2009) Effects of heat transfer on the peristaltic transport 
of MHD Newtonian fluid with variable viscosity: Application of Adomian 
decomposition method. Comm Nonlinear Sci Numer Simul 14 : 3844-3855.

11.	Agrawal HL, Anwaruddin B (1984) Peristaltic flow of blood in a branch. Ranchi 
Univ Math J. 15: 111-118.

12.	Kothandapani M, Srinivas S (2008) Peristaltic transport of a Jeffrey fluid 
under the effect of magnetic field in an asymmetric channel. Int J Non-Linear 
Mech 43: 915-924.

13.	Mekheimer KHS (2008) Effect of induced magnetic field on peristaltic flow of 
a couple stress fluid. Phys Lett A 372: 4271-4278.

14.	Mekheimer KHS (2008) Peristaltic flow of a magneto-micropolar fluid: Effect 
of induced magnetic field. J Appl Math. 2008: 570825-570848.

15.	Hayat T, Khan Y, Ali N, Mekheimer KHS (2010) Effect of an induced magnetic 
field on the peristaltic flow of a third order fluid, Numer. Methods Partial Diff 
Eqs.26: 345-360.

16.	Elmaboud YA (2012) Influence of induced magnetic field on peristaltic flow in 
an annulus. Comm Nonlinear Sci Numer.Simulation. 17: 685-698

17.	Pandey SK, Chaube MK (2010) Peristaltic transport of a visco-elastic fluid in 
a tube of non-uniform cross section. Math Comp Model 52: 501-514.

18.	Mekheimer KHS (2004) Peristaltic flow of blood under effect of a magnetic 
field in a non-uniform channels. Appl Math Comput. 153: 763-777.

19.	Srinivas S, Gayathri R, Kothandapani M (2011) Mixed convective heat and 
mass transfer in an asymmetric channel with peristalsis. Commun Nonlin Sci 
Num Simul16: 1845-1862.

20.	Srinivas S, Muthuraj R (2011) Effects of chemical reaction and space 
porosity on MHD mixed convective flow in a vertical asymmetric channel with 
peristalsis. Math Compu Modell 54: 1213-1227.

21.	Hayat T, Qureshi MU, Hussain Q (2009) Effect of heat transfer on the 
peristaltic flow of an electrically conducting fluid in a porous space. Appl Math 
Model 22: 1862-1873.

22.	Srinivas S, Kothandapani M (2009) The influence of heat and mass transfer 
on MHD peristaltic flow through a porous space with compliant walls. Appl 
Math Comput 213: 197-208.

23.	Ogulu A (2006) Effect of heat generation on low Reynolds number fluid and 
mass transport in a single lymphatic blood vessel with uniform magnetic field. 
Int Commun Heat Mass Transfer 33: 790-799.

24.	Mekheimer KHS, El-Maboud YA (2008) The influence of heat transfer and 
magnetic field on peristaltic transport of a Newtonian fluid in a vertical 
annulus: Application of an endoscope. Phys Lett A 372: 1657-1665.

Author Affiliations                     Top

Department of Mathematics, Comsats Institute of Information Technology, 
Islamabad 44000, Pakistan 

Submit your next manuscript and get advantages of SciTechnol 
submissions

�� 80 Journals
�� 21 Day rapid review process
�� 3000 Editorial team
�� 5 Million readers
�� More than 5000 
�� Quality and quick review processing through Editorial Manager System

Submit your next manuscript at ● www.scitechnol.com/submission

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.557.1837&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.557.1837&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.557.1837&rep=rep1&type=pdf
http://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=121690
http://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=121690
http://library.wolfram.com/infocenter/Articles/8363/
http://library.wolfram.com/infocenter/Articles/8363/
http://library.wolfram.com/infocenter/Articles/8363/
https://dl.acm.org/citation.cfm?id=2640098.2640364
https://dl.acm.org/citation.cfm?id=2640098.2640364
https://dl.acm.org/citation.cfm?id=2640098.2640364
https://dl.acm.org/citation.cfm?id=2249080
https://dl.acm.org/citation.cfm?id=2249080
https://econpapers.repec.org/article/eeephsmap/v_3a387_3ay_3a2008_3ai_3a14_3ap_3a3399-3409.htm
https://econpapers.repec.org/article/eeephsmap/v_3a387_3ay_3a2008_3ai_3a14_3ap_3a3399-3409.htm
http://adsabs.harvard.edu/abs/2009CNSNS..14.3844N
http://adsabs.harvard.edu/abs/2009CNSNS..14.3844N
http://adsabs.harvard.edu/abs/2009CNSNS..14.3844N
http://adsabs.harvard.edu/abs/2008PhLA..372.4271M
http://adsabs.harvard.edu/abs/2008PhLA..372.4271M
https://www.hindawi.com/journals/jam/2008/570825/
https://www.hindawi.com/journals/jam/2008/570825/
https://dl.acm.org/citation.cfm?id=2281645
https://dl.acm.org/citation.cfm?id=2281645
http://en.journals.sid.ir/ViewPaper.aspx?ID=384200
http://en.journals.sid.ir/ViewPaper.aspx?ID=384200
https://dl.acm.org/citation.cfm?id=2281720
https://dl.acm.org/citation.cfm?id=2281720
https://dl.acm.org/citation.cfm?id=2281720
https://dl.acm.org/citation.cfm?id=2640442
https://dl.acm.org/citation.cfm?id=2640442
https://dl.acm.org/citation.cfm?id=2640442

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Formulation
	Perturbation Solution Writing 
	Graphical Results and Discussion 
	Pumping characteristics 
	Flow characteristics 
	Magnetic field characteristics 
	Temperature characteristics 
	Concentration characteristics 

	Concluding Remarks 
	Figure 1a
	Figure 1b
	Figure 2a
	Figure 2b
	Figure 3a
	Figure 3b
	Figure 4a
	Figure 4b
	Figure 5a
	Figure 5b
	Figure 6a
	Figure 6b
	Figure 6c
	Figure 6d
	Figure 7a
	Figure 7b
	Figure 7c
	Figure 7d
	Figure 7e
	References 

