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Abstract

Heart sounds and murmurs provide crucial diagnosis
information for several heart diseases such as natural or
prosthetic valve dysfunction and heart failure. Many
pathological conditions of the cardiovascular system cause
murmurs and aberrations in heart sounds. Phonocardiography
provides the clinician with a complementary tool to record the
heart sounds heard during auscultation. The advancement of
intra cardiac phonocardiography, combined with modern digital
processing techniques, has strongly renewed researchers’
interest in studying heart sounds and murmurs. This paper
presents an algorithm for the detection of heart sounds (the
first and second sounds, S1 and S2) and heart murmurs. This
paper is concerned to the segmentation of heart sounds by
using state of art Hidden Markov Models (HMW) technology
which used to extract a smooth envelogram which enable us to
apply the tests necessary for temporal localization of heart
sounds and heart murmurs. In the scope of this segmentation
difficulty the well-known non-stationary statistical properties of
Hidden Markov Models (HMW) concerned to temporal signal
segmentation capabilities can be adequate to deal with this
kind of segmentation problems.

Keywords: Phonocardiogram; Heart sound; Heart murmur;
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Introduction
The heart is a principal organ which assures a blood circulation.

Under normal conditions, the heart provides two major audible sounds
(S1 and S2) for each cardiac cycle [1]. Two other sounds (S3 and S4),
with lower amplitude than S1 or S2, appear occasionally in the cardiac
cycle by the effect of diseases or age. The first heart sound S1,
corresponding to the beginning of ventricular systole, is due to the
closure of atrioventricular valves [2]. This sound is composed of two
internal components: The Mitral component (M1) associated with the
closure of the mitral valve and the Tricuspid component (T1)
associated with the closing of the tricuspid valve. The second heart
sound, marking the end of ventricular systole and signifying the
beginning of the diastole, is made up of two components: The Aortic
component (A2) corresponding of the closure of the aortic valve, and

the Pulmonary component (P2) corresponding of the closure of the
pulmonary valve (Figure 1) [3].

Figure 1: Time representation of the normal phonocardiogram
signal.

Valvular pathologies induce significant changes in the morphology
of the Phonocardiogram signal (PCG). On the other hand, systolic and
diastolic murmurs of different shapes can be added to the PCG signal
to build a track resulting from a given disease [4]. The PCG signal is
then a support of information to value by digital processing in order to
better appreciate the pathologies to can be processed more easily. The
energy of the PCG signal can prove therefore very important in the
study of the cardiac cycle. In the time domain, such representation
allows us to appreciate the length of each heart sound, systolic and
diastolic phases and the cardiac cycle [5].

Time frequency analysis and classification of the PCG signals have
been studied by several authors. Before any analysis, the PCG signal
needs to be segmented into components (sounds or murmurs), and
then the components are analyzed separately [6]. Some attempts to
segment the PCG signal have been reported in the literature, but the
majority of them depend on reference to the Electrocardiogram (ECG)
signal, but a major disadvantage of this approach is that the timing
between electrical and mechanical activities in a cardiac cycle will not
be exactly constant for all patients because of a variety of pathological
conditions [7].

The aim of this study is to develop an algorithm for heart sound and
heart murmur segmentation using the PCG signal as the only source.
PCG signals have internal components of very close frequency bands.
Fast Fourier Transform (FFT) provides valuable frequency
information, but the timing information is lost during the
transformation process. Discrete Wavelet Transform (DWT), in using
the band filter during PCG analysis, takes account only of the
bandwidth of these filters [8]. In the context of analyzing other
methods above, presented a method of heart sounds (S1 and S2)
extraction using hilbert transform envelope, which may be applied to
real time system for its rapid speed and low complexity, however used
this kind of envelope for the extraction of features of heart sounds.
The hilbert transform envelope also provides the possibility to analyze
the internal components of heart sounds; it’s the only envelope able to
detect the S1 and S2 split and extract their internal components [9].

An approach of segmentation of heart sounds and heart murmurs
was proposed and that uses the Shannon energy envelope, which is
able to delimit the beginning and end of each heart sound with a
threshold set from the maximum value of the envelope, to give an
appreciation of their average length [10]. Hilbert transform, which
may be applied to real time system for its low complexity. Note that
this envelope can generate a representation that takes account of the

Debba et al., J Comput Eng Inf Technol 2023, 12:1 Journal of Computer
Engineering &
Information Technology

Research Article A SCITECHNOL JOURNAL

All articles published in Journal of Computer Engineering & Information Technology are the property of SciTechnol and 
is protected by copyright laws. Copyright © 2023, SciTechnol, All Rights Reserved.



physiological attenuation of heart sounds as well as artifacts of large
amplitude while recording the PCG signal, which allows the
representation of all heart sounds and heart murmurs [11].

