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Abstract
A precondition for developing diagnostic tools based on analys-
ing physiological time series is that there is pattern, i.e. infor-
mation, in the data. Systematic variation in the data set is of-
ten masked by baseline drift and physiological fluctuations. In 
this study a simplest possible algorithm to eliminate the effect 
of drift and detect short-term pattern in physiological data is  
presented.

The time series, xi, is filtered for the occurrences of three con-
secutive points with different values (xi ≠ xi+1 ≠ xi+2). Six different 
patterns are identified. The probability distribution of the pattern 
suggests if the time series is random or generated from a pos-
sible goal directed regulating activity. If the information entropy 
of the probability distribution of the pattern is close to one (not 
infinite long time series), the time series most likely come from 
a underlying process not offering qualitative information suitable 
for diagnostic purposes.

The method is demonstrated on a data sequence generated from 
the logistic map in the infinite periodicity condition and a recorded 
optokinetic nystagmus amplitude time series.
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4]. Optokinetic nystagmus is the eye movement reflex elicited by the 
tracking of a moving field.

Methods
For the purpose of removing drift and testing for short-term in-

formation pattern in the time series data the following procedure was 
applied.

From the time series xi, find the three points data series wk , where 
wk is 
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Compute the probability density distribution pk,

(∑
=
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k
kp , where bins={123, 132, 213, 231, 312, 321})

Calculate the normalized information entropy, I, of the probabil-
ity distribution [3,4,5]
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Results
Figure 1 shows the probability distribution, pk, of the three points 

data pattern series, wi, for a) logistic map, b) the logistic map with 
linear added drift of two times the standard deviation (SD)(n=1000) 
and for c) OKNAtime series without and d) with linear added drift of 
two times the SD (n=338). The unequal distribution of the probability 
distribution shows that some patterns occur more often than others, 
which indicates information in the data sets. We can see that adding 
2*SD drift does not change the pattern distribution or the calculated 
information entropy, even for the short OKNA time series. The en-
tropy of the pattern distribution for the logistic map without and with 
added 2*SD drift was calculated to ILogMap=0.84 and IOKAN=0.98 for the 
OKNA time series.

Discussion and Conclusion
The purpose of this study was to test out a simplest possible al-

gorithm to eliminate the effect of drift and detect short-term pattern 
in physiological data. It has been shown that the method is robust 
against drifting noise. Adding linear drift of 2*SD did not change the 
pattern distribution, or the calculated information entropy, for the 
logistic map or the short OKNA time series.

It remains to see if qualitative information in physiological time 
series [5] reflects some dynamical properties in the underlying physi-
ological regulating mechanism, that can be detected by this method 
and substantiate it’s use for diagnostic purposes.

Introduction
When analysing physiological data for information pattern, we 

often face the problem of drift and physiological fluctuations [1].

In this study the consecutive running three data point pattern, 
with different values (xi ≠ xi+1 ≠ xi+2) in a time series is analysed. Six 
different patterns are identified. The probability distribution of the 
pattern from a random time series will be approximately flat, i.e. 
equally many samples of each pattern (the distribution from an eter-
nally long random time series will be totally flat).

The algorithm is tested on a sequence from the chaotic regime of 
the logistic map with infinite periodicity,

xi+1=r xi (1-xi) , r=3.8

and an optokinetic nystagmus amplitude (OKNA) time series [2-
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Figure 1: Upper (a) right diagram shows the probability distribution of the three points data pattern series with different values (xi ≠ xi+1 ≠ xi+2) in the logistic map 
series (left), and the diagram under (b) right for the logistic map with linear added drift of two times the standard deviation (left).
 (c) Shows the three points data pattern distribution (right) for the OKNA time series (left), and (d) (right) for the OKNA time series with linear added drift of two 
times the standard deviation (left). The calculated normalized information entropy is the same for pattern distribution for logistic map with and without added drift, 
and for the OKNA time series with and without added drift.
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