Segmentation refers to the detection of major events in the cardiac
cycle, such as the first and second sounds that are audible,
pathological noises that can be added to the PCG signal during the
systolic and diastolic phases. Several segmentation methods have been
developed; some use the ECG signal and the carotid pulse as a
reference others are based only on the PCG signal. The majority of
these methods are based on the information conveyed by the envelope
detection of the PCG signal; where the latter crosses a predefined
threshold [12]. These methods include envelope extraction using
discrete decomposition and wavelet reconstruction or the use of
magnitude of the analytical signal formed using the PCG signal and its
transform. Hilbert or by calculating the energy of shannon. However,
these methods can lead to several problems such as the lack of low
energy events such as the cardiac click which is not always clear by
the signal envelope or detection of artifacts at high energy as cardiac
activity, or the detection of additional peaks which come from split S2.

A probabilistic method has been proposed in the literature for
automatic segmentation of the phonocardiogram signal; it is the
Hidden Markov Model (HMM), which is based essentially on the
envelope of the homomorphic filtering which makes it possible to
generate a smooth envelope facilitating the extraction of the
characteristics of the signal showing the entrance to the HMM [13].
The parameters of the model are also estimated from the envelope
used, the output of the HMM is the optimal sequence of states which
maximizes the probability that the state at time t generates the
observation which is the input of the model. Note that the states of the
HMM are the areas of interest of the signal like heart sounds. In this
paper we will study this method (HMM), trying to improve the
characteristics extracted from the homomorphic envelope in order to
improve the estimation of the model.

Materials and Methods
Based on this method, we will try in this study to develop an

algorithm for separation of heart sounds and heart murmurs; which
works by creating the analytic signal of the input by using the Hidden
Markov Models (HMM) technology which used to extract a smooth
envelogram which enable us to apply the tests necessary for temporal
localization of heart sounds and heart murmurs. In the scope of this
segmentation difficulty the well-known non-stationary statistical
properties of Hidden Markov Models (HMM) concerned to temporal
signal segmentation capabilities can be adequate to deal with this kind
of segmentation problems [14].

Heart sound hidden Markov model
Theory of the HHM model: An Hidden Markov Model (HMM) is

a probabilistic state machine where the states of the machine are
unobservable, but the outputs of the state machine are observable. A
HMM can model signals where the outputs are discrete or continuous.
An example of a discrete HMM is a HMM that models the series of
heart sound labels over time. An example of a continuous HMM is a
HMM that models the shannon energy feature over time (Figure 2)
[15].

Figure 2: Heart sound markov model.

One can model the phonocardiogram signal as a four state HMM.
The first state corresponds to the S1 sound, the second state
corresponds to the silence during the systolic period, the third state
corresponds to the S2 sound, and the fourth state corresponds to the
silence during the diastolic period. These four states HMM are useful
for modeling the sequence of symbols (or labels) of the
phonocardiogram; however, it is too simple to accurately model the
transitions between sound and silence. One solution is to embed
another HMM inside of each of the heart sound symbol states. The
embedded HMM models the signal as it traverses a specific labeled
region of the signal. Using this combined approach, we can model
both the high level state sequence of our signal (S1-sil-S2-sil) and the
continuous transitions of the signal. This type of model is similar to
how a speech processing system has a high level probabilistic
grammar to model the transition of words or phonemes, and an
embedded HMM for each phoneme.

All of the experiments utilized an eight state HMM for the S1
sounds, a six state HMM for the S2 sound, and a three state HMM for
each silence period. The number of states where calculated by taking
the average duration of each heart sound and dividing by the frame
duration. For example, the S1 sound has an average duration of 160
milliseconds and the frame step size is 20 milliseconds; therefore, it
can be represented by eight states (160 ms/20 ms=8). In addition, the
experiments utilized a four state grammar that represented the state
model. The probabilities for this model were learned using a discrete
HMM where the label files were used to train the model. The resultant
HMM represents the symbol transitions of the phonocardiogram. We
manually translated the discrete HMM into a grammar for use with the
HTK toolset.

Two different methods for measuring the performance of the system
are employed: Frame error rate and model error rate. To determine the
frame error rate, we compare each frame of the labeled signal to the
output signal. We calculate the error rate of the system by dividing the
number of mismatched frames by the total number of frames in the
system. To determine the model error rate, we calculate the center of
the heart sound label and the center of the learned heart sound and
calculating the difference between these centers. The system marks a
labeling as a success if the delta between these centers is less than 50
milliseconds. Then, the error rate is the number of mismatched S1 or
S2 labels divided by the total number of sound labels in the system.
We measure both the frame error rate and the model error rate, for
both the training of the system and the validation of the system. Since
there were only clean files for eight of the patients, eight fold cross
validation was used. Finally, the noisy files were validated against the
model where the model was trained with only clean files.

Optimal path calculation: Viterbi algorithm: The viterbi
algorithm is named after andrew viterbi, who proposed it in 1967 as a
decoding algorithm for convolutional codes over noisy digital
communication links. It has, however, a history of multiple inventions,
with at least seven independent discoveries. For example, in statistical
parsing a dynamic programming algorithm can be used to discover the
single most likely context free derivation (parse) of a string, which is
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commonly called the "viterbi parse". Another application is in target
tracking, where the track is computed that assigns a maximum
likelihood to a sequence of observations. The idea is to use a re-
estimation procedure which gradually refines the model according to
the following steps:

• Choose an initial set Λ0 of parameters
• Calculate Λ1 from Λ0, then Λ2 from Λ1, etc
• Repeat this process until an end criterion

For each learning step P, we have Λp and we look for a Λp+1
which must verify:

It is now a question of determining the best path corresponding to
the observation, that is to say of finding in the model Λ the best
sequence of states Q, which maximizes the quantity P (Q, O | Λ).

To find Q=(q1, q2,..., QT) for a sequence of observations O = (O1,
O2,...,OT), we define the intermediate variable δt (i) as the probability
of the best path leading to the state if at time t, being guided by the
first t observations.

By recurrence, we calculate:

By keeping track, during calculation, of the state sequence which
gives the best path. We use a variant of dynamic programming, the
Viterbi algorithm to formalize this recurrence. It provides as output the
value P* of the probability of the emission of the sequence by the best
sequence of states (q*1, • • •, q*T). The argmax function allows you to
store the index i, between 1 and n, with which you reach the maximum
of the quantities (δt(i) aij)). The cost of operations is also in Θ (n2T).

Viterbi algorithm:

Results and Discussion

Analysis of the signal PCG by using the HHM model:
Results

The following organogram describes the different stages of
segmenting PCG signals using the HMM model (Figures 3-7).

Figure 3: PCG signal segmentation algorithm by using the HHM
model.
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Figure 4: Segmentation of normal PCG signals. Note: a) Normal 
signal PCG; b) Standardized envelope by using homomorphic 
filtering; c) Localization of S1 and S2 by HMM; d) Sound S1; e) 
Sound S2

Figure 5: Segmentation of pathological Signal PCG case « MP):
Mitral Prolopase. Note: a) Pathological signal PCG (MP); b)
Standardized envelope by using homomorphic filtering; c)
Localization of S1 and S2 by HMM; d) Sound S1; e) Sound S2
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Figure 6: Segmentation of pathological Signal PCG case « 
OS): Opening Snape. Note: a) Pathological Signal PCG 
(OS); b) standardized envelope by using homomorphic filtering; c) 
localization of S1 and S2 by HMM; d) sound S1; e) Sound S2



   Our HMM hidden Markov model applied to the different PCG 
signals is defined by 4 states: S1 and S2 sounds and the systolic and 
diastolic phases which can be silent or which can correspond to 
different heart murmurs. The envelope resulting from homomorphic 
filtering, we allow to extract the best characteristics of the PCG signal 
for a better observation sequence. 

Given the following observation, we can determine the parameters of 
the Markov model Λ={aij, μj, j, πi}. Therefore, we can establish the 
best state sequence by applying the Viterbi algorithm. The durations of 
heart sounds S1 and S2 as well as the systolic and diastolic phases 
were well estimated. Table 1 provides the segmentation results of the 
PCG signals by using the HMM technic.

Segmentation of PCG signals Duration of the
sound S1 (s)

Duration of the
sound S2 (s)

Duration of the
murmur (s)

Duration of the
Systole (s)

Duration of the
diastole (s)

Normal signal PCG N 0.08 0.06 - 0.18 0.34

PCG signals of the
systolic murmur

LS 0.110 0.098 0.13 0.22. 0.34

MP 0.08 0.06 0.22 0.22 0.26

AS1 0.06 0.04 0.27 0.3 0.28

AS2 0.062 0.049 0.18 0.24 0.38

PAS 0.109 0.095 0.22 0.22 0.36

EM 0.06 0.04 0.11 0.18 0.76

MR 0.06 0.04 0.26 0.26 0.56

ASD 0.08 0.10 S-S 0.16, S-D 0.17 0.2 0.36

PCG signals of the
diastolic murmur

AG 0.08 0.07 0.03 0.2 0.36

DR 0.09 0.08 0.32 0.16 0.40

The PCG signals with murmur contain S1 sounds which have a 
duration greater than that of B2 sound, as well as shorter systolic 
phases than diastolics. The application of HMM has given satisfactory 
results for the discrimination of the different components of PCG 
signals. A vigorous determination of the HMM parameters generates a 
clear segmentation of the PCG signals, this allows us directly to access 
the durations of the various components of the signal. Our HMM 
made it possible to segment a large number of PCG signals with global

decision without the obligation to use thresholds, however; it should 
also be noted that this algorithm is incapable of segmenting certain 
PCG signals.

Conclusion
   The main objective of the work described in this paper was to 
develop a robust segmentation technique for segmenting the 
phonocardiogram into its main components HMM’s PCG signal
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Figure 7: Segmentation of pathological signal PCG case « AS »: 
Aortic Stenosi. Note: a) Pathological signal PCG (AS); b) 
Standardized envelope by using homomorphic filtering; c) 
Localization of S1 and S2 by HMM; d) Sound S1; e) Sound S2

Table 1: Durations of the sound S1, S2 and systolic and diastolic phases.



segmentation method generates excellent results, especially for
pathological signals with complex murmur morphology. The use of
the homomorphic envelope is very important for the extraction of the
characteristics which present the Markov model. It is a method that
eliminates pathological noises or sometimes attenuates them by
comparing them to that of the sounds S1 and S2 which favors the
maximization of probability of generating the best sequence of states.
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